1
|
Rousseau DL, Ishigami I, Yeh SR. Structural and functional mechanisms of cytochrome c oxidase. J Inorg Biochem 2024; 262:112730. [PMID: 39276716 DOI: 10.1016/j.jinorgbio.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.
Collapse
Affiliation(s)
- Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Noodleman L, Götz AW, Han Du WG, Hunsicker-Wang L. Reaction pathways, proton transfer, and proton pumping in ba3 class cytochrome c oxidase: perspectives from DFT quantum chemistry and molecular dynamics. Front Chem 2023; 11:1186022. [PMID: 38188931 PMCID: PMC10766771 DOI: 10.3389/fchem.2023.1186022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
After drawing comparisons between the reaction pathways of cytochrome c oxidase (CcO, Complex 4) and the preceding complex cytochrome bc1 (Complex 3), both being proton pumping complexes along the electron transport chain, we provide an analysis of the reaction pathways in bacterial ba3 class CcO, comparing spectroscopic results and kinetics observations with results from DFT calculations. For an important arc of the catalytic cycle in CcO, we can trace the energy pathways for the chemical protons and show how these pathways drive proton pumping of the vectorial protons. We then explore the proton loading network above the Fe heme a3-CuB catalytic center, showing how protons are loaded in and then released by combining DFT-based reaction energies with molecular dynamics simulations over states of that cycle. We also propose some additional reaction pathways for the chemical and vector protons based on our recent work with spectroscopic support.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, United States
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
3
|
Shimada A, Baba J, Nagao S, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. Crystallographic cyanide-probing for cytochrome c oxidase reveals structural bases suggesting that a putative proton transfer H-pathway pumps protons. J Biol Chem 2023; 299:105277. [PMID: 37742916 PMCID: PMC10598403 DOI: 10.1016/j.jbc.2023.105277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces O2 in the O2-reduction site by sequential four-electron donations through the low-potential metal sites (CuA and Fea). Redox-coupled X-ray crystal structural changes have been identified at five distinct sites including Asp51, Arg438, Glu198, the hydroxyfarnesyl ethyl group of heme a, and Ser382, respectively. These sites interact with the putative proton-pumping H-pathway. However, the metal sites responsible for each structural change have not been identified, since these changes were detected as structural differences between the fully reduced and fully oxidized CcOs. Thus, the roles of these structural changes in the CcO function are yet to be revealed. X-ray crystal structures of cyanide-bound CcOs under various oxidation states showed that the O2-reduction site controlled only the Ser382-including site, while the low-potential metal sites induced the other changes. This finding indicates that these low-potential site-inducible structural changes are triggered by sequential electron-extraction from the low-potential sites by the O2-reduction site and that each structural change is insensitive to the oxidation and ligand-binding states of the O2-reduction site. Because the proton/electron coupling efficiency is constant (1:1), regardless of the reaction progress in the O2-reduction site, the structural changes induced by the low-potential sites are assignable to those critically involved in the proton pumping, suggesting that the H-pathway, facilitating these low-potential site-inducible structural changes, pumps protons. Furthermore, a cyanide-bound CcO structure suggests that a hypoxia-inducible activator, Higd1a, activates the O2-reduction site without influencing the electron transfer mechanism through the low-potential sites, kinetically confirming that the low-potential sites facilitate proton pump.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Jumpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Shuhei Nagao
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Akoh, Hyogo, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Akoh, Hyogo, Japan.
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Akoh, Hyogo, Japan.
| |
Collapse
|
4
|
Siletsky SA. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1513-1527. [PMID: 38105021 DOI: 10.1134/s0006297923100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final step of cellular respiration in eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and oxygen reduction to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into the transmembrane gradient of the electrochemical potential of hydrogen ions H+). Heme-copper respiratory oxidases have a unique mechanism for generating H+, namely, a redox-coupled proton pump. A combination of direct electrometric method for measuring the kinetics of membrane potential generation with the methods of prestationary kinetics and site-directed mutagenesis in the studies of heme-copper oxidases allows to obtain a unique information on the translocation of protons inside the proteins in real time. The review summarizes the data of studies employing time-resolved electrometry to decipher the mechanisms of functioning of these important bioenergetic enzymes.
Collapse
Affiliation(s)
- Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba 3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023; 25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.
Collapse
Affiliation(s)
- Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Shaohui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Zhili Yin
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Mengguo Chen
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Illinois 60660, USA
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
6
|
Shimada A, Tsukihara T, Yoshikawa S. Recent progress in experimental studies on the catalytic mechanism of cytochrome c oxidase. Front Chem 2023; 11:1108190. [PMID: 37214485 PMCID: PMC10194837 DOI: 10.3389/fchem.2023.1108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cytochrome c oxidase (CcO) reduces molecular oxygen (O2) to water, coupled with a proton pump from the N-side to the P-side, by receiving four electrons sequentially from the P-side to the O2-reduction site-including Fea3 and CuB-via the two low potential metal sites; CuA and Fea. The catalytic cycle includes six intermediates as follows, R (Fea3 2+, CuB 1+, Tyr244OH), A (Fea3 2+-O2, CuB 1+, Tyr244OH), Pm (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244O•), F (Fea3 4+ = O2-, CuB 2+-OH-, Tyr244OH), O (Fea3 3+-OH-, CuB 2+-OH-, Tyr244OH), and E (Fea3 3+-OH-, CuB 1+-H2O, Tyr244OH). CcO has three proton conducting pathways, D, K, and H. The D and K pathways connect the N-side surface with the O2-reduction site, while the H-pathway is located across the protein from the N-side to the P-side. The proton pump is driven by electrostatic interactions between the protons to be pumped and the net positive charges created during the O2 reduction. Two different proton pump proposals, each including either the D-pathway or H-pathway as the proton pumping site, were proposed approximately 30 years ago and continue to be under serious debate. In our view, the progress in understanding the reaction mechanism of CcO has been critically rate-limited by the resolution of its X-ray crystallographic structure. The improvement of the resolutions of the oxidized/reduced bovine CcO up to 1.5/1.6 Å resolution in 2016 provided a breakthrough in the understanding of the reaction mechanism of CcO. In this review, experimental studies on the reaction mechanism of CcO before the appearance of the 1.5/1.6 Å resolution X-ray structures are summarized as a background description. Following the summary, we will review the recent (since 2016) experimental findings which have significantly improved our understanding of the reaction mechanism of CcO including: 1) redox coupled structural changes of bovine CcO; 2) X-ray structures of all six intermediates; 3) spectroscopic findings on the intermediate species including the Tyr244 radical in the Pm form, a peroxide-bound form between the A and Pm forms, and Fr, a one-electron reduced F-form; 4) time resolved X-ray structural changes during the photolysis of CO-bound fully reduced CcO using XFEL; 5) a simulation analysis for the Pm→Pr→F transition.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomitake Tsukihara
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shinya Yoshikawa
- Department of Life Science, Graduate School of Science, University of Hyogo, Hyogo, Japan
| |
Collapse
|
7
|
Rottenberg H. The accelerated evolution of human cytochrome c oxidase - Selection for reduced rate and proton pumping efficiency? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148595. [PMID: 35850262 DOI: 10.1016/j.bbabio.2022.148595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The cytochrome c oxidase complex, complex VI (CIV), catalyzes the terminal step of the mitochondrial electron transport chain where the reduction of oxygen to water by cytochrome c is coupled to the generation of a protonmotive force that drive the synthesis of ATP. CIV evolution was greatly accelerated in humans and other anthropoid primates and appears to be driven by adaptive selection. However, it is not known if there are significant functional differences between the anthropoid primates CIV, and other mammals. Comparison of the high-resolution structures of bovine CIV, mouse CIV and human CIV shows structural differences that are associated with anthropoid-specific substitutions. Here I examine the possible effects of these substitutions in four CIV peptides that are known to affect proton pumping: the mtDNA-coded subunits I, II and III, and the nuclear-encoded subunit VIa2. I conclude that many of the anthropoid-specific substitutions could be expected to modulate the rate and/or the efficiency of proton pumping. These results are compatible with the previously proposed hypothesis that the accelerated evolution of CIV in anthropoid primates is driven by selection pressure to lower the mitochondrial protonmotive force and thus decrease the rate of superoxide generation by mitochondria.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA 18938, USA.
| |
Collapse
|
8
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
9
|
Siletsky SA, Gennis RB. Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane. BIOCHEMISTRY (MOSCOW) 2021; 86:105-122. [DOI: 10.1134/s0006297921010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wolf A, Wonneberg J, Balke J, Alexiev U. Electronation-dependent structural change at the proton exit side of cytochrome c oxidase as revealed by site-directed fluorescence labeling. FEBS J 2019; 287:1232-1246. [PMID: 31597007 DOI: 10.1111/febs.15084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain of mitochondria and many aerobic prokaryotes that function as a redox-coupled proton pump, catalyzes the reduction of molecular oxygen to water. As part of the respiratory chain, CcO contributes to the proton motive force driving ATP synthesis. While many aspects of the enzyme's catalytic mechanisms have been established, a clear picture of the proton exit pathway(s) remains elusive. Here, we aim to gain insight into the molecular mechanisms of CcO through the development of a new homologous mutagenesis/expression system in Paracoccus denitrificans, which allows mutagenesis of CcO subunits 1, 2, and 3. Our system provides true single thiol-reactive CcO variants in a three-subunit base variant with unique labeling sites for the covalent attachment of reporter groups sensitive to nanoenvironmental factors like protonation, polarity, and hydration. To this end, we exchanged six residues on both membrane sides of CcO for cysteines. We show redox-dependent wetting changes at the proton uptake channel and increased polarity at the proton exit side of CcO upon electronation. We suggest an electronation-dependent conformational change to play a role in proton exit from CcO.
Collapse
Affiliation(s)
- Alexander Wolf
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| | - Juliane Wonneberg
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| | - Jens Balke
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Freie Universität Berlin, Germany
| |
Collapse
|
11
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
12
|
Cai X, Haider K, Lu J, Radic S, Son CY, Cui Q, Gunner M. Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:997-1005. [DOI: 10.1016/j.bbabio.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
|
13
|
Stuchebrukhov AA. Redox-Driven Proton Pumps of the Respiratory Chain. Biophys J 2018; 115:830-840. [PMID: 30119834 DOI: 10.1016/j.bpj.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
In aerobic cells, the proton gradient that drives ATP synthesis is created by three different proton pumps-membrane enzymes of the respiratory electron transport chain known as complex I, III, and IV. Despite the striking dissimilarity of structures and apparent differences in molecular mechanisms of proton pumping, all three enzymes have much in common and employ the same universal physical principles of converting redox energy to proton pumping. In this study, we describe a simple mathematical model that illustrates the general principles of redox-driven proton pumps and discuss their implementation in complex I, III, and IV of the respiratory chain.
Collapse
|
14
|
Farahvash A, Stuchebrukhov A. Investigating the Many Roles of Internal Water in Cytochrome c Oxidase. J Phys Chem B 2018; 122:7625-7635. [PMID: 30011995 DOI: 10.1021/acs.jpcb.7b11920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome c oxidase (C cO) is the terminal enzyme in the respiratory electron transport chain. As part of its catalytic cycle, C cO transfers protons to its Fe-Cu binuclear center (BNC) to reduce oxygen, and in addition, it pumps protons across the mitochondrial inner, or bacterial, membrane where it is located. It is believed that this proton transport is facilitated by a network of water chains inside the enzyme. Here we present an analysis of the hydration of C cO, including the BNC region, using a semi-empirical hydration program, Dowser++, recently developed in our group. Using high-resolution X-ray data, we show that Dowser++ predictions match very accurately the water molecules seen in the D- and K-channels of C cO, as well as in the vicinity of its BNC. Moreover, Dowser++ predicts many more internal water molecules than is typically seen in the experiment. However, no significant hydration of the catalytic cavity in C cO described recently in the literature is observed. As Dowser++ itself does not account for structural changes of the protein, this result supports the earlier assessment that the proposed wetting transition in the catalytic cavity can only either be due to structural rearrangements of BNC, possibly induced by the charges during the catalytic cycle, or occur transiently, in concert with the proton transfer. Molecular dynamics simulations were performed to investigate the global dynamic nature of Dowser++ waters in C cO, and the results suggest a consistent explanation as to why some predicted water molecules would be missing in the experimental structures. Furthermore, in light of the significant protein hydration predicted by Dowser++, the dielectric constant of the hydrated cavities in C cO was also investigated using the Fröhlich-Kirkwood model; the results indicate that in the cavities where water is packed sufficiently densely the dielectric constant can approach values comparable even to that of bulk water.
Collapse
Affiliation(s)
- Ardavan Farahvash
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Alexei Stuchebrukhov
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
15
|
Yang L, Skjevik ÅA, Han Du WG, Noodleman L, Walker RC, Götz AW. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1594-1606. [PMID: 27317965 PMCID: PMC4995112 DOI: 10.1016/j.bbabio.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 01/22/2023]
Abstract
Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376.
Collapse
Affiliation(s)
- Longhua Yang
- Department of Chemistry, Nanchang University, 999 Xuefudadao, Nanchang, Jiangxi 330031, China; San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA
| | - Åge A Skjevik
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Oliveira ASF, Campos SRR, Baptista AM, Soares CM. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:759-71. [PMID: 27033303 DOI: 10.1016/j.bbabio.2016.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
Cytochrome c oxidases (CcOs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes reduce dioxygen (O(2)) to water and, simultaneously, generate a transmembrane electrochemical proton gradient. Despite their importance in the aerobic metabolism and the large amount of structural and biochemical data available for the A1-type CcO family, there is still no consensually accepted description of the molecular mechanisms operating in this protein. A substantial number of questions about the CcO's working mechanism remain to be answered, including how the protonation behavior of some key residues is modulated during a reduction cycle and how is the conformation of the protein affected by protonation. The main objective of this work was to study the protonation-conformation coupling in CcOs and identify the molecular factors that control the protonation state of some key residues. In order to directly capture the interplay between protonation and conformational effects, we have performed constant-pH MD simulations of an A1-type CcO inserted into a lipid bilayer in two redox states (oxidized and reduced) at physiological pH. From the simulations, we were able to identify several groups with unusual titration behavior that are highly dependent on the protein redox state, including the A-propionate from heme a and the D-propionate from heme a3, two key groups possibly involved in proton pumping. The protonation state of these two groups is heavily influenced by subtle conformational changes in the protein (notably of R481(I) and R482(I)) and by small changes in the hydrogen bond network.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara R R Campos
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António M Baptista
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cláudio M Soares
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
17
|
Samudio BM, Couch V, Stuchebrukhov AA. Monte Carlo Simulations of Glu-242 in Cytochrome c Oxidase. J Phys Chem B 2016; 120:2095-105. [PMID: 26865374 DOI: 10.1021/acs.jpcb.5b10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monte Carlo (MC) simulations of conformational changes and protonation of Glu-242, a key residue that shuttles protons in cytochrome c oxidase (CcO), are reported. Previous studies suggest that this residue may play a role of the valve of the enzyme proton pump. Here we examine how sensitive the results of simulations are to the computational method used. We applied both molecular mechanic (MM) and hybrid quantum mechanic:molecular mechanic (QM:MM) methods and find that the results are qualitatively different. The results indicate that the mechanism for proton gating in CcO is still an open issue.
Collapse
Affiliation(s)
- Benjamin M Samudio
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Vernon Couch
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
18
|
Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site. Proc Natl Acad Sci U S A 2015; 112:3397-402. [PMID: 25733886 DOI: 10.1073/pnas.1422434112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.
Collapse
|
19
|
Yin Y, Wang J, Jiang S, Yang X, Zhang X, Cao Y, Cao L, Wu H. Novel composite membranes based on sulfonated poly(ether ether ketone) and adenosine triphosphate for enhanced proton conduction. RSC Adv 2015. [DOI: 10.1039/c5ra14143e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Novel SPEEK/ATP composite membranes were prepared via a facile method, achieving improved proton conductivity under different conditions.
Collapse
Affiliation(s)
- Yongheng Yin
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Jiahui Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Shengtao Jiang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xin Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Xuya Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Ying Cao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Li Cao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hong Wu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
20
|
Oliveira ASF, Damas JM, Baptista AM, Soares CM. Exploring O2 diffusion in A-type cytochrome c oxidases: molecular dynamics simulations uncover two alternative channels towards the binuclear site. PLoS Comput Biol 2014; 10:e1004010. [PMID: 25474152 PMCID: PMC4256069 DOI: 10.1371/journal.pcbi.1004010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/29/2014] [Indexed: 12/04/2022] Open
Abstract
Cytochrome c oxidases (Ccoxs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes couple dioxygen (O2) reduction to the generation of a transmembrane electrochemical proton gradient. Despite decades of research and the availability of a large amount of structural and biochemical data available for the A-type Ccox family, little is known about the channel(s) used by O2 to travel from the solvent/membrane to the heme a3-CuB binuclear center (BNC). Moreover, the identification of all possible O2 channels as well as the atomic details of O2 diffusion is essential for the understanding of the working mechanisms of the A-type Ccox. In this work, we determined the O2 distribution within Ccox from Rhodobacter sphaeroides, in the fully reduced state, in order to identify and characterize all the putative O2 channels leading towards the BNC. For that, we use an integrated strategy combining atomistic molecular dynamics (MD) simulations (with and without explicit O2 molecules) and implicit ligand sampling (ILS) calculations. Based on the 3D free energy map for O2 inside Ccox, three channels were identified, all starting in the membrane hydrophobic region and connecting the surface of the protein to the BNC. One of these channels corresponds to the pathway inferred from the X-ray data available, whereas the other two are alternative routes for O2 to reach the BNC. Both alternative O2 channels start in the membrane spanning region and terminate close to Y288I. These channels are a combination of multiple transiently interconnected hydrophobic cavities, whose opening and closure is regulated by the thermal fluctuations of the lining residues. Furthermore, our results show that, in this Ccox, the most likely (energetically preferred) routes for O2 to reach the BNC are the alternative channels, rather than the X-ray inferred pathway. Cytochrome c oxidases (Ccoxs), the terminal enzymes of the respiratory electron transport chain in eukaryotes and many prokaryotes, are key enzymes in aerobic respiration. These proteins couple the reduction of molecular dioxygen to water with the creation of a transmembrane electrochemical proton gradient. Over the last decades, most of the Ccoxs research focused on the mechanisms and energetics of reduction and/or proton pumping, and little emphasis has been given to the pathways used by dioxygen to reach the binuclear center, where dioxygen reduction takes place. In particular, the existence and the characteristics of the channel(s) used by O2 to travel from the solvent/membrane to the binuclear site are still unclear. In this work, we combine all-atom molecular dynamics simulations and implicit ligand sampling calculations in order to identify and characterize the O2 delivery channels in the Ccox from Rhodobacter sphaeroides. Altogether, our results suggest that, in this Ccox, O2 can diffuse via three well-defined channels that start in membrane region (where O2 solubility is higher than in the water). One of these channels corresponds to the pathway inferred from the X-ray data available, whereas the other two are alternative routes for O2 to reach the binuclear center.
Collapse
Affiliation(s)
- A. Sofia F. Oliveira
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João M. Damas
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António M. Baptista
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M. Soares
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
21
|
Ishigami I, Hikita M, Egawa T, Yeh SR, Rousseau DL. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:98-108. [PMID: 25268561 DOI: 10.1016/j.bbabio.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/11/2014] [Accepted: 09/20/2014] [Indexed: 11/19/2022]
Abstract
Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Masahide Hikita
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tsuyoshi Egawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denis L Rousseau
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Buhrow L, Hiser C, Van Voorst JR, Ferguson-Miller S, Kuhn LA. Computational prediction and in vitro analysis of potential physiological ligands of the bile acid binding site in cytochrome c oxidase. Biochemistry 2013; 52:6995-7006. [PMID: 24073649 DOI: 10.1021/bi400674h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A conserved bile acid site has been crystallographically defined in the membrane domain of mammalian and Rhodobacter sphaeroides cytochrome c oxidase (RsCcO). Diverse amphipathic ligands were shown previously to bind to this site and affect the electron transfer equilibrium between heme a and a3 cofactors by blocking the K proton uptake path. Current studies identify physiologically relevant ligands for the bile acid site using a novel three-pronged computational approach: ROCS comparison of ligand shape and electrostatics, SimSite3D comparison of ligand binding site features, and SLIDE screening of potential ligands by docking. Identified candidate ligands include steroids, nicotinamides, flavins, nucleotides, retinoic acid, and thyroid hormones, which are predicted to make key protein contacts with the residues involved in bile acid binding. In vitro oxygen consumption and ligand competition assays on RsCcO wildtype and its Glu101Ala mutant support regulatory activity and specificity of some of these ligands. An ATP analog and GDP inhibit RsCcO under low substrate conditions, while fusidic acid, cholesteryl hemisuccinate, retinoic acid, and T3 thyroid hormone are more potent inhibitors under both high and low substrate conditions. The sigmoidal kinetics of RsCcO inhibition in the presence of certain nucleotides is reminiscent of previously reported ATP inhibition of mammalian CcO, suggesting regulation involving the conserved core subunits of both mammalian and bacterial oxidases. Ligand binding to the bile acid site is noncompetitive with respect to cytochrome c and appears to arrest CcO in a semioxidized state with some resemblance to the "resting" state of the enzyme.
Collapse
Affiliation(s)
- Leann Buhrow
- Departments of Biochemistry and Molecular Biology and ¶Computer Science & Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| | | | | | | | | |
Collapse
|
23
|
Current advances in research of cytochrome c oxidase. Amino Acids 2013; 45:1073-87. [PMID: 23999646 DOI: 10.1007/s00726-013-1585-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
The function of cytochrome c oxidase as a biomolecular nanomachine that transforms energy of redox reaction into protonmotive force across a biological membrane has been subject of intense research, debate, and controversy. The structure of the enzyme has been solved for several organisms; however details of its molecular mechanism of proton pumping still remain elusive. Particularly, the identity of the proton pumping site, the key element of the mechanism, is still open to dispute. The pumping mechanism has been for a long time one of the key unsolved issues of bioenergetics and biochemistry, but with the accelerating progress in this field many important details and principles have emerged. Current advances in cytochrome oxidase research are reviewed here, along with a brief discussion of the most complete proton pumping mechanism proposed to date, and a molecular basis for control of its efficiency.
Collapse
|
24
|
Couch V, Stuchebrukhov A. Proteins as strongly correlated protonic systems. FEBS Lett 2012; 586:519-25. [PMID: 21985970 DOI: 10.1016/j.febslet.2011.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022]
Abstract
Determination of the protonation state of enzymes is a challenging problem in computational biophysics largely due to the vast number of possible protonic configurations. The protonation state dynamics of respiratory complex I was investigated via Monte Carlo and asynchronous dynamics simulations and a novel eigenvector analysis. Many low lying states were identified and examined. The analysis revealed that the protonic states form a quasi-continuous band of energies, which are highly correlated and inhomogeneous. Many states have similar energies, but differ significantly in their protonic composition. In order to transfer from one such state to another, a large number of protons should be exchanged simultaneously raising the question of the ergodicity of protonation dynamics of such systems.
Collapse
Affiliation(s)
- Vernon Couch
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
25
|
Popović DM, Stuchebrukhov AA. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:506-17. [PMID: 22086149 DOI: 10.1016/j.bbabio.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/30/2022]
Abstract
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.
Collapse
Affiliation(s)
- Dragan M Popović
- Department of Chemistry, University of California, Davis, CA, USA.
| | | |
Collapse
|
26
|
The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:495-505. [PMID: 21978537 DOI: 10.1016/j.bbabio.2011.09.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 11/21/2022]
Abstract
The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism.
Collapse
|
27
|
Hammes–Schiffer S, Stuchebrukhov AA. Theory of coupled electron and proton transfer reactions. Chem Rev 2010; 110:6939-60. [PMID: 21049940 PMCID: PMC3005854 DOI: 10.1021/cr1001436] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Popovic DM, Leontyev IV, Beech DG, Stuchebrukhov AA. Similarity of cytochrome c oxidases in different organisms. Proteins 2010; 78:2691-8. [PMID: 20589635 DOI: 10.1002/prot.22783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most of biological oxygen reduction is catalyzed by the heme-copper oxygen reductases. These enzymes are redox-driven proton pumps that take part in generating the proton gradient in both prokaryotes and mitochondria that drives synthesis of ATP. The enzymes have been divided into three evolutionarily-related groups: the A-, B-, and C-families. Recent comparative studies suggest that all oxygen reductases perform the same chemistry for oxygen reduction and comprise the same essential elements of the proton pumping mechanism, such as the proton loading and kinetic gating sites, which, however, appear to be different in different families. All species of the A-family, however, demonstrate remarkable similarity of the central processing unit of the enzyme, as revealed by their recent crystal structures. Here we demonstrate that cytochrome c oxidases (CcO) of such diverse organisms as a mammal (bovine heart mitochondrial CcO), photosynthetic bacteria (Rhodobacter sphaeroides CcO), and soil bacteria (Paracoccus denitrificans CcO) are not only structurally similar, but almost identical in microscopic electrostatics and thermodynamics properties of their key amino-acids. By using pK(a) calculations of some of the key residues of the catalytic site, D- and K- proton input, and putative proton output channels of these three different enzymes, we demonstrate that the microscopic properties of key residues are almost identical, which strongly suggests the same mechanism in these species. The quantitative precision with which the microscopic physical properties of these enzymes have remained constant despite different evolutionary routes undertaken is striking.
Collapse
Affiliation(s)
- D M Popovic
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
29
|
Blomberg MR, Siegbahn PE. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase. Mol Phys 2010. [DOI: 10.1080/00268976.2010.523017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Per E.M. Siegbahn
- b Department of Biochemistry and Biophysics , Arrhenius Laboratory , Stockholm University, SE-106 91 Stockholm , Sweden
| |
Collapse
|
30
|
Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC STRUCTURAL BIOLOGY 2010; 10:28. [PMID: 20822511 PMCID: PMC2944330 DOI: 10.1186/1472-6807-10-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND Laccases are enzymes that couple the oxidation of substrates with the reduction of dioxygen to water. They are the simplest members of the multi-copper oxidases and contain at least two types of copper centres; a mononuclear T1 and a trinuclear that includes two T3 and one T2 copper ions. Substrate oxidation takes place at the mononuclear centre whereas reduction of oxygen to water occurs at the trinuclear centre. RESULTS In this study, the CotA laccase from Bacillus subtilis was used as a model to understand the mechanisms taking place at the molecular level, with a focus in the trinuclear centre. The structures of the holo-protein and of the oxidised form of the apo-protein, which has previously been reconstituted in vitro with Cu(I), have been determined. The former has a dioxygen moiety between the T3 coppers, while the latter has a monoatomic oxygen, here interpreted as a hydroxyl ion. The UV/visible spectra of these two forms have been analysed in the crystals and compared with the data obtained in solution. Theoretical calculations on these and other structures of CotA were used to identify groups that may be responsible for channelling the protons that are needed for reduction of dioxygen to water. CONCLUSIONS These results present evidence that Glu 498 is the only proton-active group in the vicinity of the trinuclear centre. This strongly suggests that this residue may be responsible for channelling the protons needed for the reduction. These results are compared with other data available for these enzymes, highlighting similarities and differences within laccases and multicopper oxidases.
Collapse
Affiliation(s)
- Isabel Bento
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010; 110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
32
|
Yoshioka Y, Mitani M. B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases. Bioinorg Chem Appl 2010; 2010:182804. [PMID: 20396396 PMCID: PMC2852611 DOI: 10.1155/2010/182804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/27/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022] Open
Abstract
Reduction mechanisms of oxygen molecule to water molecules in the fully reduced (FR) and mixed-valence (MV) bovine cytochrome c oxidases (CcO) have been systematically examined based on the B3LYP calculations. The catalytic cycle using four electrons and four protons has been also shown consistently. The MV CcO catalyses reduction to produce one water molecule, while the FR CcO catalyses to produce two water molecules. One water molecule is added into vacant space between His240 and His290 in the catalytic site. This water molecule constructs the network of hydrogen bonds of Tyr244, farnesyl ethyl, and Thr316 that is a terminal residue of the K-pathway. It plays crucial roles for the proton transfer to the dioxygen to produce the water molecules in both MV and FR CcOs. Tyr244 functions as a relay of the proton transfer from the K-pathway to the added water molecule, not as donors of a proton and an electron to the dioxygen. The reduction mechanisms of MV and FR CcOs are strictly distinguished. In the FR CcO, the Cu atom at the Cu(B) site maintains the reduced state Cu(I) during the process of formation of first water molecule and plays an electron storage. At the final stage of formation of first water molecule, the Cu(I) atom releases an electron to Fe-O. During the process of formation of second water molecule, the Cu atom maintains the oxidized state Cu(II). In contrast with experimental proposals, the K-pathway functions for formation of first water molecule, while the D-pathway functions for second water molecule. The intermediates, P(M), P(R), F, and O, obtained in this work are compared with those proposed experimentally.
Collapse
Affiliation(s)
- Yasunori Yoshioka
- Chemistry Department for Materials, Graduate School of Engineering, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan.
| | | |
Collapse
|
33
|
Lee HJ, Ojemyr L, Vakkasoglu A, Brzezinski P, Gennis RB. Properties of Arg481 mutants of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a3 is likely to be the proton loading site of the proton pump. Biochemistry 2009; 48:7123-31. [PMID: 19575527 DOI: 10.1021/bi901015d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase utilizes the energy from electron transfer and reduction of oxygen to water and pumps protons across the membrane, generating a proton motive force. A large body of biochemical work has shown that all the pumped protons enter the enzyme through the D-channel, which is apparent in X-ray structures as a chain of water molecules connecting D132 at the cytoplasmic surface of the enzyme to E286, near the enzyme active site. The exit pathway utilized by pumped protons beyond this point and leading to the bacterial periplasm is not known. Also not known is the proton loading site (or sites) which undergoes changes in pKa in response to the chemistry at the enzyme active site and drives the proton pump mechanism. In this paper, we examine the role of R481, a highly conserved arginine that forms an ion pair with the D-propionate of heme a3. The R481H, R481N, R481Q, and R481L mutants were examined. The R481H mutant oxidase is approximately 18% active and pumps protons with approximately 40% of the stoichiometry of the wild type. The R481N, R481Q, and R481L mutants each retain only approximately 5% of the steady-state activity, and this is shown to be due to inhibition of steps in the reaction of O(2) with the reduced enzyme. Neither the R481N mutant nor the R481Q mutant oxidases pump protons, but remarkably, the R481L mutant does pump protons with the same efficiency as the R481H mutant. Since the proton pump is clearly operating in the R481L mutant, these results rule out an essential role in the proton pump mechanism for R481 or its hydrogen bond partner, the D-propionate of heme a3.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
34
|
Leontyev IV, Stuchebrukhov AA. Dielectric relaxation of cytochrome c oxidase: Comparison of the microscopic and continuum models. J Chem Phys 2009; 130:085103. [PMID: 19256628 DOI: 10.1063/1.3060196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have studied a charge-insertion process that models the deprotonation of a histidine side chain in the active site of cytochrome c oxidase (CcO) using both the continuum electrostatic calculations and the microscopic simulations. The group of interest is a ligand to Cu(B) center of CcO, which has been previously suggested to play the role of the proton pumping element in the enzyme; the group is located near a large internal water cavity in the protein. Using the nonpolarizable Amber-99 force field in molecular dynamics (MD) simulations, we have calculated the nuclear part of the reaction-field energy of charging of the His group and combined it with the electronic part, which we estimated in terms of the electronic continuum (EC) model, to obtain the total reaction-field energy of charging. The total free energy obtained in this MDEC approach was then compared with that calculated using pure continuum electrostatic model with variable dielectric parameters. The dielectric constant for the "dry" protein and that of the internal water cavity of CcO were determined as those parameters that provide best agreement between the continuum and microscopic MDEC model. The nuclear (MD) polarization alone (without electronic part) of a dry protein was found to correspond to an unphysically low dielectric constant of only about 1.3, whereas the inclusion of electronic polarizability increases the protein dielectric constant to 2.6-2.8. A detailed analysis is presented as to how the protein structure should be selected for the continuum calculations, as well as which probe and atomic radii should be used for cavity definition. The dielectric constant of the internal water cavity was found to be 80 or even higher using "standard" parameters of water probe radius, 1.4 A, and protein atomic radii from the MD force field for cavity description; such high values are ascribed to the fact that the standard procedure produces unphysically small cavities. Using x-ray data for internal water in CcO, we have explored optimization of the parameters and the algorithm of cavity description. For Amber radii, the optimal probe size was found to be 1.25 A; the dielectric of water cavity in this case is in the range of 10-16. The most satisfactory cavity description, however, was achieved with ProtOr atomic radii, while keeping the probe radius to be standard 1.4 A. In this case, the value of cavity dielectric constant was found to be in the range of 3-6. The obtained results are discussed in the context of recent calculations and experimental measurements of dielectric properties of proteins.
Collapse
Affiliation(s)
- I V Leontyev
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
35
|
Sugitani R, Stuchebrukhov AA. Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1140-50. [PMID: 19393218 DOI: 10.1016/j.bbabio.2009.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
We have examined the network of connected internal cavities in cytochrome c oxidase along which water produced at the catalytic center is removed from the enzyme. Using combination of structural analysis, molecular dynamics simulations, and free energy calculations we have identified two exit pathways that connect the Mg2+ ion cavity to the outside of the enzyme. Each pathway has a well-defined bottleneck, which determines the overall rate of water traffic along the exit pathway, and a specific cooperative mechanism of passing it. One of the pathways is going via Arg438/439 (in bovine numbering) toward the CuA center, approaching closely its His204B ligand and Lys171B residue; and the other is going toward Asp364 and Thr294. Comparison of the pathways among different aa3-type enzymes shows that they are well conserved. Possible connections of the finding to redox-coupled proton pumping mechanism are discussed. We propose specific mutations near the bottlenecks of the exit pathways that can test some of our hypotheses.
Collapse
Affiliation(s)
- Ryogo Sugitani
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:635-45. [PMID: 19374884 DOI: 10.1016/j.bbabio.2009.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 11/19/2022]
Abstract
The structure of the two-subunit cytochrome c oxidase from Paracoccus denitrificans has been refined using X-ray cryodata to 2.25 A resolution in order to gain further insights into its mechanism of action. The refined structural model shows a number of new features including many additional solvent and detergent molecules. The electron density bridging the heme a(3) iron and Cu(B) of the active site is fitted best by a peroxo-group or a chloride ion. Two waters or OH(-) groups do not fit, one water (or OH(-)) does not provide sufficient electron density. The analysis of crystals of cytochrome c oxidase isolated in the presence of bromide instead of chloride appears to exclude chloride as the bridging ligand. In the D-pathway a hydrogen bonded chain of six water molecules connects Asn131 and Glu278, but the access for protons to this water chain is blocked by Asn113, Asn131 and Asn199. The K-pathway contains two firmly bound water molecules, an additional water chain seems to form its entrance. Above the hemes a cluster of 13 water molecules is observed which potentially form multiple exit pathways for pumped protons. The hydrogen bond pattern excludes that the Cu(B) ligand His326 is present in the imidazolate form.
Collapse
Affiliation(s)
- Juergen Koepke
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str.3, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 2008; 40:521-31. [PMID: 18975062 DOI: 10.1007/s10863-008-9181-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.
Collapse
|
38
|
Fee JA, Case DA, Noodleman L. Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: application of density functional theory to cytochrome ba3 of Thermus thermophilus. J Am Chem Soc 2008; 130:15002-21. [PMID: 18928258 DOI: 10.1021/ja803112w] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mechanism for proton pumping by the B-type cytochrome c oxidases is presented in which one proton is pumped in conjunction with the weakly exergonic, two-electron reduction of Fe-bound O 2 to the Fe-Cu bridging peroxodianion and three protons are pumped in conjunction with the highly exergonic, two-electron reduction of Fe(III)- (-)O-O (-)-Cu(II) to form water and the active oxidized enzyme, Fe(III)- (-)OH,Cu(II). The scheme is based on the active-site structure of cytochrome ba 3 from Thermus thermophilus, which is considered to be both necessary and sufficient for coupled O 2 reduction and proton pumping when appropriate gates are in place (not included in the model). Fourteen detailed structures obtained from density functional theory (DFT) geometry optimization are presented that are reasonably thought to occur during the four-electron reduction of O 2. Each proton-pumping step takes place when a proton resides on the imidazole ring of I-His376 and the large active-site cluster has a net charge of +1 due to an uncompensated, positive charge formally associated with Cu B. Four types of DFT were applied to determine the energy of each intermediate, and standard thermochemical approaches were used to obtain the reaction free energies for each step in the catalytic cycle. This application of DFT generally conforms with previously suggested criteria for a valid model (Siegbahn, P. E. M.; Blomberg, M. A. R. Chem. Rev. 2000, 100, 421-437) and shows how the chemistry of O 2 reduction in the heme a 3 -Cu B dinuclear center can be harnessed to generate an electrochemical proton gradient across the lipid bilayer.
Collapse
Affiliation(s)
- James A Fee
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
39
|
Siegbahn PEM, Blomberg MRA. Proton Pumping Mechanism in Cytochrome c Oxidase. J Phys Chem A 2008; 112:12772-80. [DOI: 10.1021/jp801635c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, Albanova, and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, Albanova, and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
40
|
Siegbahn PEM, Blomberg MRA. Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1143-56. [PMID: 17692282 DOI: 10.1016/j.bbabio.2007.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/15/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | |
Collapse
|
41
|
Abstract
A series of metalloprotein complexes embedded in a mitochondrial or bacterial membrane utilize electron transfer reactions to pump protons across the membrane and create an electrochemical potential (DeltamuH+). Current understanding of the principles of electron-driven proton transfer is discussed, mainly with respect to the wealth of knowledge available from studies of cytochrome c oxidase. Structural, experimental, and theoretical evidence supports the model of long-distance proton transfer via hydrogen-bonded water chains in proteins as well as the basic concept that proton uptake and release in a redox-driven pump are driven by charge changes at the membrane-embedded centers. Key elements in the pumping mechanism may include bound water, carboxylates, and the heme propionates, arginines, and associated water above the hemes. There is evidence for an important role of subunit III and proton backflow, but the number and nature of gating mechanisms remain elusive, as does the mechanism of physiological control of efficiency.
Collapse
Affiliation(s)
- Jonathan P. Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216;
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| | - Denise A. Mills
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| |
Collapse
|
42
|
Busenlehner LS, Salomonsson L, Brzezinski P, Armstrong RN. Mapping protein dynamics in catalytic intermediates of the redox-driven proton pump cytochrome c oxidase. Proc Natl Acad Sci U S A 2006; 103:15398-403. [PMID: 17023543 PMCID: PMC1622835 DOI: 10.1073/pnas.0601451103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Redox-driven proton pumps such as cytochrome c oxidase (CcO) are fundamental elements of the energy transduction machinery in biological systems. CcO is an integral membrane protein that acts as the terminal electron acceptor in respiratory chains of aerobic organisms, catalyzing the four-electron reduction of O2 to H2O. This reduction also requires four protons taken from the cytosolic or negative side of the membrane, with an additional uptake of four protons that are pumped across the membrane. Therefore, the proton pump must embody a "gate," which provides alternating access of protons to one or the other side of the membrane but never both sides simultaneously. However, the exact mechanism of proton translocation through CcO remains unknown at the molecular level. Understanding pump function requires knowledge of the nature and location of these structural changes that is often difficult to access with crystallography or NMR spectroscopy. In this paper, we demonstrate, with amide hydrogen/deuterium exchange MS, that transitions between catalytic intermediates in CcO are orchestrated with opening and closing of specific proton pathways, providing an alternating access for protons to the two sides of the membrane. An analysis of these results in the framework of the 3D structure of CcO indicate the spatial location of a gate, which controls the unidirectional proton flux through the enzyme and points to a mechanism by which CcO energetically couples electron transfer to proton translocation.
Collapse
Affiliation(s)
| | - Lina Salomonsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Richard N. Armstrong
- Departments of *Biochemistry and
- Chemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Song Y, Michonova-Alexova E, Gunner MR. Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral? Biochemistry 2006; 45:7959-75. [PMID: 16800622 PMCID: PMC2727075 DOI: 10.1021/bi052183d] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase is a transmembrane proton pump that builds an electrochemical gradient using chemical energy from the reduction of O(2). Ionization states of all residues were calculated with Multi-Conformation Continuum Electrostatics (MCCE) in seven anaerobic oxidase redox states ranging from fully oxidized to fully reduced. One long-standing problem is how proton uptake is coupled to the reduction of the active site binuclear center (BNC). The BNC has two cofactors: heme a(3) and Cu(B). If the protein needs to maintain electroneutrality, then 2 protons will be bound when the BNC is reduced by 2 electrons in the reductive half of the reaction cycle. The effective pK(a)s of ionizable residues around the BNC are evaluated in Rhodobacter sphaeroides cytochrome c oxidase. At pH 7, only a hydroxide coordinated to Cu(B) shifts its pK(a) from below 7 to above 7 and so picks up a proton when heme a(3) and Cu(B) are reduced. Glu I-286, Tyr I-288, His I-334, and a second hydroxide on heme a(3) all have pK(a)s above 7 in all redox states, although they have only 1.6-3.5 DeltapK units energy cost for deprotonation. Thus, at equilibrium, they are protonated and cannot serve as proton acceptors. The propionic acids near the BNC are deprotonated with pK(a)s well below 7. They are well stabilized in their anionic state and do not bind a proton upon BNC reduction. This suggests that electroneutrality in the BNC is not maintained during the anaerobic reduction. Proton uptake on reduction of Cu(A), heme a, heme a(3), and Cu(B) shows approximately 2.5 protons bound per 4 electrons, in agreement with prior experiments. One proton is bound by a hydroxyl group in the BNC and the rest to groups far from the BNC. The electrochemical midpoint potential (E(m)) of heme a is calculated in the fully oxidized protein and with 1 or 2 electrons in the BNC. The E(m) of heme a shifts down when the BNC is reduced, which agrees with prior experiments. If the BNC reduction is electroneutral, then the heme a E(m) is independent of the BNC redox state.
Collapse
Affiliation(s)
| | | | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940. E-mail:
| |
Collapse
|
44
|
Quenneville J, Popović DM, Stuchebrukhov AA. Combined DFT and electrostatics study of the proton pumping mechanism in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1035-46. [PMID: 16458251 DOI: 10.1016/j.bbabio.2005.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase is a redox-driven proton pump which converts atmospheric oxygen to water and couples the oxygen reduction reaction to the creation of a membrane proton gradient. The structure of the enzyme has been solved; however, the mechanism of proton pumping is still poorly understood. Recent calculations from this group indicate that one of the histidine ligands of enzyme's CuB center, His291, may play the role of the pumping element. In this paper, we report on the results of calculations that combined first principles DFT and continuum electrostatics to evaluate the energetics of the key energy generating step of the model-the transfer of the chemical proton to the binuclear center of the enzyme, where the hydroxyl group is converted to water, and the concerted expulsion of the proton from delta-nitrogen of His291 ligand of CuB center. We show that the energy generated in this step is sufficient to push a proton against an electrochemical membrane gradient of about 200 mV. We have also re-calculated the pKa of His291 for an extended model in which the whole Fe(a3)-CuB center with their ligands is treated by DFT. Two different DFT functionals (B3LYP and PBE0), and various dielectric models of the protein have been used in an attempt to estimate potential errors of the calculations. Although current methods of calculations do not allow unambiguous predictions of energetics in proteins within few pKa units, as required in this case, the present calculation provides further support for the proposed His291 model of CcO pump and makes a specific prediction that could be targeted in the experimental test.
Collapse
Affiliation(s)
- Jason Quenneville
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
45
|
Brzezinski P, Adelroth P. Design principles of proton-pumping haem-copper oxidases. Curr Opin Struct Biol 2006; 16:465-72. [PMID: 16842995 DOI: 10.1016/j.sbi.2006.06.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/12/2006] [Accepted: 06/30/2006] [Indexed: 11/20/2022]
Abstract
Transmembrane electrochemical proton gradients are used to store free energy in biological systems, and to drive the synthesis of biomolecules and transmembrane transport. These gradients are maintained by membrane-bound proton transporters that employ free energy provided by, for example, electron transfer or light. In recent years, the structures of several membrane proteins involved in proton translocation have been determined, and indicate that both protein-bound water molecules and protonatable amino acid residues play central roles in transmembrane proton conduction. From these structures, in combination with functional studies, have emerged general principles of proton transfer across membranes and control mechanisms for such reactions, in particular with regard to the electron-transfer-driven proton pump cytochrome c oxidase.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
46
|
Popovic DM, Stuchebrukhov AA. Two conformational states of Glu242 and pKas in bovine cytochrome c oxidase. Photochem Photobiol Sci 2006; 5:611-20. [PMID: 16761090 DOI: 10.1039/b600096g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.
Collapse
Affiliation(s)
- Dragan M Popovic
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
47
|
Medvedev DM, Medvedev ES, Kotelnikov AI, Stuchebrukhov AA. Analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1710:47-56. [PMID: 16242114 DOI: 10.1016/j.bbabio.2005.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/26/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
In a recent work from this group (Popovic, D. M.; Stuchebrukhov A. A. FEBS Lett. 2004, 566, 126), a model of proton pumping by cytochrome c oxidase (CcO) was proposed. The key element of the model is His291 (bovine notation), a histidine ligand to enzyme's CuB redox center, which plays the role of the pump element. The model assumes that upon electron transfer between heme a and the binuclear catalytic center of the enzyme, two sequential proton transfers occur: First, a proton from Glu242 is transferred to an unprotonated His291, then a second proton, after reprotonation of Glu242 from the negative side of the membrane, is transferred to a hydroxyl group in the binuclear center, a water molecule is formed, and the first proton, due to proton-proton repulsion, is expelled from His291 to the positive side of the membrane, resulting in a pumping event. In the process the free energy of water formation (i.e., reduction of oxygen) is transformed into a proton gradient across the membrane. The model possesses specific kinetic features. It assumes, for example, that upon electron transfer the first proton is transferred to the proton-loading site of the pump, His291, and not to the catalytic center of the enzyme. Here, we analyze the kinetic properties of the proposed model, and calculate the time dependence of the membrane potential generated by CcO upon a single electron injection into the enzyme. These data are directly compared with recent experimental measurements of the membrane potential generated by CcO. Specifically, F to O, and O to E transitions will be discussed. Several enzymes from different organisms (bovine, two bacterial enzymes, and several mutants) are compared and discussed in detail. The kinetic description, however, is phenomenological, and does not include explicitly the nature of the groups involved in proton translocation, except in terms of their position depth within the membrane; thus, the kinetic equations developed here are in fact describe a generic model, similar, e.g., to that proposed earlier by Peter Rich (P.R. Rich, Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases. Aust. J. Plant Physiol. 22 (1995) 479-486), and which is based on the idea of displacement of the pumped protons by the chemical ones.
Collapse
Affiliation(s)
- D M Medvedev
- Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | |
Collapse
|