1
|
Ali S, Mirza R, Shah KU, Javed A, Dilawar N. "Harnessing green synthesized zinc oxide nanoparticles for dual action in wound management: Antibiotic delivery and healing Promotion". Microb Pathog 2025; 200:107314. [PMID: 39848301 DOI: 10.1016/j.micpath.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation. The effectiveness of conventional treatments like antibiotics is limited by resistance. Various forms of nanotechnology have been developed, each exhibiting unique properties that address particular issues with conventional therapies. Among all the Nanocarriers, zinc oxide nanoparticles (ZnO NPs), offer promising treatments for persistent wound infections. ZnO NPs possess strong antibacterial, antioxidant, anti-inflammatory, and anti-diabetic properties, making them suitable for wound care applications. These nanoparticles can be produced economically and environmentally using green synthesis techniques that minimize toxicity and are biocompatible. While chemical and physical techniques offer precise control over nanoparticle characteristics, they often involve hazardous substances and energy-intensive procedures. The antibacterial qualities, low toxicity, and biological compatibility of green-synthesized ZnO NPs make them a promising treatment for wound infections. Their use in scaffolds, drug delivery systems, and wound dressings provides a viable approach to combat antibiotic resistance and enhance wound treatment outcomes. Furthermore research is necessary to fully realize the benefits of ZnO NPs in clinical practice.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aqeedat Javed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naz Dilawar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Daimari J, Deka AK. Anticancer, antimicrobial and antioxidant activity of CuO-ZnO bimetallic nanoparticles: green synthesised from Eryngium foetidum leaf extract. Sci Rep 2024; 14:19506. [PMID: 39174638 PMCID: PMC11341821 DOI: 10.1038/s41598-024-69847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
In the present study, green synthetic pathway was adapted to synthesize CuO-ZnO bimetallic nanoparticles (BNPs) using Eryngium foetidum leaf extract and their anti-cancer activity against MCF7 breast cancer cell lines, anti-microbial activity and in vitro anti-oxidant activity were evaluated. Various bio-active compounds present in leaf extract were responsible for the reduction of CuO-ZnO NPs from respective Cu2+ and Zn2+ metal precursors. In the present study, the involvement of bio-active compounds present in E. foetidum extract before and after green synthesis of BNPs were evaluated for the first time. Rod-shaped and spherical structural morphology of synthesized BNPs were revealed by using FESEM, TEM, and XRD analysis with particle size ranged from 7 to 23 nm with an average size of 16.49 nm. The distribution of Cu and Zn were confirmed by elemental mapping. The green synthesized CuO-ZnO NPs showed significant cytotoxic effect with the inhibition rate 89.20 ± 0.03% at concentration of 500 μg/mL. Again, good antioxidant activity with IC50; 0.253 mg/mL and antimicrobial activity of BNPs were also evaluated with the increasing order of MIC; E. coli (7.81 μg/mL) < B. subtilis (62.5 μg/mL) < S. aureus (31.25 μg/mL).
Collapse
Affiliation(s)
- Jennifer Daimari
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, under MoE, Govt. of India), Kokrajhar, Assam, 783370, India
| | - Anamika Kalita Deka
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, under MoE, Govt. of India), Kokrajhar, Assam, 783370, India.
| |
Collapse
|
3
|
Bordin ER, Yamamoto FY, Filho NPM, Ramsdorf WA, Cestari MM. Ecotoxicity of doped zinc oxide nanoparticles: Perspectives on environmental safety. CHEMOSPHERE 2024; 358:142185. [PMID: 38685328 DOI: 10.1016/j.chemosphere.2024.142185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Studies on the ecotoxicity of doped zinc oxide nanoparticles (ZnO NPs) are recent, with the first publications starting in 2010. In this sense, this is the first study that comprehensively reviews the ecotoxicological effects of ZnO NPs doped with lanthanide elements to fill this literature gap. This research explores a multifaceted question at the intersection of nanotechnology, toxicology, and environmental science. Different types of dopants commonly used for ZnO doping were investigated in this review, focusing on the ecotoxicological effects of lanthanides as dopants. Bacteria were the main class of organisms used in ecotoxicological studies, since antimicrobial activity of these nanomaterials is extensively explored to combat the imminent problem of resistant bacteria, in addition to enabling the safe use of these nanomaterials for biomedical applications. Doping appears to exhibit greater efficacy when compared to undoped ZnO NPs in terms of antimicrobial effects; however, it cannot be said that it has no impact on non-target organisms. An extensive examination of the literature also establishes the importance and need to evaluate the effects of doped ZnO NPs on organisms from different environmental compartments in order to identify their potential impacts. We underscore the dearth of research information regarding the environmental toxicity/ecotoxicity of doped ZnO nanoparticles across various ecological levels, thereby limiting the extrapolation of findings to humans or other complex models. Therefore, we emphasize the urgency of a multi-parameter assessment for the development of sanitary and environmentally safe nanotechnologies.
Collapse
Affiliation(s)
| | - Flávia Yoshie Yamamoto
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Wanessa Algarte Ramsdorf
- Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Curitiba, PR, Brazil
| | | |
Collapse
|
4
|
Hamad SM, Barzinjy AA, Rafigh R, Jalil P, Mirzaei Y, Shaikhah D. Green Synthesis of ZnO/CuO Nanocomposites Using Parsley Extract for Potential In Vitro Anticoccidial Application. ACS APPLIED BIO MATERIALS 2023; 6:4190-4199. [PMID: 37769115 DOI: 10.1021/acsabm.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In this study, a simple, low-cost, and environmentally friendly method for the green synthesis of ZnO/CuO nanocomposites (NCs) using parsley extract was developed. The phytochemical components in the parsley leaf extract reacted with precursor salts in solution and yielded ZnO/CuO NCs. The synthesis of the green-synthesized NCs was confirmed via various characterization techniques, including UV-vis spectroscopy, X-ray diffraction (XRD) analysis, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). Subsequently, the NCs were subjected to rigorous in vitro evaluation of their anticoccidial properties. The results showed that the NCs had a spherical shape within an average particle size of around 70 nm. The green-synthesized NCs were evaluated for their in vitro anticoccidial activity against Eimeria spp. The findings showed that the NCs exhibited a significant anticoccidial effect, with a maximum inhibition of 55.3 ± 0.32% observed at a concentration of 0.5 mg/mL. The exposure to the NCs resulted in notable alterations in the ultrastructure of the oocysts when compared to the control group. The ZnO/CuO NCs synthesized from the parsley leaf extract showed promising potential against coccidiosis and could be used in biomedical applications. Further investigation using an in vivo model is required to ascertain the efficacy of NCs as anticoccidial agents.
Collapse
Affiliation(s)
- Samir Mustafa Hamad
- Scientific Research Center, Soran University, Erbil, 44008 Kurdistan Region, Iraq
| | | | - Raghda Rafigh
- Scientific Research Center, Soran University, Erbil, 44008 Kurdistan Region, Iraq
| | - Parwin Jalil
- Scientific Research Center, Soran University, Erbil, 44008 Kurdistan Region, Iraq
| | - Yousef Mirzaei
- Scientific Research Center, Soran University, Erbil, 44008 Kurdistan Region, Iraq
| | - Dilshad Shaikhah
- Scientific Research Center, Soran University, Erbil, 44008 Kurdistan Region, Iraq
- Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT Leeds, U.K
| |
Collapse
|
5
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
6
|
Synergistic Antibacterial Effect of Zinc Oxide Nanoparticles and Polymorphonuclear Neutrophils. J Funct Biomater 2022; 13:jfb13020035. [PMID: 35466217 PMCID: PMC9036266 DOI: 10.3390/jfb13020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) are inorganic nano-biomaterials with excellent antimicrobial properties. However, their effects on the anti-infection ability of the innate immune system remains poorly understood. The aim of the present study was to explore the potential immunomodulatory effects of ZnONPs on the innate immune system, represented by polymorphonuclear leukocytes (PMNs), and determine whether they can act synergistically to resist pathogen infections. In vitro experiment showed that ZnONPs not only exhibit obvious antibacterial activity at biocompatible concentrations but also enhance the antibacterial property of PMNs. In vivo experiments demonstrated the antibacterial effect of ZnONPs, accompanied by more infiltration of subcutaneous immune cells. Further ex vivo and in vitro experiments revealed that ZnONPs enhanced the migration of PMNs, promoted their bacterial phagocytosis efficiency, proinflammatory cytokine (TNF-α, IL-1β, and IL-6) expression, and reactive oxygen species (ROS) production. In summary, this study revealed potential synergistic effects of ZnONPs on PMNs to resist pathogen infection and the underlying mechanisms. The findings suggest that attempts should be made to fabricate and apply biomaterials in order to maximize their synergy with the innate immune system, thus promoting the host’s resistance to pathogen invasion.
Collapse
|
7
|
Influence of Physical Dimension and Morphological-Dependent Antibacterial Characteristics of ZnO Nanoparticles Coated on Orthodontic NiTi Wires. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6397698. [PMID: 34692836 PMCID: PMC8531772 DOI: 10.1155/2021/6397698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
White spot lesions (WSLs) are one of the adverse effects of fixed orthodontic treatments. They are the primary sign of caries, which means inhibiting this process by antibacterial agents will reverse the procedure. The current study tested the surface modification of nickel-titanium (NiTi) wires with ZnO nanoparticles (NPs), as antimicrobial agents. As the morphology of NPs is one of the most critical factors for their properties, the antibacterial properties of different morphologies of ZnO nanostructures coated on the NiTi wire were investigated. For the preparation of ZnO nanostructures, five coating methods, including chemical vapor deposition (CVD), chemical precipitation method, polymer composite coating, sol-gel synthesis, and electrospinning process, were used. The antibacterial activity of NPs was assessed against Streptococcus mutans by the colony counting method. The obtained results showed that all the samples had antibacterial effects. The antibacterial properties of ZnO NPs were significantly improved when the specific surface area of particles increased, by the ZnO nanocrystals prepared via the CVD coating method.
Collapse
|
8
|
Darvish M, Ajji A. Effect of Polyethylene Film Thickness on the Antimicrobial Activity of Embedded Zinc Oxide Nanoparticles. ACS OMEGA 2021; 6:26201-26209. [PMID: 34660979 PMCID: PMC8515594 DOI: 10.1021/acsomega.1c03223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/24/2021] [Indexed: 05/11/2023]
Abstract
Microbial contamination of most foods occurs primarily at the surface during postprocessing and handling; therefore, preventing cross-contamination by incorporation of antimicrobial substances in contact with the surface of the product is an efficient strategy in reducing food contamination risks. Zinc oxide nanoparticles (ZnONPs) have been used widely to achieve antimicrobial films in various applications including the food industry. This work describes the fabrication of antimicrobial polymeric films containing ZnONPs produced by the coextrusion and dip-coating techniques. Effects of skin layer thicknesses containing ZnONPs on the antimicrobial effectiveness of the film by their capability to inactivate Gram-positive and Gram-negative bacteria were studied for both methods. The antimicrobial properties of the coextruded multilayer LLDPE/ZnONP nanocomposite films evidenced antimicrobial activity in the range 0.5-1.5 log reductions, while in the case of a sandblasted multilayer film, it showed high antimicrobial properties as around 99.99%. The optical properties of coextruded multilayer films were measured and discussed. Furthermore, to achieve a thinner LLDPE thickness, ZnONPs were coated with different concentrations of LLDPE solution by the dip-coating method. TEM confirmed that a homogeneous layer is formed on the surface of ZnONPs. The thickness of the LLDPE layer estimated by TEM was about 2 nm and film produced 3 log and 4 log reductions for E. coli and S. aureus, respectively. The results show that developed films have the potential to be used as food packaging films and can extend shelf life, maintain quality, and assure the safety of food. The antimicrobial mechanisms of ZnONPs were also investigated. It was found that direct contact of particles with products is necessary to assure high antibacterial activity of the films.
Collapse
|
9
|
Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Faruque MRI, Din IU, Alotaibi MA, Khan A. Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PLoS One 2021; 16:e0251082. [PMID: 33989295 PMCID: PMC8121369 DOI: 10.1371/journal.pone.0251082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
A viable hydrothermal technique has been explored for the synthesis of copper doped Zinc oxide nanoparticles (Cu-doped ZnO-NPs) based on the precursor’s mixture of Copper-II chloride dihydrate (CuCl2.2H2O), Zinc chloride (ZnCl2), and potassium hydroxide (KOH). X-ray diffraction (XRD) reported the hexagonal wurtzite structure of the synthesized Cu-doped ZnO-NPs. The surface morphology is checked via field emission scanning electron microscopy (FE-SEM), whereas, the elemental compositions of the samples were confirmed by Raman, and X-ray photoelectron spectroscopy (XPS), respectively. The as-obtained ZnO-NPs and Cu-doped ZnO-NPs were then tested for their antibacterial activity against clinical isolates of Gram-positive (Staphylococcus aureus, Streptococcus pyogenes) and Gram-negative (Escherichia coli, Klebsiella pneumonia) bacteria via agar well diffusion method. The zone of inhibition (ZOI) for Cu-doped ZnO-NPs was found to be 24 and 19 mm against S. Aureus and S. pyogenes, and 18 and 11 mm against E. coli and K. pneumoniae, respectively. The synthesized Cu-doped ZnO-NPs can thus be found as a potential nano antibiotic against Gram-positive multi-drug resistant bacterial strains.
Collapse
Affiliation(s)
- Awais Khalid
- Department of Physics, Hazara University, Mansehra, Pakistan
- Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pervaiz Ahmad
- Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- * E-mail: ,
| | - Abdulrahman I. Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleh Muhammad
- Department of Physics, Hazara University, Mansehra, Pakistan
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | | | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mshari A. Alotaibi
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulhameed Khan
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
10
|
Ding N, Sun Y, Chen B, Wang D, Tao S, Zhao B, Li Y. Facile preparation of raspberry-like PS/ZnO composite particles and their antibacterial properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Lallo da Silva B, Abuçafy MP, Berbel Manaia E, Oshiro Junior JA, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview. Int J Nanomedicine 2019; 14:9395-9410. [PMID: 31819439 PMCID: PMC6897062 DOI: 10.2147/ijn.s216204] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
The inappropriate use of antimicrobials has resulted in the selection of resistant strains. Thus, a great number of studies have focused on the investigation of new antimicrobial agents. The use of zinc oxide nanoparticles (ZnO NPs) to optimise the fight against microbial resistance has been receiving increased attention due to the non-specific activity of inorganic antimicrobial agents. The small particle size and the high surface area of ZnO NPs can enhance antimicrobial activity, causing an improvement in surface reactivity. In addition, surface modifiers covering ZnO NPs can play a role in mediating antimicrobial activity since the surface properties of nanomaterials alter their interactions with cells; this may interfere with the antimicrobial effect of ZnO NPs. The possibility of using surface modifiers with groups toxic to microorganisms can improve the antimicrobial activity of ZnO NPs. Understanding the exact toxicity mechanisms is crucial to elucidating the antimicrobial activity of ZnO NPs in bacteria and fungi. Therefore, this review aims to describe the mechanisms of ZnO NPs toxicity against fungi and bacteria and how the different structural and physical-chemical characteristics of ZnO NPs can interfere in their antimicrobial activity.
Collapse
Affiliation(s)
- Bruna Lallo da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marina Paiva Abuçafy
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eloisa Berbel Manaia
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - João Augusto Oshiro Junior
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bruna Galdorfini Chiari-Andréo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Department of Biological and Health Sciences, Universidade De Araraquara, UNIARA, Araraquara, SP, Brazil
| | - Rosemeire CL R Pietro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Leila Aparecida Chiavacci
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
12
|
Li J, Zhu Q, Su Y, Wang D, Xing Z, Fang L. High-efficiency bacteriostatic material modified by nano zinc oxide and polyelectrolyte diallyl dimethylammonium chloride based on red mud. Colloids Surf B Biointerfaces 2019; 177:260-266. [DOI: 10.1016/j.colsurfb.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/09/2019] [Accepted: 02/03/2019] [Indexed: 11/26/2022]
|
13
|
Chen Y, Lu W, Guo Y, Zhu Y, Song Y. Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E525. [PMID: 30987113 PMCID: PMC6523526 DOI: 10.3390/nano9040525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for potential wound dressing materials. The morphology, composition, cytotoxicity and antibacterial activity were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and Incucyte™ Zoom system. The results show that ZnO particles are uniformly dispersed on the surface of gelatin fibers and have no cytotoxicity. In addition, the gelatin/ZnO fibers exhibit excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with a significant reduction of bacteria to more than 90%. Therefore, such a biodegradable, nontoxic and antibacterial fiber has excellent application prospects in wound dressing.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yi Zhu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
14
|
Eco-friendly synthesized spherical ZnO materials: Effect of the core-shell to solid morphology transition on antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:438-450. [DOI: 10.1016/j.msec.2018.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 11/11/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022]
|
15
|
Paul SK, Dutta H, Sarkar S, Sethi LN, Ghosh SK. Nanosized Zinc Oxide: Super-Functionalities, Present Scenario of Application, Safety Issues, and Future Prospects in Food Processing and Allied Industries. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sanjib K. Paul
- Department of Agricultural Engineering, Assam University, Silchar, India
| | - Himjyoti Dutta
- Amity Institute of Food Technology, Amity University, Uttar Pradesh, India
| | - Sudipto Sarkar
- Department of Agricultural Engineering, Assam University, Silchar, India
| | | | | |
Collapse
|
16
|
Visinescu D, Hussien MD, Moreno JC, Negrea R, Birjega R, Somacescu S, Ene CD, Chifiriuc MC, Popa M, Stan MS, Carp O. Zinc Oxide Spherical-Shaped Nanostructures: Investigation of Surface Reactivity and Interactions with Microbial and Mammalian Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13638-13651. [PMID: 30340439 DOI: 10.1021/acs.langmuir.8b02528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two ZnO materials of spherical hierarchical morphologies, with hollow (ZnOHS) and solid cores (ZnOSS), were obtained through the hydrolysis of zinc acetylacetonate in 1,4-butanediol. The nature of the defects and surface reactivity for the two ZnO materials were investigated through photoluminescence, X-ray photoelectron spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy proving the coexistence of shallow and deep defects and, also, the presence of polyol byproducts adsorbed on the outer layers of the ZnO samples. The EPR spectroscopy coupled with the spin-trapping technique showed that the surface of the ZnO samples generates reactive oxygen species (ROS) like hydroxyl (•OH) and singlet oxygen (1O2) as well as carbon-centered radicals. The ZnO materials exhibited a wide spectrum of antimicrobial activity, being active against Gram-positive, Gram-negative, and fungi strains, both in planktonic and, more importantly, adherent growth states. The decrease of antimicrobial efficiency in the presence of a ROS scavenger (mannitol) and the decrease of the cell viability with the ROS level suggest that one of the mechanisms that governs both the antimicrobial and cytotoxic activities on human liver cells is ROS-mediated. However, at active antimicrobial concentrations, the biocompatibility of the tested materials is very good.
Collapse
Affiliation(s)
- Diana Visinescu
- "Ilie Murgulescu" Institute of Physical Chemistry , Romanian Academy , 202 Splaiul Independentei , 060021 Bucharest , Romania
| | | | - Jose Calderon Moreno
- "Ilie Murgulescu" Institute of Physical Chemistry , Romanian Academy , 202 Splaiul Independentei , 060021 Bucharest , Romania
| | - Raluca Negrea
- National Institute of Materials Physics , Atomistilor 105bis , 77125 Magurele , Ilfov , Romania
| | - Ruxandra Birjega
- National Institute for Lasers, Plasma and Radiation Physics , 409 Atomistilor , P.O. Box MG-36, 077125 Bucharest , Romania
| | - Simona Somacescu
- "Ilie Murgulescu" Institute of Physical Chemistry , Romanian Academy , 202 Splaiul Independentei , 060021 Bucharest , Romania
| | - Cristian D Ene
- "Ilie Murgulescu" Institute of Physical Chemistry , Romanian Academy , 202 Splaiul Independentei , 060021 Bucharest , Romania
| | | | | | | | - Oana Carp
- "Ilie Murgulescu" Institute of Physical Chemistry , Romanian Academy , 202 Splaiul Independentei , 060021 Bucharest , Romania
| |
Collapse
|
17
|
Gao D, Zhang J, Lyu B, Lyu L, Ma J, Yang L. Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: An enhanced and durable antibacterial agent. Carbohydr Polym 2018; 200:221-228. [DOI: 10.1016/j.carbpol.2018.07.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/01/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
|
18
|
Shalaby T, Hamad H, Ibrahim E, Mahmoud O, Al-Oufy A. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:354-364. [PMID: 30007185 DOI: 10.1016/j.ecoenv.2018.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 05/27/2023]
Abstract
Safety of drinking-water is an urgent for human health. It is critical to promote the cheap technologies for water purification to guarantee the free-pathogens-drinking water. The present study has been investigated the antibacterial activity of polyacrylonitrile (PAN) nanofibers membranes which decorated by Ag, CuO or ZnO nanoparticles as bactericides. The hybrid nanofiber composites were fabricated by electrospinning technique and the obtained membranes were characterized using SEM, EDX and FTIR. Their antibacterial activity was evaluated against E. coli and S. aureus. The data was revealed that the functionalization was successfully obtained by the incorporation of nanoparticles as an additive into the polymer solution which associated many superior properties. Continuous PAN membrane fibers with average diameters from 170 to 250 nm without any beads of plain and its hybrid membrane composites were obtained. The antimicrobial activity was estimated using both disk diffusion tests and growth kinetic models. The antibacterial activity was improved as the concentrations of nanoparticles enhanced. This study provided the real solution for production and inactivation of bacteria which related to the impregnated the PAN nanofibers membrane with Ag, CuO or ZnO NPs. The results have significant implications for finding a safe and an inexpensive path to solve the problems of drinking water, especially in the developing countries.
Collapse
Affiliation(s)
- Thanaa Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications (SRTA-City), Alexandria 21934, Egypt.
| | - Ebtihag Ibrahim
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ola Mahmoud
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Affaf Al-Oufy
- Textile Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| |
Collapse
|
19
|
Siddiqi KS, ur Rahman A, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. NANOSCALE RESEARCH LETTERS 2018; 13:141. [PMID: 29740719 PMCID: PMC5940970 DOI: 10.1186/s11671-018-2532-3] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.
Collapse
Affiliation(s)
| | - Aziz ur Rahman
- Department of Saidla (Unani Pharmacy), Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| |
Collapse
|
20
|
Upadhyaya H, Shome S, Sarma R, Tewari S, Bhattacharya MK, Panda SK. Green Synthesis, Characterization and Antibacterial Activity of ZnO Nanoparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.96094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Maity M, Maitra U. Supramolecular Gels from Conjugates of Bile Acids and Amino Acids and Their Applications. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mitasree Maity
- Department of Organic Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Uday Maitra
- Department of Organic Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| |
Collapse
|
22
|
Li P, Tong Z, Jia Z, Su W. Preparation and characterization of hemoglobin-silver composites as biocompatible antiseptics. J Biomater Appl 2016; 31:773-783. [PMID: 27538749 DOI: 10.1177/0885328216665237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microbial contamination has been a major challenge in a wide variety of fields such as biomedical and biomaterial applications. The development of biomaterials that possess excellent antibacterial ability and biocompatibility is of great importance to enhance the service life of biomaterials. In this study, the main protein component of red blood cells, hemoglobin (Hb), was employed to prepare Ag-Hb nanocomposites as novel biocompatible antiseptics. The formation of Ag-Hb nanocomposites on the titanium substrate are confirmed by field-emission scanning electron microscopy, Fourier transformed infrared spectroscopic, contact angles, and inductively coupled plasma atomic emission spectrometry analysis. The Ag-Hb titanium shows potent antibacterial ability against planktonic bacteria in the suspension and ability to prevent bacterial adhesion. Moreover, the Ag-Hb titanium shows excellent biocompatibility, which supports healthy osteoblast cellular activity and osteoblast differentiation. The results indicate that the Ag-Hb nanocomposites can be potentially useful for the fabrication of biomaterials for long-term applications.
Collapse
Affiliation(s)
- Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Zhangfa Tong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Guangxi Teachers Education University), Ministry of Education, China
| |
Collapse
|
23
|
Esparza-González SC, Sánchez-Valdés S, Ramírez-Barrón SN, Loera-Arias MJ, Bernal J, Meléndez-Ortiz HI, Betancourt-Galindo R. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles. Toxicol In Vitro 2016; 37:134-141. [PMID: 27666655 DOI: 10.1016/j.tiv.2016.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations.
Collapse
Affiliation(s)
- S C Esparza-González
- Facultad de Medicina U.S., Universidad Autónoma de Coahuila Saltillo, Coahuila, Mexico
| | - S Sánchez-Valdés
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coahuila 25294, Mexico
| | - S N Ramírez-Barrón
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coahuila 25294, Mexico
| | - M J Loera-Arias
- Departamento de Histología, Facultad de Medicina UANL, Monterrey, Nuevo León, Mexico
| | - J Bernal
- Unidad Médica Ojo Caliente, Av. Ojo Caliente 901-A Aguascalientes, Ags, Mexico
| | - H Iván Meléndez-Ortiz
- CONACyT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coahuila 25294, Mexico
| | - R Betancourt-Galindo
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coahuila 25294, Mexico.
| |
Collapse
|
24
|
Kalpana K, Selvaraj V. Development of ZnS/SnS/A-FA nanorods at ambient temperature: Binary catalyst for the removal of congo red dye and pathogenic bacteria from wastewater. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Gupta R, KrishnaRao Eswar N, Modak JM, Madras G. Visible light driven efficient N and Cu co-doped ZnO for photoinactivation of Escherichia coli. RSC Adv 2016. [DOI: 10.1039/c6ra16739j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N and Cu co-doped ZnO shows outstanding antibacterial activity for E. coli inactivation under visible light.
Collapse
Affiliation(s)
- Rimzhim Gupta
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore
- India
| | | | - Jayant M. Modak
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|
26
|
Nagvenkar AP, Deokar A, Perelshtein I, Gedanken A. A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. J Mater Chem B 2016; 4:2124-2132. [DOI: 10.1039/c6tb00033a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the limitations in the applications and commercialization of metal oxides in diverse fields is their inferior colloidal stability.
Collapse
Affiliation(s)
- Anjani P. Nagvenkar
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Archana Deokar
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Ilana Perelshtein
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Aharon Gedanken
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| |
Collapse
|
27
|
Mehmood S, Rehman MA, Ismail H, Mirza B, Bhatti AS. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int J Nanomedicine 2015. [PMID: 26213466 PMCID: PMC4509533 DOI: 10.2147/ijn.s83356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this work, we highlighted the effect of surface modifications of one-dimensional (1D) ZnO nanostructures (NSs) grown by the vapor-solid mechanism on their antibacterial activity. Two sets of ZnO NSs were modified separately - one set was modified by annealing in an Ar environment, and the second set was modified in O2 plasma. Annealing in Ar below 800°C resulted in a compressed lattice, which was due to removal of Zn interstitials and increased O vacancies. Annealing above 1,000°C caused the formation of a new prominent phase, Zn2SiO4. Plasma oxidation of the ZnO NSs caused an expansion in the lattice due to the removal of O vacancies and incorporation of excess O. Photoluminescence (PL) spectroscopy was employed for the quantification of defects associated with Zn and O in the as-grown and processed ZnO NS. Two distinct bands were observed, one in the ultraviolet (UV) region, due to interband transitions, and other in the visible region, due to defects associated with Zn and O. PL confirmed the surface modification of ZnO NS, as substantial decrease in intensities of visible band was observed. Antibacterial activity of the modified ZnO NSs demonstrated that the surface modifications by Ar annealing limited the antibacterial characteristics of ZnO NS against Staphylococcus aureus. However, ZnO NSs annealed at 1,000°C or higher showed a remarkable antibacterial activity against Escherichia coli. O2 plasma-treated NS showed appreciable antibacterial activity against both E. coli and S. aureus. The minimum inhibition concentration was determined to be 0.5 mg/mL and 1 mg/mL for Ar-annealed and plasma-oxidized ZnO NS, respectively. It was thus proved that the O content at the surface of the ZnO NS was crucial to tune the antibacterial activity against both selected gram-negative (E. coli) and gram-positive (S. aureus) bacterial species.
Collapse
Affiliation(s)
- Shahid Mehmood
- Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik A Rehman
- Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arshad S Bhatti
- Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
28
|
Patra P, Roy S, Sarkar S, Mitra S, Pradhan S, Debnath N, Goswami A. Damage of lipopolysaccharides in outer cell membrane and production of ROS-mediated stress within bacteria makes nano zinc oxide a bactericidal agent. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0389-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Hsu A, Liu F, Leung YH, Ma APY, Djurišić AB, Leung FCC, Chan WK, Lee HK. Is the effect of surface modifying molecules on antibacterial activity universal for a given material? NANOSCALE 2014; 6:10323-10331. [PMID: 25072881 DOI: 10.1039/c4nr02366h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antibacterial activity of nanomaterials is strongly dependent on their properties, and their stability and toxicity can be varied using surface coatings. We investigated the effect of different surface modifying molecules on the antibacterial properties of two ZnO nanoparticle samples. We found that the starting surface properties of the nanoparticles have significant effects on the attachment of the surface modifying molecules and consequent antibacterial activity. Two out of five investigated surface modifying molecules not only had a significant difference in the magnitude of their effect on different nanoparticles, but also resulted in the opposite effects on two ZnO nanoparticle samples (an enhancement of antibacterial activity for one and a reduction of antibacterial activity for the other ZnO sample). This indicates that no general rule on the effect of a specific molecule on the toxicity of a metal oxide nanoparticle can be derived without knowing the nanoparticle properties, due to the fact that surface modifier attachment onto the surface is affected by the initial surface properties.
Collapse
Affiliation(s)
- Alexander Hsu
- Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Singh PK, Sharma PK, Kumar M, Dutta R, Sundaram S, Pandey AC. Red luminescent manganese-doped zinc sulphide nanocrystals and their antibacterial study. J Mater Chem B 2014; 2:522-528. [PMID: 32261533 DOI: 10.1039/c3tb21363c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Water soluble, uniform-sized ZnS:Mn2+ nanocrystals (NCs) have been prepared using a simple co-precipitation method with a methanol and water binary mixture as a reaction medium. The structure of the prepared ZnS:Mn2+ NCs is cubic with a mean size distribution of 3-5 nm. Photoluminescence (PL) studies showed emission at ∼612 nm, which is 22 nm red shifted as compared with the reported literature. This red shift could be attributed to the observed distortion in the imaged lattice plane. The capping effect of pepsin, citric acid and biotin on the optical properties of ZnS:Mn2+ NCs has been examined and the maximum enhancement in PL Intensity was found in the case of biotin. The synthesised ZnS:Mn2+ NCs were characterized by X-ray Diffraction (XRD), transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS) for investigation of their structural properties. Because of the high PL intensity, biotin capped ZnS:Mn2+ NCs were further investigated for their anti-bacterial activity against gram negative and gram positive bacteria. These NCs show broad spectrum antibacterial activity against both types of bacteria having an MIC value of 100 ng ml-1 for B. subtilis.
Collapse
Affiliation(s)
- Prashant K Singh
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India.
| | | | | | | | | | | |
Collapse
|
32
|
Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:173-86. [DOI: 10.1080/19440049.2013.865147] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Michael RJV, Sambandam B, Muthukumar T, Umapathy MJ, Manoharan PT. Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis. Phys Chem Chem Phys 2014; 16:8541-55. [DOI: 10.1039/c4cp00169a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Pasquet J, Chevalier Y, Couval E, Bouvier D, Noizet G, Morlière C, Bolzinger MA. Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties. Int J Pharm 2013; 460:92-100. [PMID: 24211859 DOI: 10.1016/j.ijpharm.2013.10.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/13/2013] [Accepted: 10/16/2013] [Indexed: 11/25/2022]
Abstract
Zinc oxide is commonly used in pharmaceutical products to prevent or treat topical or systemic diseases owing to its antimicrobial properties, but it is scarcely used as preservative in topical formulations. The aim of this work was to investigate the antimicrobial activity of zinc oxide (ZnO) powders on the five microbial strains used for Challenge Tests in order to evaluate this inorganic compound as a preservative in topical formulation and assess relationships between the structural parameters of ZnO particles and their antimicrobial activity. For this purpose, the physicochemical characteristics of three ZnO grades were measured and their antimicrobial efficacy against the following micro-organisms - Escherichia coli; Staphylococcus aureus; Pseudomonas aeruginosa; Candida albicans; Aspergillus brasiliensis - was assessed using disc diffusion susceptibility tests and a broth dilution method. The comprehensive dataset of physicochemical characteristics and antimicrobial activities (MIC and MBC) is discussed regarding methodological issues related to the particulate nature of ZnO and structure-activity relationships. Every ZnO grade showed bactericidal and antifungal activity against the five tested micro-organisms in a concentration dependent manner. ZnO particles with smaller size, larger specific area and higher porosity exhibit higher antimicrobial activity. Such trends are related to their mechanisms of antimicrobial activity.
Collapse
Affiliation(s)
- Julia Pasquet
- Strand Cosmetics Europe, 124 route du Charpenay, 69210 Lentilly, France; Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France
| | - Yves Chevalier
- Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France.
| | - Emmanuelle Couval
- Strand Cosmetics Europe, 124 route du Charpenay, 69210 Lentilly, France
| | - Dominique Bouvier
- Strand Cosmetics Europe, 124 route du Charpenay, 69210 Lentilly, France
| | - Gaëlle Noizet
- Strand Cosmetics Europe, 124 route du Charpenay, 69210 Lentilly, France
| | - Cécile Morlière
- Strand Cosmetics Europe, 124 route du Charpenay, 69210 Lentilly, France
| | - Marie-Alexandrine Bolzinger
- Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France
| |
Collapse
|
35
|
Dutta RK, Nenavathu BP, Talukdar S. Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids Surf B Biointerfaces 2013; 114:218-24. [PMID: 24200949 DOI: 10.1016/j.colsurfb.2013.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 09/08/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022]
Abstract
Selenium doped ZnO nanoparticles synthesized by mechanochemical method were spherically shaped of size distribution of 10.2±3.4 nm measured by transmission electron microscopy. Diffused reflectance spectroscopy revealed increase in the band gap, ranging between 3.47 eV and 3.63 eV due to Se doping in ZnO nanoparticles. The antibacterial activity of pristine and Se doped ZnO nanoparticles was attributed to ROS (reactive oxygen species) generation in culture media confirmed by TBARS assay. Compared to complete inhibition of growth by 0.45 mg/mL of pristine ZnO nanoparticles, the batches of 0.45 mg/mL of selenium doped ZnO nanoparticles exhibited only 51% inhibition of growth of Escherichia coli. The reduced antibacterial activity of selenium doped ZnO nanoparticles was attributed to two opposing factors, e.g., ROS generation for inhibition of growth, countered by sustaining growth of E. coli due to availability of Se micronutrients in culture media, confirmed by inductively coupled plasma mass spectrometer measurement. Higher ROS generation by selenium doped ZnO nanoparticles was attributed to creation of oxygen vacancies, confirmed from green emission peak observed at 565 nm. The impact of higher ROS generation by selenium doped ZnO nanoparticles was evident from enhanced photocatalytic degradation of trypan blue dye, than pristine ZnO nanoparticles.
Collapse
Affiliation(s)
- Raj Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | | | - Soumita Talukdar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
36
|
Rathnayake WGIU, Ismail H, Baharin A, Bandara IMCCD, Rajapakse S. Enhancement of the antibacterial activity of natural rubber latex foam by the incorporation of zinc oxide nanoparticles. J Appl Polym Sci 2013. [DOI: 10.1002/app.39601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- W. G. I. U. Rathnayake
- School of Materials and Mineral Resources Engineering; Universiti Sains Malaysia; Penang Malaysia
| | - H. Ismail
- School of Materials and Mineral Resources Engineering; Universiti Sains Malaysia; Penang Malaysia
| | - A. Baharin
- School of Industrial Technology; Universiti Sains Malaysia; Penang Malaysia
| | - I. M. C. C. D. Bandara
- Department of Molecular Biology and Biotechnology; Faculty of Science; University of Peradeniya; Peradeniya Sri Lanka
| | - Sanath Rajapakse
- Department of Molecular Biology and Biotechnology; Faculty of Science; University of Peradeniya; Peradeniya Sri Lanka
| |
Collapse
|
37
|
Wehling J, Volkmann E, Grieb T, Rosenauer A, Maas M, Treccani L, Rezwan K. A critical study: assessment of the effect of silica particles from 15 to 500 nm on bacterial viability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:292-299. [PMID: 23455355 DOI: 10.1016/j.envpol.2013.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
The current opinion on the toxicity of nanomaterials converges on a size-dependent phenomenon showing increasing toxicity with decreasing particle sizes. We demonstrate that SiO2 particles have no or only a mild effect on the viability of five bacterial strains, independently from the particle size. A two-hour exposure to 20 mg L(-1) of 15, 50 and 500 nm sized SiO2 particles neither alters bacterial adenosine triphosphate (ATP) levels nor reduces the number of colony forming units (CFU). Additionally, we tested the effect of Al2O3-coated LUDOX-CL (ACS 20) with a primary particle size of 20 nm. In contrast, these particles caused a significant reduction of ATP levels and CFU. Fluorescence microscopy revealed that ACS 20 induced a pronounced agglomeration of the bacteria, which led to underestimated counts in regard of CFU. Bactericide effects as indicated by decreased ATP levels can be explained by bactericide additives that are present in the ACS 20 suspension.
Collapse
Affiliation(s)
- Julia Wehling
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Patra P, Mitra S, Debnath N, Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16966-16978. [PMID: 23163331 DOI: 10.1021/la304120k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we describe a simple, novel method of zinc oxide nanoparticle (ZNP) synthesis and physicochemical characterization. The dose-dependent antifungal effect of ZNPs, compared to that of micronized zinc oxide (MZnO), was studied on two pathogenic fungi: Aspergillus niger and Fusarium oxysporum. Superoxide dismutase (SOD) activity, ascorbate peroxidase activity, catalase activity, glutathione reductase (GR) activity, thiol content, lipid peroxidation, and proline content in ZNP-treated fungal samples were found to be elevated in comparison to the control, which strongly suggested that the antifungal effect of ZNPs was due to the generation of reactive oxygen species (ROS). Protein carbonylation, another marker of oxidative stress, was also evaluated by the dinitrophenyl hydrazine (DNPH) binding assay and Fourier transform infrared (FTIR) spectral analysis followed by Western blot and microarray analysis of fungal samples to confirm ROS generation by ZNPs. Micrographic studies for the morphological analysis of fungal samples (ZNP-treated and a control) exhibited an alteration in fungal morphology. The bioavailability of ZNPs on fungal cell was confirmed by energy-dispersive X-ray (EDX) analysis followed by high-resolution transmission electron microscopy (HR-TEM) and confocal microscopic analysis of the fungal samples. In vivo acute oral toxicity, acetylcholine esterase activity, and a fertility study using a mice model were also investigated for ZNPs. The long-term toxicity of ZNPs through intravenous injection was evaluated and compared to that of MZnO. The in vitro comparative toxicity of ZNPs and MZnO was evaluated on MRC-5 cells with the help of water-soluble tetrazolium (WST-1) and lactate dehydrogenase (LDH) assays. These results suggested that ZNPs could be used as an effective fungicide in modern medical and agricultural sciences.
Collapse
Affiliation(s)
- Prasun Patra
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
| | | | | | | |
Collapse
|
39
|
Ghosh S, Saraswathi A, Indi SS, Hoti SL, Vasan HN. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8550-8561. [PMID: 22582868 DOI: 10.1021/la301322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.
Collapse
Affiliation(s)
- Somnath Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | |
Collapse
|
40
|
Dutta R, Nenavathu BP, Gangishetty MK, Reddy A. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces 2012; 94:143-50. [DOI: 10.1016/j.colsurfb.2012.01.046] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/16/2011] [Accepted: 01/22/2012] [Indexed: 10/14/2022]
|
41
|
Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 2012; 95:243-53. [DOI: 10.1007/s00253-012-4153-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
42
|
Mitra S, Patra P, Chandra S, Pramanik P, Goswami A. Efficacy of highly water-dispersed fabricated nano ZnO against clinically isolated bacterial strains. APPLIED NANOSCIENCE 2012. [DOI: 10.1007/s13204-012-0095-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Baek YW, An YJ. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1603-8. [PMID: 21310463 DOI: 10.1016/j.scitotenv.2011.01.014] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/07/2011] [Indexed: 05/21/2023]
Abstract
In this study, the microbial toxicities of metal oxide nanoparticles were evaluated for Escherichia coli, Bacillus subtilis, and Streptococcus aureus in laboratory experiments. The nanoparticles tested were CuO, NiO, ZnO, and Sb(2)O(3). The metal oxide nanoparticles were dispersed thoroughly in a culture medium, and the microorganisms were cultivated on Luria-Bertani agar plates containing different concentrations of metal oxide nanoparticles. The bacteria were counted in terms of colony forming units (CFU). The CFU was reduced in a culture medium containing metal oxide NP, and the dose-response relationship was characterized. CuO nanoparticles were found to be the most toxic among the tested nanoparticles, followed by ZnO (except S. aureus), NiO, and Sb(2)O(3) nanoparticles. We determined that the intrinsic toxic properties of heavy metals are also associated with the toxicity of metal oxide nanoparticles. Ion toxicity was also evaluated to determine the effects of metal ions dissolved from metal oxide NPs, and the toxicity induced from the dissolved ions was determined to be negligible herein. To the best of our knowledge, this is the first study of the toxicity of NiO and Sb(2)O(3) NPs on microorganisms. We also discuss the implications of our findings regarding the effects of the intrinsic toxic properties of heavy metals, and concluded that the apparent toxicities of metal oxide NPs can largely be understood as a matter of particle toxicity.
Collapse
Affiliation(s)
- Yong-Wook Baek
- Department of Environmental Science, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|