• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643723)   Today's Articles (456)   Subscriber (50635)
For: Popović DM, Stuchebrukhov AA. Proton Exit Channels in Bovine Cytochrome c Oxidase. J Phys Chem B 2005;109:1999-2006. [PMID: 16851184 DOI: 10.1021/jp0464371] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Rousseau DL, Ishigami I, Yeh SR. Structural and functional mechanisms of cytochrome c oxidase. J Inorg Biochem 2024;262:112730. [PMID: 39276716 DOI: 10.1016/j.jinorgbio.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
2
Noodleman L, Götz AW, Han Du WG, Hunsicker-Wang L. Reaction pathways, proton transfer, and proton pumping in ba3 class cytochrome c oxidase: perspectives from DFT quantum chemistry and molecular dynamics. Front Chem 2023;11:1186022. [PMID: 38188931 PMCID: PMC10766771 DOI: 10.3389/fchem.2023.1186022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]  Open
3
Shimada A, Baba J, Nagao S, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. Crystallographic cyanide-probing for cytochrome c oxidase reveals structural bases suggesting that a putative proton transfer H-pathway pumps protons. J Biol Chem 2023;299:105277. [PMID: 37742916 PMCID: PMC10598403 DOI: 10.1016/j.jbc.2023.105277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]  Open
4
Siletsky SA. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode. BIOCHEMISTRY. BIOKHIMIIA 2023;88:1513-1527. [PMID: 38105021 DOI: 10.1134/s0006297923100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
5
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023;25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
6
Shimada A, Tsukihara T, Yoshikawa S. Recent progress in experimental studies on the catalytic mechanism of cytochrome c oxidase. Front Chem 2023;11:1108190. [PMID: 37214485 PMCID: PMC10194837 DOI: 10.3389/fchem.2023.1108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]  Open
7
Rottenberg H. The accelerated evolution of human cytochrome c oxidase - Selection for reduced rate and proton pumping efficiency? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022;1863:148595. [PMID: 35850262 DOI: 10.1016/j.bbabio.2022.148595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
8
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021;9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022]  Open
9
Siletsky SA, Gennis RB. Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane. BIOCHEMISTRY (MOSCOW) 2021;86:105-122. [DOI: 10.1134/s0006297921010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
10
Wolf A, Wonneberg J, Balke J, Alexiev U. Electronation-dependent structural change at the proton exit side of cytochrome c oxidase as revealed by site-directed fluorescence labeling. FEBS J 2019;287:1232-1246. [PMID: 31597007 DOI: 10.1111/febs.15084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
11
Tracing the Pathways of Waters and Protons in Photosystem II and Cytochrome c Oxidase. INORGANICS 2019. [DOI: 10.3390/inorganics7020014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
12
Cai X, Haider K, Lu J, Radic S, Son CY, Cui Q, Gunner M. Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018;1859:997-1005. [DOI: 10.1016/j.bbabio.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
13
Stuchebrukhov AA. Redox-Driven Proton Pumps of the Respiratory Chain. Biophys J 2018;115:830-840. [PMID: 30119834 DOI: 10.1016/j.bpj.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022]  Open
14
Farahvash A, Stuchebrukhov A. Investigating the Many Roles of Internal Water in Cytochrome c Oxidase. J Phys Chem B 2018;122:7625-7635. [PMID: 30011995 DOI: 10.1021/acs.jpcb.7b11920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
15
Yang L, Skjevik ÅA, Han Du WG, Noodleman L, Walker RC, Götz AW. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2016;1857:1594-1606. [PMID: 27317965 PMCID: PMC4995112 DOI: 10.1016/j.bbabio.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 01/22/2023]
16
Oliveira ASF, Campos SRR, Baptista AM, Soares CM. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016;1857:759-71. [PMID: 27033303 DOI: 10.1016/j.bbabio.2016.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
17
Samudio BM, Couch V, Stuchebrukhov AA. Monte Carlo Simulations of Glu-242 in Cytochrome c Oxidase. J Phys Chem B 2016;120:2095-105. [PMID: 26865374 DOI: 10.1021/acs.jpcb.5b10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
18
Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site. Proc Natl Acad Sci U S A 2015;112:3397-402. [PMID: 25733886 DOI: 10.1073/pnas.1422434112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]  Open
19
Yin Y, Wang J, Jiang S, Yang X, Zhang X, Cao Y, Cao L, Wu H. Novel composite membranes based on sulfonated poly(ether ether ketone) and adenosine triphosphate for enhanced proton conduction. RSC Adv 2015. [DOI: 10.1039/c5ra14143e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]  Open
20
Oliveira ASF, Damas JM, Baptista AM, Soares CM. Exploring O2 diffusion in A-type cytochrome c oxidases: molecular dynamics simulations uncover two alternative channels towards the binuclear site. PLoS Comput Biol 2014;10:e1004010. [PMID: 25474152 PMCID: PMC4256069 DOI: 10.1371/journal.pcbi.1004010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/29/2014] [Indexed: 12/04/2022]  Open
21
Ishigami I, Hikita M, Egawa T, Yeh SR, Rousseau DL. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014;1847:98-108. [PMID: 25268561 DOI: 10.1016/j.bbabio.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/11/2014] [Accepted: 09/20/2014] [Indexed: 11/19/2022]
22
Buhrow L, Hiser C, Van Voorst JR, Ferguson-Miller S, Kuhn LA. Computational prediction and in vitro analysis of potential physiological ligands of the bile acid binding site in cytochrome c oxidase. Biochemistry 2013;52:6995-7006. [PMID: 24073649 DOI: 10.1021/bi400674h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
23
Current advances in research of cytochrome c oxidase. Amino Acids 2013;45:1073-87. [PMID: 23999646 DOI: 10.1007/s00726-013-1585-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
24
Couch V, Stuchebrukhov A. Proteins as strongly correlated protonic systems. FEBS Lett 2012;586:519-25. [PMID: 21985970 DOI: 10.1016/j.febslet.2011.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022]
25
Popović DM, Stuchebrukhov AA. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011;1817:506-17. [PMID: 22086149 DOI: 10.1016/j.bbabio.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/30/2022]
26
The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011;1817:495-505. [PMID: 21978537 DOI: 10.1016/j.bbabio.2011.09.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 11/21/2022]
27
Hammes–Schiffer S, Stuchebrukhov AA. Theory of coupled electron and proton transfer reactions. Chem Rev 2010;110:6939-60. [PMID: 21049940 PMCID: PMC3005854 DOI: 10.1021/cr1001436] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
28
Popovic DM, Leontyev IV, Beech DG, Stuchebrukhov AA. Similarity of cytochrome c oxidases in different organisms. Proteins 2010;78:2691-8. [PMID: 20589635 DOI: 10.1002/prot.22783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
29
Blomberg MR, Siegbahn PE. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase. Mol Phys 2010. [DOI: 10.1080/00268976.2010.523017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
30
Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC STRUCTURAL BIOLOGY 2010;10:28. [PMID: 20822511 PMCID: PMC2944330 DOI: 10.1186/1472-6807-10-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
31
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010;110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
32
Yoshioka Y, Mitani M. B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases. Bioinorg Chem Appl 2010;2010:182804. [PMID: 20396396 PMCID: PMC2852611 DOI: 10.1155/2010/182804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/27/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022]  Open
33
Lee HJ, Ojemyr L, Vakkasoglu A, Brzezinski P, Gennis RB. Properties of Arg481 mutants of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a3 is likely to be the proton loading site of the proton pump. Biochemistry 2009;48:7123-31. [PMID: 19575527 DOI: 10.1021/bi901015d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Leontyev IV, Stuchebrukhov AA. Dielectric relaxation of cytochrome c oxidase: Comparison of the microscopic and continuum models. J Chem Phys 2009;130:085103. [PMID: 19256628 DOI: 10.1063/1.3060196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
35
Sugitani R, Stuchebrukhov AA. Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009;1787:1140-50. [PMID: 19393218 DOI: 10.1016/j.bbabio.2009.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
36
Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009;1787:635-45. [PMID: 19374884 DOI: 10.1016/j.bbabio.2009.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 11/19/2022]
37
Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 2008;40:521-31. [PMID: 18975062 DOI: 10.1007/s10863-008-9181-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
38
Fee JA, Case DA, Noodleman L. Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: application of density functional theory to cytochrome ba3 of Thermus thermophilus. J Am Chem Soc 2008;130:15002-21. [PMID: 18928258 DOI: 10.1021/ja803112w] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
39
Siegbahn PEM, Blomberg MRA. Proton Pumping Mechanism in Cytochrome c Oxidase. J Phys Chem A 2008;112:12772-80. [DOI: 10.1021/jp801635c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
Siegbahn PEM, Blomberg MRA. Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007;1767:1143-56. [PMID: 17692282 DOI: 10.1016/j.bbabio.2007.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/15/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
41
Hosler JP, Ferguson-Miller S, Mills DA. Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 2007;75:165-87. [PMID: 16756489 PMCID: PMC2659341 DOI: 10.1146/annurev.biochem.75.062003.101730] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
42
Busenlehner LS, Salomonsson L, Brzezinski P, Armstrong RN. Mapping protein dynamics in catalytic intermediates of the redox-driven proton pump cytochrome c oxidase. Proc Natl Acad Sci U S A 2006;103:15398-403. [PMID: 17023543 PMCID: PMC1622835 DOI: 10.1073/pnas.0601451103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
43
Song Y, Michonova-Alexova E, Gunner MR. Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral? Biochemistry 2006;45:7959-75. [PMID: 16800622 PMCID: PMC2727075 DOI: 10.1021/bi052183d] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
44
Quenneville J, Popović DM, Stuchebrukhov AA. Combined DFT and electrostatics study of the proton pumping mechanism in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006;1757:1035-46. [PMID: 16458251 DOI: 10.1016/j.bbabio.2005.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
45
Brzezinski P, Adelroth P. Design principles of proton-pumping haem-copper oxidases. Curr Opin Struct Biol 2006;16:465-72. [PMID: 16842995 DOI: 10.1016/j.sbi.2006.06.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/12/2006] [Accepted: 06/30/2006] [Indexed: 11/20/2022]
46
Popovic DM, Stuchebrukhov AA. Two conformational states of Glu242 and pKas in bovine cytochrome c oxidase. Photochem Photobiol Sci 2006;5:611-20. [PMID: 16761090 DOI: 10.1039/b600096g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Medvedev DM, Medvedev ES, Kotelnikov AI, Stuchebrukhov AA. Analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005;1710:47-56. [PMID: 16242114 DOI: 10.1016/j.bbabio.2005.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/26/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA