1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
3
|
Wang J, Zhu R, Zou J, Liu H, Meng H, Zhen Z, Li W, Wang Z, Chen H, Pu Y, Weng Y. Incoherent ultrafast energy transfer in phycocyanin 620 from Thermosynechococcus vulcanus revealed by polarization-controlled two dimensional electronic spectroscopy. J Chem Phys 2024; 161:085101. [PMID: 39171718 DOI: 10.1063/5.0222587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phycocyanin 620 (PC620) is the outermost light-harvesting complex in phycobilisome of cyanobacteria, engaged in light collection and energy transfer to the core antenna, allophycocyanin. Recently, long-lived exciton-vibrational coherences have been observed in allophycocyanin, accounting for the coherent energy transfer [Zhu et al., Nat. Commun. 15, 3171 (2024)]. PC620 has a nearly identical spatial location of three α84-β84 phycocyanobilin pigment pairs to those in allophycocyanin, inferring an existence of possible coherent energy transfer pathways. However, whether PC620 undergoes coherent or incoherent energy transfer remains debated. Furthermore, accurate determination of energy transfer rates in PC620 is still necessary owing to the spectral overlap and broadening in conventional time-resolved spectroscopic measurements. In this work, the energy transfer process within PC620 was directly resolved by polarization-controlled two dimensional electronic spectroscopy (2DES) and global analysis. The results show that the energy transfer from α84 to the adjacent β84 has a lifetime constant of 400 fs, from β155 to β84 of 6-8 ps, and from β155 to α84 of 66 ps, fully conforming to the Förster resonance energy transfer mechanism. The circular dichroism spectrum also reveals that the α84-β84 pigment pair does not form excitonic dimer, and the observed oscillatory signals are confirmed to be vibrational coherence, excluding the exciton-vibrational coupling. Nodal line slope analysis of 2DES further reveals that all the vibrational modes participate in the energy dissipation of the excited states. Our results consolidate that the ultrafast energy transfer process in PC620 is incoherent, where the twisted conformation of α84 is suggested as the main cause for preventing the formation of α84-β84 excitonic dimer in contrast to allophycocyanin.
Collapse
Affiliation(s)
- Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiading Zou
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hanting Meng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, People's Republic of China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Calderón LF, Brumer P. Frequency-Dependent Vibronic Effects in Steady State Energy Transport. J Phys Chem B 2024. [PMID: 39052092 DOI: 10.1021/acs.jpcb.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The interplay between electronic and intramolecular high-frequency vibrational degrees of freedom is ubiquitous in natural light-harvesting systems. Recent studies have indicated that an intramolecular vibrational donor-acceptor frequency difference can enhance energy transport. Here, we analyze the extent to which different intramolecular donor-acceptor vibrational frequencies affect excitation energy transport in the natural nonequilibrium steady state configuration. Comments are included on the less physical equilibrium case for comparison with the literature. It is found that for constant Huang-Rhys factors, whereas the acceptor population increases in the equilibrium case when the intramolecular vibrational frequency of the acceptor exceeds that of the donor, this increase is negligible for the nonequilibrium steady state. Therefore, these changes in acceptor population do not significantly enhance energy transport in the nonequilibrium steady state for the natural scenario of incoherent light excitation with biologically relevant parameters of typical photosynthetic complexes. Insight about a potential mechanism to optimize energy transfer in the nonequilibrium steady state based on increasing the harvesting time at the reaction center is analyzed.
Collapse
Affiliation(s)
- Leonardo F Calderón
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Grupo de Física Computacional en Materia Condensada, Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Oberg CP, Spangler LC, Coker DF, Scholes GD. Chirped Laser Pulse Control of Vibronic Wavepackets and Energy Transfer in Phycocyanin 645. J Phys Chem Lett 2024; 15:7125-7132. [PMID: 38959027 DOI: 10.1021/acs.jpclett.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Photosynthetic organisms use light-harvesting complexes to increase the spectrum of light that they absorb from solar photons. Recent ultrafast spectroscopic studies have revealed that efficient (sub-ps) energy transfer is mediated by vibronic coherence in the phycobiliprotein phycocyanin 645 (PC645). Here, we report studies that employ broadband pump-probe spectroscopy with linearly chirped excitation pulses to further investigate the relationship between vibronic state preparation and energy transfer dynamics in PC645. Negatively chirped pulse excitation is found to enhance wavepackets of a high-frequency mode (1580 cm-1) and increase the rate of downhill energy transfer, while on the other hand, positively chirped pulses suppress these oscillatory features and decrease this rate. Model calculations incorporating the influence of the chirped pump pulse are used to understand its effect on initial state preparation. These results provide mechanistic insight into how the overall nonequilibrium rate of energy transfer is influenced by initial state preparation.
Collapse
Affiliation(s)
- Catrina P Oberg
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| | - Leah C Spangler
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| | - David F Coker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Kim CW, Franco I. General framework for quantifying dissipation pathways in open quantum systems. II. Numerical validation and the role of non-Markovianity. J Chem Phys 2024; 160:214112. [PMID: 38833365 DOI: 10.1063/5.0202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
In the previous paper [C. W. Kim and I. Franco, J. Chem. Phys. 160, 214111-1-214111-13 (2024)], we developed a theory called MQME-D, which allows us to decompose the overall energy dissipation process in open quantum system dynamics into contributions by individual components of the bath when the subsystem dynamics is governed by a Markovian quantum master equation (MQME). Here, we contrast the predictions of MQME-D against the numerically exact results obtained by combining hierarchical equations of motion (HEOM) with a recently reported protocol for monitoring the statistics of the bath. Overall, MQME-D accurately captures the contributions of specific bath components to the overall dissipation while greatly reducing the computational cost compared to exact computations using HEOM. The computations show that MQME-D exhibits errors originating from its inherent Markov approximation. We demonstrate that its accuracy can be significantly increased by incorporating non-Markovianity by exploiting time scale separations (TSS) in different components of the bath. Our work demonstrates that MQME-D combined with TSS can be reliably used to understand how energy is dissipated in realistic open quantum system dynamics.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
7
|
Kang M, Nuomin H, Chowdhury SN, Yuly JL, Sun K, Whitlow J, Valdiviezo J, Zhang Z, Zhang P, Beratan DN, Brown KR. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem 2024; 8:340-358. [PMID: 38641733 DOI: 10.1038/s41570-024-00595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.
Collapse
Affiliation(s)
- Mingyu Kang
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ke Sun
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| | - Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jesús Valdiviezo
- Kenneth S. Pitzer Theory Center, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01095-5. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Zhu R, Li W, Zhen Z, Zou J, Liao G, Wang J, Wang Z, Chen H, Qin S, Weng Y. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas. Nat Commun 2024; 15:3171. [PMID: 38609379 PMCID: PMC11015008 DOI: 10.1038/s41467-024-47560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.
Collapse
Affiliation(s)
- Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
| | - Jiading Zou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guohong Liao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China.
| |
Collapse
|
10
|
Lorenzoni N, Cho N, Lim J, Tamascelli D, Huelga SF, Plenio MB. Systematic Coarse Graining of Environments for the Nonperturbative Simulation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 132:100403. [PMID: 38518302 DOI: 10.1103/physrevlett.132.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 03/24/2024]
Abstract
Conducting precise electronic-vibrational dynamics simulations of molecular systems poses significant challenges when dealing with realistic environments composed of numerous vibrational modes. Here, we introduce a technique for the construction of effective phonon spectral densities that capture accurately open-system dynamics over a finite time interval of interest. When combined with existing nonperturbative simulation tools, our approach can reduce significantly the computational costs associated with many-body open-system dynamics.
Collapse
Affiliation(s)
- Nicola Lorenzoni
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Namgee Cho
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Susana F Huelga
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| |
Collapse
|
11
|
Toutounji M. Homogeneous Dephasing in Photosynthetic Bacterial Reaction Centers: Time Correlation Function Approach. Chemphyschem 2024; 25:e202300335. [PMID: 37953408 DOI: 10.1002/cphc.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
A new tractable linear electronic transition dipole moment time correlation function (ETDMTCF) that accurately accounts for electronic dephasing, asymmetry, and width of 1-phonon profile, which the zero-phonon line (ZPL) contributes to it, in Rhodopseudomonas viridis bacterial reaction center is derived. This time correlation function proves to be superior to other frequency-domain expressions in case of strong electron-phonon coupling (which is often the case in bacterial RCs and pigment-protein complexes), many vibrational modes involved, and high temperature, whereby more vibronic and electronic (sequence) transitions would arise. The Fourier transform of this ETDMTCF leads to asymmetric multiphonon profiles composed of Lorentzian distribution and Gaussian distribution on the high- and low-energy sides, respectively, whereby the overtone widths fold themselves with that of the one-phonon profile. This ETDMTCF also features expedient computation in large systems using asymmetric phonon profiles to account correctly for dephasing and pigment-protein interaction (electron-phonon coupling). The derived ETDMTCF allows computing all nonlinear optical signals in both time and frequency domains, through the nonlinear dipole moment time correlation functions (as guided by nonlinear optical response theory) in line with the eight Liouville space pathways. The linear transition dipole moment time correlation function is of a central value as the nonlinear transition dipole moment time correlation function is expressed in terms of the linear transition dipole moment time correlation function, derived herein. One of the great advantages of presenting this ETDMTCF is its applicability to nonlinear transition dipole moment time correlation functions in line with the eight Liouville space pathways needed in computing nonlinear signals. As such, there is more to the utility and applicability of the presented ETDMTCF besides computational expediency and efficiency. Results show good agreement with the reported literature. The intimate connection between a one-phonon profile and the corresponding bath spectral density in photosynthetic complexes is discussed.
Collapse
Affiliation(s)
- Mohamad Toutounji
- College of Science, Department of Chemistry, P. O. Box 15551, UAE University, Al-Ain, United Arab Emirate
| |
Collapse
|
12
|
Bhattacharyya A, Sahu A, Patra S, Tiwari V. Low- and high-frequency vibrations synergistically enhance singlet exciton fission through robust vibronic resonances. Proc Natl Acad Sci U S A 2023; 120:e2310124120. [PMID: 38019862 PMCID: PMC10710028 DOI: 10.1073/pnas.2310124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Singlet exciton fission (SEF) is initiated by ultrafast internal conversion of a singlet exciton into a correlated triplet pair [Formula: see text]. The "reaction coordinates" for ultrafast SEF even in archetypal systems such as pentacene thin film remain unclear. Couplings between fast electrons and slow nuclei are ubiquitous across a range of phenomena in chemistry. Accordingly, spectroscopic detection of vibrational coherences in the [Formula: see text] photoproduct motivated investigations into a possible role of vibronic coupling, akin to that reported in several photosynthetic proteins. However, acenes are very different from chlorophylls with 10× larger vibrational displacements upon photoexcitation and low-frequency vibrations modulating intermolecular orbital overlaps. Whether (and if so how) these unique features carry any mechanistic significance for SEF remains a poorly understood question. Accordingly, synthetic design of new molecules aiming to mimic this process across the solar spectrum has broadly relied on tuning electronic couplings. We address this gap and identify previously unrecognized synergistic interplay of vibrations, which in striking contrast to photosynthesis, vitally enhances SEF across a broad, nonselective and, therefore, unavoidable range of vibrational frequencies. We argue that attaching mechanistic significance to spectroscopically observed prominent quantum beats is misleading. Instead, we show that vibronic mixing leads to anisotropic quantum beats and propose readily implementable polarization-based two-dimensional electronic spectroscopy experiments which uniquely distinguish vibrations which drive vibronic mixing and promote SEF, against spectator vibrations simply accompanying ultrafast internal conversion. Our findings introduce crucial ingredients in synthetic design of SEF materials and spectroscopy experiments aiming to decipher mechanistic details from quantum beats.
Collapse
Affiliation(s)
- Atandrita Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Amitav Sahu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
13
|
Novoderezhkin VI. Resonant vibrations produce quantum bridge over high-energy states in heterogeneous antenna. PHOTOSYNTHESIS RESEARCH 2023; 158:13-21. [PMID: 37584896 DOI: 10.1007/s11120-023-01042-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Photosynthetic light-harvesting complexes usually contain several pools of molecules with a big difference in transition energies, for example, chlorophylls a and b in plant antennas. Some pathways of the excitation energy transfer may include pigments from the low-energy pool separated by a site occupied by a high-energy molecule. We demonstrate that such pathways may be functional if high-frequency intramolecular vibrations fall in resonance with the energy gap between the neighboring molecules belonging to different pools. In this case, a vibration-assisted mixing of the excited states can produce delocalized vibronic states playing a role of 'quantum bridge' that facilitates a passage over high-energy barrier. We perform calculations of the excitation dynamics in the model three-state system with the parameters emerging from our previous studies of real antennas. Simulation of the dynamics in an explicit electron-vibrational basis demonstrates that the rate of transfer between the two chlorophylls a through the chlorophyll b intermediate is increased by a factor of 1.7-2 in the presence of resonant vibration. A possible influence of energetic disorder and other (non-resonant) vibrations on this effect is discussed.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119992, Moscow, Russia.
| |
Collapse
|
14
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Brudvig GW, Croce R, Bryant DA. Structural comparison of allophycocyanin variants reveals the molecular basis for their spectral differences. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01048-4. [PMID: 37773575 DOI: 10.1007/s11120-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nathan T Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
15
|
Terry Weatherly CK, Provazza J, Weiss EA, Tempelaar R. Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons. Nat Commun 2023; 14:4804. [PMID: 37558658 PMCID: PMC10412565 DOI: 10.1038/s41467-023-40400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
This work proposes a photophysical phenomenon whereby ultraviolet/visible (UV/vis) excitation of a molecule involving a Franck-Condon (FC) active vibration yields infrared (IR) emission by strong coupling to an optical cavity. The resulting UV/vis-to-IR photonic down conversion process is mediated by vibrational polaritons in the electronic excited state potential. It is shown that the formation of excited state vibrational polaritons (ESVP) via UV/vis excitation only involve vibrational modes with both a non-zero FC activity and IR activity in the excited state. Density functional theory calculations are used to identify 1-Pyreneacetic acid as a molecule with this property and the dynamics of ESVP are modeled. Overall, this work introduces an avenue of polariton chemistry where excited state dynamics are influenced by the formation of vibrational polaritons. Along with this, the UV/vis-to-IR photonic down conversion is potentially useful in both sensing excited state vibrations and quantum transduction schemes.
Collapse
Affiliation(s)
| | - Justin Provazza
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113, USA.
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113, USA.
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113, USA.
| |
Collapse
|
16
|
Dani R, Kundu S, Makri N. Coherence Maps and Flow of Excitation Energy in the Bacterial Light Harvesting Complex 2. J Phys Chem Lett 2023; 14:3835-3843. [PMID: 37067041 DOI: 10.1021/acs.jpclett.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We present and analyze coherence maps [ J. Phys. Chem. B 2022, 126, 9361-9375] to investigate the quantum coherences that are created, sustained, and damped by vibrational modes during the transfer of excitation energy from the B800 (outer) to the B850 (inner) ring of the light harvesting complex 2 (LH2) of purple bacteria with a variety of initial conditions. The reduced density matrix of the 24-pigment complex, where the ground and excited electronic states of each bacteriochlorophyll are explicitly coupled to 50 intramolecular vibrations at room temperature, is obtained from fully quantum-mechanical small matrix path integral (SMatPI) calculations. The coherence maps show a very rapid localization within the outer ring, accompanied by the formation of inter-ring quantum superpositions that evolve to a partial quantum delocalization at equilibrium, and quantify in state-to-state detail the flow of energy within the complex.
Collapse
Affiliation(s)
- Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Calderón LF, Chuang C, Brumer P. Electronic-Vibrational Resonance Does Not Significantly Alter Steady-State Transport in Natural Light-Harvesting Systems. J Phys Chem Lett 2023; 14:1436-1444. [PMID: 36734680 DOI: 10.1021/acs.jpclett.2c03842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oscillations in time-dependent two-dimensional electronic spectra appear as evidence of quantum coherence in light-harvesting systems related to electronic-vibrational resonant interactions. Nature, however, takes place in a non-equilibrium steady-state; therefore, the relevance of these arguments to the natural process is unclear. Here, we examine the role of intramolecular vibrations in the non-equilibrium steady-state of photosynthetic dimers in the natural scenario of incoherent light excitation. Specifically, we analyze the PEB dimer in the cryptophyte algae PE545 antenna protein. It is found that vibrations resonant with the energy difference between exciton states only marginally increase the quantum yield and the imaginary part of the intersite coherence that is relevant for transport compared to non-resonant vibrations in the natural non-equilibrium steady-state. That is, the electronic-vibrational resonance interaction does not significantly enhance energy transport under natural incoherent light excitation conditions.
Collapse
Affiliation(s)
- Leonardo F Calderón
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Grupo de Física Computacional en Materia Condensada, Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga, Santander 680002, Colombia
| | - Chern Chuang
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Jing H, Magdaong NCM, Diers JR, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Dyads with tunable near-infrared donor-acceptor excited-state energy gaps: molecular design and Förster analysis for ultrafast energy transfer. Phys Chem Chem Phys 2023; 25:1827-1847. [PMID: 36601996 DOI: 10.1039/d2cp04689j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteriochlorophylls, nature's near-infrared absorbers, play an essential role in energy transfer in photosynthetic antennas and reaction centers. To probe energy-transfer processes akin to those in photosynthetic systems, nine synthetic bacteriochlorin-bacteriochlorin dyads have been prepared wherein the constituent pigments are joined at the meso-positions by a phenylethyne linker. The phenylethyne linker is an unsymmetric auxochrome, which differentially shifts the excited-state energies of the phenyl- or ethynyl-attached bacteriochlorin constituents in the dyad. Molecular designs utilized known effects of macrocycle substituents to engineer bacteriochlorins with S0 → S1 (Qy) transitions spanning 725-788 nm. The design-predicted donor-acceptor excited-state energy gaps in the dyads agree well with those obtained from time dependent density functional theory calculations and with the measured range of 197-1089 cm-1. Similar trends with donor-acceptor excited-state energy gaps are found for (1) the measured ultrafast energy-transfer rates of (0.3-1.7 ps)-1, (2) the spectral overlap integral (J) in Förster energy-transfer theory, and (3) donor-acceptor electronic mixing manifested in the natural transition orbitals for the S0 → S1 transition. Subtle outcomes include the near orthogonal orientation of the π-planes of the bacteriochlorin macrocycles, and the substituent-induced shift in transition-dipole moment from the typical coincidence with the NH-NH axis; the two features together afforded the Förster orientation term κ2 ranging from 0.55-1.53 across the nine dyads, a value supportive of efficient excited-state energy transfer. The molecular design and collective insights on the dyads are valuable for studies relevant to artificial photosynthesis and other processes requiring ultrafast energy transfer.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
19
|
Kikuchi H. Redshifting and Blueshifting of β82 Chromophores in the Phycocyanin Hexamer of Porphyridium purpureum Phycobilisomes Due to Linker Proteins. Life (Basel) 2022; 12:1833. [PMID: 36362988 PMCID: PMC9694638 DOI: 10.3390/life12111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very high efficiency. The molecular mechanism of excitation energy transfer within a phycobilisome is an example of a higher and unique function in a living organism. However, the mechanism underlying the high efficiency remains unclear. Thus, this study was carried out as a step to resolve this mechanism theoretically. The three-dimensional structure of phycobilisomes containing the linker proteins of the red alga Porphyridium purpureum was determined by cryoelectron microscopy at 2.82 Å resolution in 2020. Using these data, the absorption wavelength of each β82 chromophore in the phycocyanin hexamer located next to the core was calculated using quantum chemical treatment, considering the electric effect from its surrounding phycocyanin proteins and two linker proteins. In addition to unaffected chromophores, chromophores that were redshifted and blueshifted under the electrical influence of the two linker proteins were found. Namely, the chromophore serving as the energy sink in the rod was determined.
Collapse
Affiliation(s)
- Hiroto Kikuchi
- Department of Physics, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan
| |
Collapse
|
20
|
From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II. Proc Natl Acad Sci U S A 2022; 119:e2208033119. [PMID: 36215463 PMCID: PMC9586314 DOI: 10.1073/pnas.2208033119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The photosystem II core complex (PSII-CC) is a photosynthetic complex that contains antenna proteins, which collect energy from sunlight, and a reaction center, which converts the collected energy to redox potential. Understanding the interplay between the antenna proteins and the reaction center will facilitate the development of more efficient solar energy conversion technologies. Here, we study the sub-100-ps dynamics of PSII-CC with two-dimensional electronic-vibrational spectroscopy, which connects energy flows with physical space, allowing a direct mapping of energy transfer pathways. Our results reveal a complex dynamical scheme which includes a specific pathway that connects CP43 to the reaction center. Resolving this pathway experimentally provides insights into the energy conversion processes in natural photosynthesis. The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.
Collapse
|
21
|
Sil S, Tilluck RW, Mohan T M N, Leslie CH, Rose JB, Domínguez-Martín MA, Lou W, Kerfeld CA, Beck WF. Excitation energy transfer and vibronic coherence in intact phycobilisomes. Nat Chem 2022; 14:1286-1294. [PMID: 36123451 DOI: 10.1038/s41557-022-01026-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
The phycobilisome is an oligomeric chromoprotein complex that serves as the principal mid-visible light-harvesting system in cyanobacteria. Here we report the observation of excitation-energy-transfer pathways involving delocalized optical excitations of the bilin (linear tetrapyrrole) chromophores in intact phycobilisomes isolated from Fremyella diplosiphon. By using broadband multidimensional electronic spectroscopy with 6.7-fs laser pulses, we are able to follow the progress of excitation energy from the phycoerythrin disks at the ends of the phycobilisome's rods to the C-phycocyanin disks along their length in <600 fs. Oscillation maps show that coherent wavepacket motions prominently involving the hydrogen out-of-plane vibrations of the bilins mediate non-adiabatic relaxation of a manifold of vibronic exciton states. However, the charge-transfer character of the bilins in the allophycocyanin-containing segments localizes the excitations in the core of the phycobilisome, yielding a kinetic bottleneck that enables photoregulatory mechanisms to operate efficiently on the >10-ps timescale.
Collapse
Affiliation(s)
- Sourav Sil
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Nila Mohan T M
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Chase H Leslie
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Justin B Rose
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - Wenjing Lou
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Magdaong NCM, Jing H, Diers JR, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Probing the Effects of Electronic-Vibrational Resonance on the Rate of Excited-State Energy Transfer in Bacteriochlorin Dyads. J Phys Chem Lett 2022; 13:7906-7910. [PMID: 35980198 DOI: 10.1021/acs.jpclett.2c02154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The impact of vibrational-electronic resonances on the rate of excited-state energy transfer is examined in a set of bacteriochlorin dyads that employ the same phenylethyne linker. The donor/acceptor excited-state energy gap is tuned from ∼200 to ∼1100 cm-1 using peripheral substituents on the donor and acceptor bacteriochlorin macrocycles. Ultrafast energy transfer is observed with rate constants of (0.3 ps)-1 to (1.7 ps)-1, which agree with those predicted by Förster theory to within a factor of 2. Furthermore, the measured rates follow a trend-line with only small deviations that do not correlate with the density of vibrations at the donor/acceptor excited-state energy gap. Thus, if vibrational-electronic resonances occur in any of these dyads, which seems likely, the impact on the rate of energy transfer is small.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States
| | - Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina27695-8204, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, Riverside, California92521-0403, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina27695-8204, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, Riverside, California92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States
| |
Collapse
|
23
|
Kessing RK, Yang PY, Manmana SR, Cao J. Long-Range Nonequilibrium Coherent Tunneling Induced by Fractional Vibronic Resonances. J Phys Chem Lett 2022; 13:6831-6838. [PMID: 35857895 DOI: 10.1021/acs.jpclett.2c01455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the influence of a linear energy bias on a nonequilibrium excitation on a chain of molecules coupled to local vibrations (a tilted Holstein model) using both a random-walk rate kernel theory and a nonperturbative, massively parallelized adaptive-basis algorithm. We uncover structured and discrete vibronic resonance behavior fundamentally different from both linear response theory and homogeneous polaron dynamics. Remarkably, resonance between the phonon energy ℏω and the bias δϵ occurs not only at integer but also fractional ratios δϵ/(ℏω) = m/n, which effect long-range n-bond m-phonon tunneling. These observations are reproduced in a model calculation of a recently demonstrated Cy3 system, and the effect of dipole-dipole-type non-nearest-neighbor coupling and vibrationally relaxed initial states is also considered. Potential applications range from molecular electronics to optical lattices and artificial light harvesting via vibronic engineering of coherent quantum transport.
Collapse
Affiliation(s)
- R Kevin Kessing
- Institut für Theoretische Physik, Universität Ulm, Ulm, 89069, Germany
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pei-Yun Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan (R.O.C.)
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Salvatore R Manmana
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
- Fachbereich Physik, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Quintela Rodriguez FE, Troiani F. Vibrational response functions for multidimensional electronic spectroscopy in the adiabatic regime: A coherent-state approach. J Chem Phys 2022; 157:034107. [DOI: 10.1063/5.0094512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multi-dimensional spectroscopy represents a particularly insightful tool for investigating the interplay of nuclear and electronic dynamics, which plays an important role in a number of photophysical processes and photochemical reactions. Here, we present a coherent state representation of the vibronic dynamics and of the resulting response functions for the widely used linearly displaced harmonic oscillator model. Analytical expressions are initially derived for the case of third-order response functions in an N-level system, with ground state initialization of the oscillator (zero-temperature limit). The results are then generalized to the case of Mth order response functions, with arbitrary M. The formal derivation is translated into a simple recipe, whereby the explicit analytical expressions of the response functions can be derived directly from the Feynman diagrams. We further generalize to the whole set of initial coherent states, which form an overcomplete basis. This allows one, in principle, to derive the dependence of the response functions on arbitrary initial states of the vibrational modes and is here applied to the case of thermal states. Finally, a non-Hermitian Hamiltonian approach is used to include in the above expressions the effect of vibrational relaxation.
Collapse
Affiliation(s)
| | - Filippo Troiani
- Centro S3, CNR-Istituto di Nanoscienze, I-41125 Modena, Italy
| |
Collapse
|
25
|
Kong FF, Tian XJ, Zhang Y, Zhang Y, Chen G, Yu YJ, Jing SH, Gao HY, Luo Y, Yang JL, Dong ZC, Hou JG. Wavelike electronic energy transfer in donor-acceptor molecular systems through quantum coherence. NATURE NANOTECHNOLOGY 2022; 17:729-736. [PMID: 35668169 DOI: 10.1038/s41565-022-01142-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Quantum-coherent intermolecular energy transfer is believed to play a key role in light harvesting in photosynthesis and photovoltaics. So far, a direct, real-space demonstration of quantum coherence in donor-acceptor systems has been lacking because of the fragile quantum coherence in lossy molecular systems. Here, we precisely control the separations in well-defined donor-acceptor model systems and unveil a transition from incoherent to coherent electronic energy transfer. We monitor the fluorescence from the heterodimers with subnanometre resolution through scanning tunnelling microscopy induced luminescence. With decreasing intermolecular distance, the dipole coupling strength increases and two new emission peaks emerge: a low-intensity peak blueshifted from the donor emission, and an intense peak redshifted from the acceptor emission. Spatially resolved spectroscopic images of the redshifted emission exhibit a σ antibonding-like pattern and thus indicate a delocalized nature of the excitonic state over the whole heterodimer due to the in-phase superposition of molecular excited states. These observations suggest that the exciton can travel coherently through the whole heterodimer as a quantum-mechanical wavepacket. In our model system, the wavelike quantum-coherent transfer channel is three times more efficient than the incoherent channel.
Collapse
Affiliation(s)
- Fan-Fang Kong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Xiao-Jun Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China.
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, Hefei, China.
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, Hefei, China
| | - Gong Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Yun-Jie Yu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Shi-Hao Jing
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Hong-Ying Gao
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, Hefei, China
| | - Jin-Long Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, Hefei, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China.
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, Hefei, China.
| | - J G Hou
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
26
|
Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy. Nat Commun 2022; 13:2912. [PMID: 35614049 PMCID: PMC9133012 DOI: 10.1038/s41467-022-30565-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
The primary steps of photosynthesis rely on the generation, transport, and trapping of excitons in pigment-protein complexes (PPCs). Generically, PPCs possess highly structured vibrational spectra, combining many discrete intra-pigment modes and a quasi-continuous of protein modes, with vibrational and electronic couplings of comparable strength. The intricacy of the resulting vibronic dynamics poses significant challenges in establishing a quantitative connection between spectroscopic data and underlying microscopic models. Here we show how to address this challenge using numerically exact simulation methods by considering two model systems, namely the water-soluble chlorophyll-binding protein of cauliflower and the special pair of bacterial reaction centers. We demonstrate that the inclusion of the full multi-mode vibronic dynamics in numerical calculations of linear spectra leads to systematic and quantitatively significant corrections to electronic parameter estimation. These multi-mode vibronic effects are shown to be relevant in the longstanding discussion regarding the origin of long-lived oscillations in multidimensional nonlinear spectra. Multimode vibronic mixing in model photosynthetic systems revealed by numerically exact simulations is shown to strongly modify linear and non-linear optical responses and facilitate the persistence of coherent dynamics.
Collapse
|
27
|
Patra S, Tiwari V. Vibronic resonance along effective modes mediates selective energy transfer in excitonically coupled aggregates. J Chem Phys 2022; 156:184115. [PMID: 35568533 DOI: 10.1063/5.0088855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently proposed effective normal modes for excitonically coupled aggregates that exactly transform the energy transfer Hamiltonian into a sum of one-dimensional Hamiltonians along the effective normal modes. Identifying physically meaningful vibrational motions that maximally promote vibronic mixing suggested an interesting possibility of leveraging vibrational-electronic resonance for mediating selective energy transfer. Here, we expand on the effective mode approach, elucidating its iterative nature for successively larger aggregates, and extend the idea of mediated energy transfer to larger aggregates. We show that energy transfer between electronically uncoupled but vibronically resonant donor-acceptor sites does not depend on the intermediate site energy or the number of intermediate sites. The intermediate sites simply mediate electronic coupling such that vibronic coupling along specific promoter modes leads to direct donor-acceptor energy transfer, bypassing any intermediate uphill energy transfer steps. We show that the interplay between the electronic Hamiltonian and the effective mode transformation partitions the linear vibronic coupling along specific promoter modes to dictate the selectivity of mediated energy transfer with a vital role of interference between vibronic couplings and multi-particle basis states. Our results suggest a general design principle for enhancing energy transfer through synergistic effects of vibronic resonance and weak mediated electronic coupling, where both effects individually do not promote efficient energy transfer. The effective mode approach proposed here paves a facile route toward four-wavemixing spectroscopy simulations of larger aggregates without severely approximating resonant vibronic coupling.
Collapse
Affiliation(s)
- Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
28
|
Moya R, Norris AC, Kondo T, Schlau-Cohen GS. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump-probe spectroscopy. Nat Chem 2022; 14:153-159. [PMID: 34992285 PMCID: PMC9977402 DOI: 10.1038/s41557-021-00841-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023]
Abstract
Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump-probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA,To whom correspondence should be addressed;
| |
Collapse
|
29
|
Navotnaya P, Sohoni S, Lloyd LT, Abdulhadi SM, Ting PC, Higgins JS, Engel GS. Annihilation of Excess Excitations along Phycocyanin Rods Precedes Downhill Flow to Allophycocyanin Cores in the Phycobilisome of Synechococcus elongatus PCC 7942. J Phys Chem B 2022; 126:23-29. [PMID: 34982932 PMCID: PMC8762654 DOI: 10.1021/acs.jpcb.1c06509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cyanobacterial phycobilisome
complexes absorb visible sunlight
and funnel photogenerated excitons to the photosystems where charge
separation occurs. In the phycobilisome complex of Synechococcus
elongatus PCC 7942, phycocyanin protein rods that absorb
bluer wavelengths are assembled on allophycocyanin cores that absorb
redder wavelengths. This arrangement creates a natural energy gradient
toward the reaction centers of the photosystems. Here, we employ broadband
pump–probe spectroscopy to observe the fate of excess excitations
in the phycobilisome complex of this organism. We show that excess
excitons are quenched through exciton–exciton annihilation
along the phycocyanin rods prior to transfer to the allophycocyanin
cores. Our observations are especially relevant in comparison to other
antenna proteins, where exciton annihilation primarily occurs in the
lowest-energy chlorophylls. The observed effect could play a limited
photoprotective role in physiological light fluences. The exciton
decay dynamics is faster in the intact phycobilisome than in isolated
C-phycocyanin trimers studied in earlier work, confirming that this
effect is an emergent property of the complex assembly. Using the
obtained annihilation data, we calculate exciton hopping times of
2.2–6.4 ps in the phycocyanin rods. This value agrees with
earlier FRET calculations of exciton hopping times along phycocyanin
hexamers by Sauer and Scheer.
Collapse
Affiliation(s)
- Polina Navotnaya
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Siddhartha Sohoni
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sami M Abdulhadi
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jacob S Higgins
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Policht VR, Niedringhaus A, Willow R, Laible PD, Bocian DF, Kirmaier C, Holten D, Mančal T, Ogilvie JP. Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center. SCIENCE ADVANCES 2022; 8:eabk0953. [PMID: 34985947 PMCID: PMC8730630 DOI: 10.1126/sciadv.abk0953] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC. We find that specific vibronic coherence processes can readily reveal weak exciton transitions. While the functional relevance of such processes is unclear, they provide a spectroscopic tool that uses vibrations as a window for observing excited state structure and dynamics elsewhere in the BRC via vibronic coupling. Vibronic coherence transfer reveals the upper exciton of the “special pair” that was weakly visible in previous 2DES experiments.
Collapse
Affiliation(s)
- Veronica R. Policht
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Andrew Niedringhaus
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Rhiannon Willow
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Jennifer P. Ogilvie
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
31
|
Cho KH, Rhee YM. Computational elucidations on the role of vibrations in energy transfer processes of photosynthetic complexes. Phys Chem Chem Phys 2021; 23:26623-26639. [PMID: 34842245 DOI: 10.1039/d1cp04615b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling between pigment excitations and nuclear movements in photosynthetic complexes is known to modulate the excitation energy transfer (EET) efficiencies. Toward providing microscopic information, researchers often apply simulation techniques and investigate how vibrations are involved in EET processes. Here, reports on such roles of nuclear movements are discussed from a theory perspective. While vibrations naturally present random thermal fluctuations that can affect energy transferring characteristics, they can also be intertwined with exciton structures and create more specific non-adiabatic energy transfer pathways. For reliable simulations, a bath model that accurately mimics a given molecular system is required. Methods for obtaining such a model in combination with quantum chemical electronic structure calculations and molecular dynamics trajectory simulations are discussed. Various quantum dynamics simulation tools that can handle pigment-to-pigment energy transfers together with their vibrational characters are also touched on. Behaviors of molecular vibrations often deviate from ideality, especially when all-atom details are included, which practically forces us to treat them classically. We conclude this perspective by considering some recent reports that suggest that classical descriptions of bath effects with all-atom details may still produce valuable information for analyzing sophisticated contributions by vibrations to EET processes.
Collapse
Affiliation(s)
- Kwang Hyun Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
32
|
Kumar M, Provazza J, Coker DF. Influence of solution phase environmental heterogeneity and fluctuations on vibronic spectra: Perylene diimide molecular chromophore complexes in solution. J Chem Phys 2021; 154:224109. [PMID: 34241200 DOI: 10.1063/5.0054377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ensembles of ab initio parameterized Frenkel-exciton model Hamiltonians for different perylene diimide dimer systems are used, together with various dissipative quantum dynamics approaches, to study the influence of the solvation environment and fluctuations in chromophore relative orientation and packing on the vibronic spectra of two different dimer systems: a π-stacked dimer in aqueous solution in which the relative chromophore geometry is strongly confined by a phosphate bridge and a side-by-side dimer in dichloromethane involving a more flexible alkyne bridge that allows quasi-free rotation of the chromophores relative to one another. These entirely first-principles calculations are found to accurately reproduce the main features of the experimental absorption spectra, providing a detailed mechanistic understanding of how the structural fluctuations and environmental interactions influence the vibronic dynamics and spectroscopy of solutions of these multi-chromophore complexes.
Collapse
Affiliation(s)
- Manav Kumar
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Justin Provazza
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - David F Coker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
33
|
Cho KH, Rhee YM. Cooperation between Excitation Energy Transfer and Antisynchronously Coupled Vibrations. J Phys Chem B 2021; 125:5601-5610. [PMID: 34013724 DOI: 10.1021/acs.jpcb.1c01194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of the environment in energy transfer systems have been continuously studied for decades. Here, we investigate how the energy transfer and the emergence of vibrational correlations cooperate with each other based on simulations with a few numerically approximate mixed quantum classical (MQC) methods. By adopting a two-state system with locally coupled underdamped vibrations that are resonant with the electronic energy gap, we observe prominent energy dissipations from the electronic system to the vibrations, rehighlighting the role of underdamped vibrations as a temporal electronic energy buffer. More importantly, this energy dissipation generates specific phase relations between the two vibrations. Namely, the vibrations become anticorrelated right after the initiation of the energy transfer but then synchronized as the transfer completes. These phase relations are interpreted as a selective activation of an anticorrelated motion of the vibrations and a subsequent deactivation by thermal energy redistribution. Furthermore, we show that a single vibration simultaneously coupled to the two electronic states with opposite phases induces a completely equivalent energy transfer dynamics as the two localized vibrations. Finally, we discuss how the vibrational energy dissipation dynamics is affected by the adopted MQC approaches and warn about the increased subtlety toward properly treating dissipation effects over having reliable population dynamics.
Collapse
Affiliation(s)
- Kwang Hyun Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
34
|
Hu Z, Xu Z, Chen G. Vibration-mediated resonant charge separation across the donor-acceptor interface in an organic photovoltaic device. J Chem Phys 2021; 154:154703. [PMID: 33887946 DOI: 10.1063/5.0049176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Examination of a recent open-system Ehrenfest dynamics simulation suggests that a vibration-mediate resonance may play a pivotal role in the charge transfer across a donor-acceptor interface in an organic solar cell. Based on this, a concise dissipative two-level electronic system coupled to a molecular vibrational mode is proposed and solved quantum mechanically. It is found that the charge transfer is enhanced substantially when the vibrational energy quanta is equal to the electronic energy loss across the interface. This vibration-mediate resonant charge transfer process is ultrafast, occurring within 100 fs, comparable to experimental findings. The open-system Ehrenfest dynamics simulation of the two-level model is carried out, and similar results are obtained, which confirms further that the earlier open-system Ehrenfest dynamics simulation indeed correctly predicted the occurrence of the resonant charge transfer across the donor-acceptor interface.
Collapse
Affiliation(s)
- Ziyang Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziyao Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
35
|
Schultz JD, Shin JY, Chen M, O'Connor JP, Young RM, Ratner MA, Wasielewski MR. Influence of Vibronic Coupling on Ultrafast Singlet Fission in a Linear Terrylenediimide Dimer. J Am Chem Soc 2021; 143:2049-2058. [PMID: 33464054 DOI: 10.1021/jacs.0c12201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF) is a photophysical process capable of boosting the efficiency of solar cells. Recent experimental investigations into the mechanism of SF provide evidence for coherent mixing between the singlet, triplet, and charge transfer basis states. Up until now, this interpretation has largely focused on electronic interactions; however, nuclear motions resulting in vibronic coupling have been suggested to support rapid and efficient SF in organic chromophore assemblies. Further information about the complex interactions between vibronic excited states is needed to understand the potential role of this coupling in SF. Here, we report mixed singlet and correlated triplet pair states giving rise to sub-50 fs SF in a terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the two TDI molecules are covalently linked by a direct N-N connection at one of their imide positions, leading to a linear dimer with perpendicular TDI π systems. We observe the transfer of low-frequency coherent wavepackets between the initial predominantly singlet states to the product triplet-dominated states. This implies a non-negligible dependence of SF on nonadiabatic coupling in this dimer. We interpret our experimental results in the framework of a modified Holstein Hamiltonian, which predicts that vibronic interactions between low-frequency singlet modes and high-frequency correlated triplet pair motions lead to mixing of the pure basis states. These results highlight how nonadiabatic mixing can shape the complex potential energy landscape underlying ultrafast SF.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, 30019 Sejong-ro, Sejong, South Korea
| | - Michelle Chen
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A Ratner
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
36
|
Irgen-Gioro S, Gururangan K, Spencer AP, Harel E. Non-Uniform Excited State Electronic-Vibrational Coupling of Pigment-Protein Complexes. J Phys Chem Lett 2020; 11:10388-10395. [PMID: 33238100 DOI: 10.1021/acs.jpclett.0c02454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photosynthetic organisms exploit interacting quantum degrees of freedom, namely intrapigment electron-vibrational (vibronic) and interpigment dipolar couplings (J-coupling), to rapidly and efficiently convert light into chemical energy. These interactions result in wave function configurations that delocalize excitation between pigments and pigment vibrations. Our study uses multidimensional spectroscopy to compare two model photosynthetic proteins, the Fenna-Matthews Olson (FMO) complex and light harvesting 2 (LH2), and confirm that long-lived excited state coherences originate from the vibrational modes of the pigment. Within this framework, the J-coupling of vibronic pigments should have a cascading effect in modifying the structured spectral density of excitonic states. We show that FMO effectively couples all of its excitations to a uniform set of vibrations while in LH2, its two chromophore rings each couple to a unique vibrational environment. We simulate energy transfer in a simple model system with non-uniform vibrational coupling to demonstrate how modification of the vibronic coupling strength can modulate energy transfer. Because increasing vibronic coupling increases internal relaxation, strongly coupled vibronic states can act as an energy funnel, which can potentially benefit energy transport.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karthik Gururangan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Austin P Spencer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Elad Harel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
37
|
Sahu A, Kurian JS, Tiwari V. Vibronic resonance is inadequately described by one-particle basis sets. J Chem Phys 2020; 153:224114. [DOI: 10.1063/5.0029027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Amitav Sahu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jo Sony Kurian
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
38
|
Wang YC, Zhao Y. The hierarchical stochastic schrödinger equations: Theory and applications. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2009165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yu-Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
39
|
Zhu R, Zou J, Wang Z, Chen H, Weng Y. Electronic State-Resolved Multimode-Coupled Vibrational Wavepackets in Oxazine 720 by Two-Dimensional Electronic Spectroscopy. J Phys Chem A 2020; 124:9333-9342. [PMID: 33136407 DOI: 10.1021/acs.jpca.0c06559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The difference between the excited- and ground-state vibrational wavepackets remains to be fully explored when multiple vibrational modes are coherently excited simultaneously by femtosecond pulses. In this work, we present a series of one- and two-dimensional electronic spectroscopy for studying multimode wavepackets of oxazine 720 in solution. Fourier transform (FT) maps combined with time-frequency transform (TFT) are employed to unambiguously distinguish the origin of low-frequency vibrational wavepackets, that is, an excited-state vibrational wavepacket of 586 cm-1 with a dephasing time of 0.7 ps and a ground-state vibrational wavepacket of 595 cm-1 with a dephasing time of 1.3-1.7 ps. We also found the additional low-frequency vibrational wavepackets resulting from the coupling of the 595 cm-1 mode to a series of high-frequency modes centered at 1150 cm-1 via electronic transitions. The combined use of FT maps and TFT analysis allows us to reveal the potential vibrational coupling of wavepackets and offers the possibility of disentangling the coupling between the electronic and vibrational degrees of freedom in condensed-phase systems.
Collapse
Affiliation(s)
- Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
40
|
Sato Y, Navarro Hernández A, Gillespie LD, Valete D. Effects of intramolecular vibrations on excitation energy transfer dynamics of the Fenna-Matthews-Olson complex. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Kundu S, Makri N. Real-Time Path Integral Simulation of Exciton-Vibration Dynamics in Light-Harvesting Bacteriochlorophyll Aggregates. J Phys Chem Lett 2020; 11:8783-8789. [PMID: 33001649 DOI: 10.1021/acs.jpclett.0c02760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanism of excitation energy transfer in photoexcited bacteriochlorophyll (BChl) aggregates poses intriguing questions, which have important implications for the observed efficiency of photosynthesis. We investigate this process through fully quantum mechanical calculations of exciton-vibration dynamics in chains and rings of BChl a molecules, with parameters characterizing the B850 ring of the LH2 complex of photosynthetic bacteria. The calculations are performed using the modular path integral methodology, which allows the exact treatment of 50 intramolecular vibrations on each pigment using parameters obtained from spectroscopic Huang-Rhys factors with computational effort that scales linearly with aggregate length. Our results indicate that the interplay between electronic and vibrational time scales leads to the rapid suppression but not the overdamping of electronic coherence, which facilitates the spreading of excitation energy throughout the aggregate.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Abstract
In this paper, we explore the scope of vibrations as quantum ratchets that serve as nonthermal routes to achieving population transport in systems where excitation transport between molecules is otherwise energetically unfavorable. In addition to their role as channels of transport, we investigate the effect of resonance of the vibrations, which are described by Huang-Rhys mixing, with excitonic energy gaps, which leads to strongly mixed vibronic excitons. Finally, we explore the interplay of resonance and Huang-Rhys mixing with electronic coupling between the molecules, in the presence of a dissipative bath, in optimizing transport in such systems. We find that while resonance is desirable, a moderate electronic coupling has a stronger positive effect in contrast to a large electronic coupling, which results in delocalized excitations across molecules and hampers unidirectional transport. We also report a special resonance regime that is able to circumvent the transport problems arising from large electronic couplings.
Collapse
Affiliation(s)
- Pallavi Bhattacharyya
- Department of Chemistry, University of California, Berkeley 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Bhattacharyya P, Fleming GR. The role of resonant nuclear modes in vibrationally assisted energy transport: The LHCII complex. J Chem Phys 2020; 153:044119. [DOI: 10.1063/5.0012420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Pallavi Bhattacharyya
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
44
|
Kiessling AJ, Cina JA. Monitoring the evolution of intersite and interexciton coherence in electronic excitation transfer via wave-packet interferometry. J Chem Phys 2020; 152:244311. [PMID: 32610990 DOI: 10.1063/5.0008766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We detail an experimental strategy for tracking the generation and time-development of electronic coherence within the singly excited manifold of an energy-transfer dimer. The technique requires that the two monomers have nonparallel electronic transition-dipole moments and that these possess fixed orientations in space. It makes use of two-dimensional wave-packet interferometry (WPI or whoopee) measurements in which the A, B, C, and D pulses have respective polarizations e, e, e, and e'. In the case of energy-transfer coupling that is weak or strong compared to electronic-nuclear interactions, it is convenient to follow the evolution of intersite or interexciton coherence, respectively. Under weak coupling, e could be perpendicular to the acceptor chromophore's transition dipole moment and the unit vector e' would be perpendicular to the donor's transition dipole. Under strong coupling, e could be perpendicular to the ground-to-excited transition dipole to the lower exciton level and e' would be perpendicular to the ground-to-excited transition dipole to the upper exciton level. If the required spatial orientation can be realized for an entire ensemble, experiments of the kind proposed could be performed by either conventional four-wave-mixing or fluorescence-detected WPI methods. Alternatively, fluorescence-detected whoopee experiments of this kind could be carried out on a single energy-transfer dimer of fixed orientation. We exhibit detailed theoretical expressions for the desired WPI signal, explain the physical origin of electronic coherence detection, and show calculated observed-coherence signals for model dimers with one, two, or three internal vibrational modes per monomer and both weak and strong energy-transfer coupling.
Collapse
Affiliation(s)
- Alexis J Kiessling
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Jeffrey A Cina
- Department of Chemistry and Biochemistry, Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
45
|
Kim CW, Rhee YM. Toward monitoring the dissipative vibrational energy flows in open quantum systems by mixed quantum-classical simulations. J Chem Phys 2020; 152:244109. [PMID: 32610983 DOI: 10.1063/5.0009867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In open quantum system dynamics, rich information about the major energy relaxation channels and corresponding relaxation rates can be elucidated by monitoring the vibrational energy flow among individual bath modes. However, such calculations often become tremendously difficult as the complexity of the subsystem-bath coupling increases. In this paper, we attempt to make this task feasible by using a mixed quantum-classical method, the Poisson-bracket mapping equation with non-Hamiltonian modification (PBME-nH) [H. W. Kim and Y. M. Rhee, J. Chem. Phys. 140, 184106 (2014)]. For a quantum subsystem bilinearly coupled to harmonic bath modes, we derive an expression for the mode energy in terms of the classical positions and momenta of the nuclei, while keeping consistency with the energy of the quantum subsystem. The accuracy of the resulting expression is then benchmarked against a numerically exact method by using relatively simple models. Although our expression predicts a qualitatively correct dissipation rate for a range of situations, cases involving a strong vibronic resonance are quite challenging. This is attributed to the inherent lack of quantum back reaction in PBME-nH, which becomes significant when the subsystem strongly interacts with a small number of bath modes. A rigorous treatment of such an effect will be crucial for developing quantitative simulation methods that can handle generic subsystem-bath coupling.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
46
|
Cao J, Cogdell RJ, Coker DF, Duan HG, Hauer J, Kleinekathöfer U, Jansen TLC, Mančal T, Miller RJD, Ogilvie JP, Prokhorenko VI, Renger T, Tan HS, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D. Quantum biology revisited. SCIENCE ADVANCES 2020; 6:eaaz4888. [PMID: 32284982 PMCID: PMC7124948 DOI: 10.1126/sciadv.aaz4888] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
Collapse
Affiliation(s)
- Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Hong-Guang Duan
- Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Jürgen Hauer
- Technische Universität München, Dynamische Spektroskopien, Fakultät für Chemie, Lichtenbergstr. 4, 85748 Garching, Germany, and Photonics Institute, TU Wien, 1040 Vienna, Austria
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Thomas L. C. Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - R. J. Dwayne Miller
- Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Valentyn I. Prokhorenko
- Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Thomas Renger
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Roel Tempelaar
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Erling Thyrhaug
- Technische Universität München, Dynamische Spektroskopien, Fakultät für Chemie, Lichtenbergstr. 4, 85748 Garching, Germany, and Photonics Institute, TU Wien, 1040 Vienna, Austria
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | | |
Collapse
|
47
|
|
48
|
Bukartė E, Haufe A, Paleček D, Büchel C, Zigmantas D. Revealing vibronic coupling in chlorophyll c1 by polarization-controlled 2D electronic spectroscopy. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Interference among Multiple Vibronic Modes in Two-Dimensional Electronic Spectroscopy. MATHEMATICS 2020. [DOI: 10.3390/math8020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vibronic coupling between electronic and vibrational states in molecules plays a critical role in most photo-induced phenomena. Many key details about a molecule’s vibronic coupling are hidden in linear spectroscopic measurements, and therefore nonlinear optical spectroscopy methods such as two-dimensional electronic spectroscopy (2D ES) have become more broadly adopted. A single vibrational mode of a molecule leads to a Franck–Condon progression of peaks in a 2D spectrum. Each peak oscillates as a function of the waiting time, and Fourier transformation can produce a spectral slice known as a ‘beating map’ at the oscillation frequency. The single vibrational mode produces a characteristic peak structure in the beating map. Studies of single modes have limited utility, however, because most molecules have numerous vibrational modes that couple to the electronic transition. Interactions or interference among the modes may lead to complicated peak patterns in each beating map. Here, we use lineshape-function theory to simulate 2D ES arising from a system having multiple vibrational modes. The simulations reveal that the peaks in each beating map are affected by all of the vibrational modes and therefore do not isolate a single mode, which was anticipated.
Collapse
|
50
|
Siwiak-Jaszek S, Olaya-Castro A. Transient synchronisation and quantum coherence in a bio-inspired vibronic dimer. Faraday Discuss 2019; 216:38-56. [PMID: 31062011 DOI: 10.1039/c9fd00006b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synchronisation is a collective phenomenon widely investigated in classical oscillators and, more recently, in quantum systems. However it remains unclear what features distinguish synchronous behaviour in these two scenarios. Recent works have shown that investigating synchronisation dynamics in open quantum systems can give insight into this issue. Here we study transient synchronisation in a bio-inspired vibronic dimer, where electronic excitation dynamics is mediated by coherent interactions with intramolecular vibrational modes. We show that the synchronisation dynamics of local mode displacements exhibit a rich behaviour which arises directly from the distinct time-evolutions of different vibronic quantum coherences. Furthermore, our study shows that coherent energy transport in this bio-inspired system is concomitant with the emergence of positive synchronisation between mode displacements. Our work provides further understanding of the relations between quantum coherence and synchronisation in open quantum systems and suggests an interesting role for coherence in biomolecules, that of promoting synchronisation of vibrational motions driven out of thermal equilibrium.
Collapse
Affiliation(s)
- Stefan Siwiak-Jaszek
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|