1
|
Komatsu H, Inasawa S. Propagation of Freezing in Supercooled Water-In-Antifreeze-Oil Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012055 DOI: 10.1021/acs.langmuir.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Water-in-oil (W/O) emulsions, in which water droplets are separated by a continuous oil phase, are frequently used in food and cosmetic products. However, the freezing kinetics of W/O emulsions are not yet well understood. In this study, we find that freezing propagates to individual water droplets that are in direct contact with other frozen droplets. When droplets are not in contact, freezing does not propagate even when the emulsions are cooled to -18 °C. Two measures of the perimeter and the area of the frozen droplets in emulsions are defined to evaluate the propagation velocity of freezing using a simple mathematical model. The velocity is highest (4 × 102 μm s-1) at -18 °C, which is lower than the freezing velocity of individual droplets at the same temperature (1.2 × 103 μm s-1). Water-oil interfaces, or a thin layer of oil between droplets, act as a barrier to propagation of freezing. The dependence of the freezing velocity on the degree of supercooling is consistent with results from a previous study; however, the absolute value of the freezing velocity is smaller by a factor of 102. The propagation velocity also depends on the degree of supercooling but its dependence is different from that of the freezing velocity. Features of freezing of water droplets immersed in antifreeze oil are discussed.
Collapse
Affiliation(s)
- Hiiro Komatsu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| | - Susumu Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Eickhoff L, Keßler M, Stubbs C, Derksen J, Viefhues M, Anselmetti D, Gibson MI, Hoge B, Koop T. Ice nucleation in aqueous solutions of short- and long-chain poly(vinyl alcohol) studied with a droplet microfluidics setup. J Chem Phys 2023; 158:2882248. [PMID: 37093996 DOI: 10.1063/5.0136192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023] Open
Abstract
Poly(vinyl alcohol) (PVA) has ice binding and ice nucleating properties. Here, we explore the dependence of the molecular size of PVA on its ice nucleation activity. For this purpose, we studied ice nucleation in aqueous solutions of PVA samples with molar masses ranging from 370 to 145 000 g mol-1, with a particular focus on oligomer samples with low molar mass. The experiments employed a novel microfluidic setup that is a follow-up on the previous WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) design by Reicher et al. The modified setup introduced and characterized here, termed nanoliter Bielefeld Ice Nucleation ARraY (nanoBINARY), uses droplet microfluidics with droplets (96 ± 4) µm in diameter and a fluorinated continuous oil phase and surfactant. A comparison of homogeneous and heterogeneous ice nucleation data obtained with nanoBINARY to those obtained with WISDOM shows very good agreement, underpinning its ability to study low-temperature ice nucleators as well as homogeneous ice nucleation due to the low background of impurities. The experiments on aqueous PVA solutions revealed that the ice nucleation activity of shorter PVA chains strongly decreases with a decrease in molar mass. While the cumulative number of ice nucleating sites per mass nm of polymers with different molar masses is the same, it becomes smaller for oligomers and completely vanishes for dimer and monomer representatives such as 1,3-butanediol, propan-2-ol, and ethanol, most likely because these molecules become too small to effectively stabilize the critical ice embryo. Overall, our results are consistent with PVA polymers and oligomers acting as heterogeneous ice nucleators.
Collapse
Affiliation(s)
- Lukas Eickhoff
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Mira Keßler
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Christopher Stubbs
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jakob Derksen
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Martina Viefhues
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Berthold Hoge
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Koop
- Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Mousazadehkasin M, Mitchell N, Asenath-Smith E, Tsavalas JG. Ice Nucleation Promotion Impact on the Ice Recrystallization Inhibition Activity of Polyols. Biomacromolecules 2023; 24:678-689. [PMID: 36648113 DOI: 10.1021/acs.biomac.2c01120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heterogeneous ice nucleation occurs vis-à-vis nucleating agents already present in solution yet can occur within a rather broad range of temperatures (0 to ca. -38 °C). Controlling this temperature and the subsequent growth of resulting ice crystals is crucial for the survival of biological organisms (certain insects, fish, and plants that endure subzero temperatures), as well as in the context of medical cryopreservation and food science. In these environments, uncontrolled crystal shape and size can rupture the cell membrane causing irreversible and catastrophic damage. Antifreeze (AF) proteins and synthetic AF analogs address this issue to restrict crystal growth and to shape ice crystals. Yet, if the nucleation temperature is not controlled and occurs in a lower temperature range, nascent ice crystals will have grown to a significantly larger size before the AF agents can be active on their surface to halt or slow the Ostwald ripening process during recrystallization. At a higher nucleation temperature, diffusion of AF macromolecules is enhanced, and dynamic crystal shaping can start earlier, producing smaller crystals overall. While antifreeze proteins, the inspiration for these synthetic analogs, are always applied in a salt buffer aqueous environment (most typically phosphate-buffered saline (PBS) buffer), the heterogeneous nucleation events are stochastic and occur within a wide temperature range. Silver iodide (AgI), however, is a highly effective ice nucleation promoter as its crystal lattice structure is a 98% lattice match to the basal plane of hexagonal ice (Ih) crystals acting as a template for water molecule orientation and decreasing the interfacial free energy. Here, we expose the advantage of purposely seeding such nascent ice crystals with AgI at a defined and higher temperature (-7 °C) in ultrapure water (UPW) such that nucleation can only come from AgI (and also in AgI/PBS), resulting in the most potent synthetic IRI observed to date (at concentrations as low as 0.001 mg·mL-1).
Collapse
Affiliation(s)
- Mohammad Mousazadehkasin
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Nick Mitchell
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Emily Asenath-Smith
- Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, New Hampshire 03755, United States
| | - John G Tsavalas
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States.,Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
4
|
Lin M, Cao H, Li J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater 2023; 155:35-56. [PMID: 36323355 DOI: 10.1016/j.actbio.2022.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/02/2023]
Abstract
The cryopreservation of biomaterials is fundamental to modern biotechnology and biomedicine, but the biggest challenge is the formation of ice, resulting in fatal cryoinjury to biomaterials. To date, abundant ice control strategies have been utilized to inhibit ice formation and thus improve cryopreservation efficiency. This review focuses on the mechanisms of existing control strategies regulating ice formation and the corresponding applications to biomaterial cryopreservation, which are of guiding significance for the development of ice control strategies. Herein, basics related to biomaterial cryopreservation are introduced first. Then, the theoretical bases of ice nucleation, growth, and recrystallization are presented, from which the key factors affecting each process are analyzed, respectively. Ice nucleation is mainly affected by melting temperature, interfacial tension, shape factor, and kinetic prefactor, and ice growth is mainly affected by solution viscosity and cooling/warming rate, while ice recrystallization is inhibited by adsorption or diffusion mechanisms. Furthermore, the corresponding research methods and specific control strategies for each process are summarized. The review ends with an outlook of the current challenges and future perspectives in cryopreservation. STATEMENT OF SIGNIFICANCE: Ice formation is the major limitation of cryopreservation, which causes fatal cryoinjury to cryopreserved biomaterials. This review focuses on the three processes related to ice formation, called nucleation, growth, and recrystallization. The theoretical models, key influencing factors, research methods and corresponding ice control strategies of each process are summarized and discussed, respectively. The systematic introduction on mechanisms and control strategies of ice formation is instructive for the cryopreservation development.
Collapse
Affiliation(s)
- Min Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China.
| | - Junming Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Takeno H, Hashimoto R, Lu Y, Hsieh WC. Structural and Mechanical Properties of Konjac Glucomannan Gels and Influence of Freezing-Thawing Treatments on Them. Polymers (Basel) 2022; 14:polym14183703. [PMID: 36145848 PMCID: PMC9506355 DOI: 10.3390/polym14183703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Freezing has been widely used for long-term food preservation. However, freezing-thawing (FT) treatment usually influences the texture and structure of food gels such as konjac. For their texture control after FT treatment, it is important to clarify the structural change of food gels during the FT process. In this study, we investigated the aggregated structures of konjac glucomannan (GM) gels during the FT process using simultaneous synchrotron small-angle X-ray/wide-angle X-ray scattering (SAXS/WAXS) techniques. The FT treatment resulted in more crystallization of GM, and consequently, a large increase in compressive stress. In-situ SAXS/WAXS measurements revealed the following findings: on freezing, water molecules came out of the aggregated phase of GM and after the thawing, they came back into the aggregated phase, but the aggregated structure did not return to the one before the freezing; the gel network enhanced the inhomogeneity due to the growth of ice crystals during freezing. Furthermore, we examined the influence of additives such as polyvinyl (alcohol) (PVA) and antifreeze glycoprotein (AFGP) on the mechanical and structural properties of freeze-thawed GM gels. Although the addition of PVA and AFGP suppressed the crystallization of GM, it could not prevent the growth of ice crystals and the increase in the inhomogeneity of the gel network. As a result, the compressive stresses for freeze-thawed GM gels containing PVA or AFGP were significantly higher compared with those of GM gels without FT treatments, although they were lower than those of freeze-thawed GM gels. The findings of this study may be useful for not only the texture control of freeze-thawed foods but also the improvement of the mechanical performance of the biomaterials.
Collapse
Affiliation(s)
- Hiroyuki Takeno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi 371-8510, Gunma, Japan
- Correspondence:
| | - Ryuki Hashimoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Yunqiao Lu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Wen-Chuan Hsieh
- Department of Biological Science and Technology, College of Medicine, I-SHOU University, No. 8, Yida, Yanchao, Kaohsiung 82445, Taiwan
| |
Collapse
|
6
|
Xi XT, Luo XQ, Xia Y, Yi LF, Wang Y, Song DY, Song YJ, Wu JR, Zhao LJ. Ice Crystal Growth Mechanism and Structure-activity Relationships of Graphene Oxide/Poly(vinyl alcohol) Aerogels. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Xue H, Fu Y, Lu Y, Hao D, Li K, Bai G, Ou-Yang ZC, Wang J, Zhou X. Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation. J Am Chem Soc 2021; 143:13548-13556. [PMID: 34406749 DOI: 10.1021/jacs.1c04055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous freezing of microdroplets around 233 K has long been regarded as the occurrence of homogeneous ice nucleation. The corresponding temperature has been directly regarded as the homogeneous ice nucleation temperature, which is an intrinsic character of water. However, many recent investigations indicate that the spontaneous freezing may be still induced by surfaces of the water microdroplets or the residual impurities inside. Therefore, it is highly desired to reveal with solid evidence the exact origin of the spontaneous freezing. Here we show with no ambiguity that the spontaneous freezing between 233 and 235 K is actually triggered by the surface of microdroplets, as the nucleation rate is found to be proportional to the surface area of droplets, via systematically investigating the freezing of water droplets with varying sizes under various cooling rates followed by a new approach in data analysis. The conclusion is further consolidated by published experimental data from other groups when using our data analysis approach. This study is critical for understanding the sources of "no-man's land" and features of homogeneous nucleation, as well as studying the structure and properties of deeply supercooled liquid water.
Collapse
Affiliation(s)
- Han Xue
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yang Fu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Youhua Lu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dezhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaiyong Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Guoying Bai
- Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Zhong-Can Ou-Yang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| |
Collapse
|
8
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
9
|
Ogawa S, Osanai S. Solute- and concentration-dependent heterogeneous ice nucleation behaviors in AgI composite water droplets. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Khaleghi A, Sadrameli SM, Manteghian M. Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Nucleation is a fundamental process widely studied in different areas of industry and biology. This review paper comprehensively discussed the principles of classical nucleation theory (primary homogeneous), and heterogeneous nucleation. In the homogeneous part, the nucleation rate in the transient and intransient state is monitored and also heterogeneous nucleation is covered. Finally, conclusions have been deduced from the collected works studied here, and offers for future studies are proposed.
Collapse
Affiliation(s)
- Atefeh Khaleghi
- Tarbiat Modares University , Tehran Jalal AleAhmad Nasr , Tehran , The Islamic Republic of Iran
| | - Seyed Mojtaba Sadrameli
- Tarbiat Modares University , Tehran Jalal AleAhmad Nasr , Tehran , The Islamic Republic of Iran
| | - Mehrdad Manteghian
- Tarbiat Modares University , Tehran Jalal AleAhmad Nasr , Tehran , The Islamic Republic of Iran
| |
Collapse
|
11
|
Poon GG, Lemke T, Peter C, Molinero V, Peters B. Soluble Oligomeric Nucleants: Simulations of Chain Length, Binding Strength, and Volume Fraction Effects. J Phys Chem Lett 2017; 8:5815-5820. [PMID: 29116791 DOI: 10.1021/acs.jpclett.7b02651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent theories and simulations suggest that molecular additives can bind to the surfaces of nuclei, lower the surface energy, and accelerate nucleation. Experiments have shown that oligomeric and polymeric additives can also modify nucleation rates of proteins, ice, and minerals; however, general design principles for oligomeric or polymeric promoters do not yet exist. Here we investigate oligomeric additives for which each segment of the oligomer can bind to surfaces of nuclei. We use semigrand canonical Monte Carlo simulations in a Potts lattice gas model to study the effects of oligomer chain length, volume fraction, and binding strength. We find that increasing each of those parameters lowers the nucleation barrier. At extremely low oligomer concentrations, the nucleation kinetics can be modeled as though each oligomer is a heterogeneous nucleation site in solution.
Collapse
Affiliation(s)
- Geoffrey G Poon
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Tobias Lemke
- Department of Chemistry, University of Konstanz , Konstanz 78457, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz , Konstanz 78457, Germany
| | - Valeria Molinero
- Department of Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Baron Peters
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Zhang S, Huang J, Cheng Y, Yang H, Chen Z, Lai Y. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 29058767 DOI: 10.1002/smll.201701867] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/08/2017] [Indexed: 05/03/2023]
Abstract
Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed.
Collapse
Affiliation(s)
- Songnan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Jianying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
13
|
Mochizuki K, Qiu Y, Molinero V. Promotion of Homogeneous Ice Nucleation by Soluble Molecules. J Am Chem Soc 2017; 139:17003-17006. [PMID: 29111694 DOI: 10.1021/jacs.7b09549] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Atmospheric aerosols nucleate ice in clouds, strongly impacting precipitation and climate. The prevailing consensus is that ice nucleation is promoted heterogeneously by the surface of ice nucleating particles in the aerosols. However, recent experiments indicate that water-soluble molecules, such as polysaccharides of pollen and poly(vinyl alcohol) (PVA), increase the ice freezing temperature. This poses the question of how do flexible soluble molecules promote the formation of water crystals, as they do not expose a well-defined surface to ice. Here we use molecular simulations to demonstrate that PVA promotes ice nucleation through a homogeneous mechanism: PVA increases the nucleation rate by destabilizing water in the solution. This work demonstrates a novel paradigm for understanding ice nucleation by soluble molecules and provides a new handle to design additives that promote crystallization.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department of Chemistry, The University of Utah , Salt Lake City, Utah 84112-0580, United States.,Research Institute for Interdisciplinary Science, Okayama University , Okayama 700-8530, Japan
| | - Yuqing Qiu
- Department of Chemistry, The University of Utah , Salt Lake City, Utah 84112-0580, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah , Salt Lake City, Utah 84112-0580, United States
| |
Collapse
|
14
|
Inada T, Koyama T, Tomita H, Fuse T, Kuwabara C, Arakawa K, Fujikawa S. Anti-Ice Nucleating Activity of Surfactants against Silver Iodide in Water-in-Oil Emulsions. J Phys Chem B 2017; 121:6580-6587. [DOI: 10.1021/acs.jpcb.7b02644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takaaki Inada
- National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Toshie Koyama
- National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Hiroyuki Tomita
- National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Takuya Fuse
- Research Laboratories,
DENSO CORPORATION, Minamiyama 500-1,
Komenoki, Nisshin, Aichi 470-0111, Japan
| | - Chikako Kuwabara
- Research
Faculty and Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Keita Arakawa
- Research
Faculty and Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Seizo Fujikawa
- Research
Faculty and Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
15
|
Zhu Z, Xiang J, Wang J, Qiu D. Effect of Polyvinyl Alcohol on Ice Formation in the Presence of a Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:191-196. [PMID: 27990825 DOI: 10.1021/acs.langmuir.6b03374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tuning ice formation is of great importance in biological systems and some technological applications. Many synthetic polymers have been shown to affect ice formation, in particular, polyvinyl alcohol (PVA). However, the experimental observations of the effect of PVA on ice formation are still conflicting. Here, we introduced colloidal silica (CS) as the model liquid/solid interface and studied the effect of PVA on ice formation in detail. The results showed that either PVA or CS promoted ice formation, whereas the mixture of these two (CS-PVA) prevented ice formation (antifreezing). Using quantitative analysis based on classical nucleation theory, we revealed that the main contribution came from the kinetic factor J0 rather than the energy barrier factor Γ. Combined with the PVA adsorption behavior on CS particles, it is strongly suggested that the adsorption of PVA at the interface has significantly reduced ice nucleation, which thus may provide new ideas for developing antifreezing agents.
Collapse
Affiliation(s)
- Zhichao Zhu
- University of Chinese Academy of Sciences , Beijing 100190, China
| | | | - Jianjun Wang
- University of Chinese Academy of Sciences , Beijing 100190, China
| | - Dong Qiu
- University of Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
16
|
Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y, Wang J. Janus effect of antifreeze proteins on ice nucleation. Proc Natl Acad Sci U S A 2016; 113:14739-14744. [PMID: 27930318 PMCID: PMC5187720 DOI: 10.1073/pnas.1614379114] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of ice nucleation at the molecular level remains largely unknown. Nature endows antifreeze proteins (AFPs) with the unique capability of controlling ice formation. However, the effect of AFPs on ice nucleation has been under debate. Here we report the observation of both depression and promotion effects of AFPs on ice nucleation via selectively binding the ice-binding face (IBF) and the non-ice-binding face (NIBF) of AFPs to solid substrates. Freezing temperature and delay time assays show that ice nucleation is depressed with the NIBF exposed to liquid water, whereas ice nucleation is facilitated with the IBF exposed to liquid water. The generality of this Janus effect is verified by investigating three representative AFPs. Molecular dynamics simulation analysis shows that the Janus effect can be established by the distinct structures of the hydration layer around IBF and NIBF. Our work greatly enhances the understanding of the mechanism of AFPs at the molecular level and brings insights to the fundamentals of heterogeneous ice nucleation.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlei Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China;
| | - Ji Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Guosheng Shi
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Xi Yao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China;
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
17
|
Capicciotti C, Mancini RS, Turner TR, Koyama T, Alteen MG, Doshi M, Inada T, Acker JP, Ben RN. O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure-Function Study. ACS OMEGA 2016; 1:656-662. [PMID: 30023486 PMCID: PMC6044640 DOI: 10.1021/acsomega.6b00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 05/19/2023]
Abstract
Low-molecular-weight ice recrystallization inhibitors (IRIs) are ideal cryoprotectants that control the growth of ice and mitigate cell damage during freezing. Herein, we describe a detailed study correlating the ice recrystallization inhibition activity and the cryopreservation ability with the structure of O-aryl-glycosides. Many effective IRIs are efficient cryoadditives for the freezing of red blood cells (RBCs). One effective cryoadditive did not inhibit ice recrystallization but instead inhibited ice nucleation, demonstrating the significance of inhibiting both processes and illustrating the importance of this emerging class of cryoprotectants.
Collapse
Affiliation(s)
- Chantelle
J. Capicciotti
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Ross S. Mancini
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Tracey R. Turner
- Canadian
Blood Services, Centre for Innovation, 8249-114 Street NW, Edmonton, Alberta T6G 2R8, Canada
| | - Toshie Koyama
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Matthew G. Alteen
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Malay Doshi
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Takaaki Inada
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Jason P. Acker
- Canadian
Blood Services, Centre for Innovation, 8249-114 Street NW, Edmonton, Alberta T6G 2R8, Canada
| | - Robert N. Ben
- Department
of Chemistry, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- E-mail: .
Phone: 1-613-562-5800
| |
Collapse
|
18
|
Congdon T, Dean BT, Kasperczak-Wright J, Biggs CI, Notman R, Gibson MI. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers. Biomacromolecules 2015; 16:2820-6. [PMID: 26258729 PMCID: PMC4577968 DOI: 10.1021/acs.biomac.5b00774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/08/2015] [Indexed: 12/13/2022]
Abstract
Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.
Collapse
Affiliation(s)
- Thomas Congdon
- Department of Chemistry, University
of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bethany T. Dean
- Department of Chemistry, University
of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | - Caroline I. Biggs
- Department of Chemistry, University
of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Rebecca Notman
- Department of Chemistry, University
of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry, University
of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Koyama T, Inada T, Kuwabara C, Arakawa K, Fujikawa S. Anti-ice nucleating activity of polyphenol compounds against silver iodide. Cryobiology 2014; 69:223-8. [DOI: 10.1016/j.cryobiol.2014.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
20
|
Harada T, Kajiyama N, Ishizaka K, Toyofuku R, Izumi K, Umemura K, Imai Y, Taniguchi N, Mishima K. Plasmon resonance-enhanced circularly polarized luminescence of self-assembled meso-tetrakis(4-sulfonatophenyl)porphyrin–surfactant complexes in interaction with Ag nanoparticles. Chem Commun (Camb) 2014; 50:11169-72. [DOI: 10.1039/c4cc04477k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The phenomenon can be explained by the plasmon-induced resonant chiral-field enhancement arising from the coupling of optical molecular dipoles with AgNPs.
Collapse
Affiliation(s)
- Takunori Harada
- Department of Chemical Engineering
- Fukuoka University
- Fukuoka 814-0180, Japan
| | - Naoki Kajiyama
- Department of Chemical Engineering
- Fukuoka University
- Fukuoka 814-0180, Japan
| | | | | | | | | | - Yoshitane Imai
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kinki University
- Higashi-Osaka, Japan
| | - Naoya Taniguchi
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kinki University
- Higashi-Osaka, Japan
| | - Kenji Mishima
- Department of Chemical Engineering
- Fukuoka University
- Fukuoka 814-0180, Japan
| |
Collapse
|
21
|
Balcerzak AK, Febbraro M, Ben RN. The importance of hydrophobic moieties in ice recrystallization inhibitors. RSC Adv 2013. [DOI: 10.1039/c3ra23220d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Wilson PW, Haymet ADJ. The Spread of Nucleation Temperatures of a Sample of Supercooled Liquid Is Independent of the Average Nucleation Temperature. J Phys Chem B 2012; 116:13472-5. [DOI: 10.1021/jp308177b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. W. Wilson
- School of Life and Environmental
Sciences, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Japan
| | - A. D. J. Haymet
- Scripps Institution of Oceanography, UC San Diego, San Diego, California 92093-0210, United
States
| |
Collapse
|
23
|
Li K, Xu S, Shi W, He M, Li H, Li S, Zhou X, Wang J, Song Y. Investigating the effects of solid surfaces on ice nucleation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10749-10754. [PMID: 22741592 DOI: 10.1021/la3014915] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding the role played by solid surfaces in ice nucleation is a significant step toward designing anti-icing surfaces. However, the uncontrollable impurities in water and surface heterogeneities remain a great challenge for elucidating the effects of surfaces on ice nucleation. Via a designed process of evaporation, condensation, and subsequent ice formation in a closed cell, we investigate the ice nucleation of ensembles of condensed water microdroplets on flat, solid surfaces with completely different wettabilities. The water microdroplets formed on flat, solid surfaces by an evaporation and condensation process exclude the uncontrollable impurities in water, and the effects of surface heterogeneities can be minimized through studying the freezing of ensembles of separate and independent water microdroplets. It is found that the normalized surface ice nucleation rate on a hydrophilic surface is about 1 order of magnitude lower than that on a hydrophobic surface. This is ascribed to the difference in the viscosity of interfacial water and the surface roughness.
Collapse
Affiliation(s)
- Kaiyong Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inada T, Koyama T, Goto F, Seto T. Inactivation of Ice Nucleating Activity of Silver Iodide by Antifreeze Proteins and Synthetic Polymers. J Phys Chem B 2012; 116:5364-71. [DOI: 10.1021/jp300535z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takaaki Inada
- National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Toshie Koyama
- National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Fumitoshi Goto
- Graduate School of Natural Science
and Technology, Kanazawa University, Kakuma,
Kanazawa 920-1192, Japan
| | - Takafumi Seto
- Graduate School of Natural Science
and Technology, Kanazawa University, Kakuma,
Kanazawa 920-1192, Japan
| |
Collapse
|
25
|
Kuwabara C, Wang D, Kasuga J, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S. Freezing activities of flavonoids in solutions containing different ice nucleators. Cryobiology 2012; 64:279-85. [PMID: 22406212 DOI: 10.1016/j.cryobiol.2012.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many compounds exhibited INA rather than SCA. In mean values, only four compounds exhibited SCAs in the range of 2.4-3.2 °C (no compounds with significant difference at p<0.05), whereas 21 compounds exhibited INAs in the range of 0.1-12.3 °C (eight compounds with significant difference). It was also shown by an emulsion freezing assay that most flavonoid glycosides examined did not affect homogeneous ice nucleation temperatures, except for a few compounds that become ice nucleators in BMQW alone. These results suggest that most flavonoid compounds affect freezing temperatures by interaction with unidentified ice nucleators in BMQW as examined by a droplet freezing assay. The results of our previous and present studies indicate that flavonoid compounds have very complex effects to regulate freezing of water.
Collapse
Affiliation(s)
- Chikako Kuwabara
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|