1
|
Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev 2023; 15:887-906. [PMID: 37974987 PMCID: PMC10643480 DOI: 10.1007/s12551-023-01156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
In nature, carotenoids are present as trans- and cis-isomers. Various physical and chemical factors like light, heat, acids, catalytic agents, and photosensitizers can contribute to the isomerization of carotenoids. Living organisms in the process of evolution have developed different mechanisms of adaptation to light stress, which can also involve isomeric forms of carotenoids. Particularly, light stress conditions can enhance isomerization processes. The purpose of this work is to review the recent studies on cis/trans isomerization of carotenoids as well as the role of carotenoid isomers for the light capture, energy transfer, photoprotection in light-harvesting complexes, and reaction centers of the photosynthetic apparatus of plants and other photosynthetic organisms. The review also presents recent studies of carotenoid isomers for the biomedical aspects, showing cis- and trans-isomers differ in bioavailability, antioxidant activity and biological activity, which can be used for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- T. A. Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - Yuliya L. Vechtomova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - A. V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - A. A. Buglak
- Saint Petersburg State University, 7-9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - M. S. Kritsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| |
Collapse
|
2
|
Zeppilli D, Aldinio-Colbachini A, Ribaudo G, Tubaro C, Dalla Tiezza M, Bortoli M, Zagotto G, Orian L. Antioxidant Chimeric Molecules: Are Chemical Motifs Additive? The Case of a Selenium-Based Ligand. Int J Mol Sci 2023; 24:11797. [PMID: 37511560 PMCID: PMC10380222 DOI: 10.3390/ijms241411797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We set up an in silico experiment and designed a chimeric compound integrating molecular features from different efficient ROS (Reactive Oxygen Species) scavengers, with the purpose of investigating potential relationships between molecular structure and antioxidant activity. Furthermore, a selenium centre was inserted due to its known capacity to reduce hydroperoxides, acting as a molecular mimic of glutathione peroxidase; finally, since this organoselenide is a precursor of a N-heterocyclic carbene ligand, its Au(I) carbene complex was designed and examined. A validated protocol based on DFT (Density Functional Theory) was employed to investigate the radical scavenging activity of available sites on the organoselenide precursor ((SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)), as well as on the organometallic complex ((SMD)-M06-2X/SDD (Au), 6-311+G(d,p)//ZORA-BLYP-D3(BJ)/TZ2P), considering HAT (Hydrogen Atom Transfer) and RAF (Radical Adduct Formation) regarding five different radicals. The results of this case study suggest that the antioxidant potential of chemical motifs should not be considered as an additive property when designing a chimeric compound, but rather that the relevance of a molecular topology is derived from a chemical motif combined with an opportune chemical space of the molecule. Thus, the direct contributions of single functional groups which are generally thought of as antioxidants per se do not guarantee the efficient radical scavenging potential of a molecular species.
Collapse
Affiliation(s)
- Davide Zeppilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Aldinio-Colbachini
- CNRS, Aix Marseille Université, BIP, IMM, IM2B, 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Bortoli
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Gharib SA, Archirel P, Adjei D, Belloni J, Mostafavi M. Unveiling the Intimate Mechanism of the Crocin Antioxidant Properties by Radiolytic Analysis and Molecular Simulations. Antioxidants (Basel) 2023; 12:1202. [PMID: 37371932 DOI: 10.3390/antiox12061202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The successive steps of the oxidation mechanism of crocin, a major compound of saffron, by the free OH• radical are investigated by pulse radiolysis, steady-state (gamma) radiolysis methods, and molecular simulations. The optical absorption properties of the transient species and their reaction rate constants are determined. The absorption spectrum of the oxidized radical of crocin resulting from the H-abstraction presents a maximum of 678 nm and a band of 441 nm, almost as intense as that of crocin. The spectrum of the covalent dimer of this radical contains an intense band at 441 nm and a weaker band at 330 nm. The final oxidized crocin, issued from radical disproportionation, absorbs weaker with a maximum of 330 nm. The molecular simulation results suggest that the OH• radical is electrostatically attracted by the terminal sugar and is scavenged predominantly by the neighbor methyl site of the polyene chain as in a sugar-driven mechanism. Based on detailed experimental and theoretical investigations, the antioxidant properties of crocin are highlighted.
Collapse
Affiliation(s)
- Sarah Al Gharib
- Institut de Chimie Physique, Université Paris-Saclay, UMR8000 CNRS, Rue Michel Magat, F-91405 Orsay, France
| | - Pierre Archirel
- Institut de Chimie Physique, Université Paris-Saclay, UMR8000 CNRS, Rue Michel Magat, F-91405 Orsay, France
| | - Daniel Adjei
- Institut de Chimie Physique, Université Paris-Saclay, UMR8000 CNRS, Rue Michel Magat, F-91405 Orsay, France
| | - Jacqueline Belloni
- Institut de Chimie Physique, Université Paris-Saclay, UMR8000 CNRS, Rue Michel Magat, F-91405 Orsay, France
| | - Mehran Mostafavi
- Institut de Chimie Physique, Université Paris-Saclay, UMR8000 CNRS, Rue Michel Magat, F-91405 Orsay, France
| |
Collapse
|
4
|
Sreenikethanam A, Raj S, J RB, Gugulothu P, Bajhaiya AK. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front Bioeng Biotechnol 2022; 10:836056. [PMID: 35402414 PMCID: PMC8984019 DOI: 10.3389/fbioe.2022.836056] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Microalgae are highly diverse photosynthetic organisms with higher growth rate and simple nutritional requirements. They are evolved with an efficiency to adapt to a wide range of environmental conditions, resulting in a variety of genetic diversity. Algae accounts for nearly half of global photosynthesis, which makes them a crucial player for CO2 sequestration. In addition, they have metabolic capacities to produce novel secondary metabolites of pharmaceutical, nutraceutical and industrial applications. Studies have explored the inherent metabolic capacities of microalgae with altered growth conditions for the production of primary and secondary metabolites. However, the production of the targeted metabolites at higher rates is not guaranteed just with the inherent genetic potentials. The strain improvement using genetic engineering is possible hope to overcome the conventional methods of culture condition improvements for metabolite synthesis. Although the advanced gene editing tools are available, the gene manipulation of microalgae remains relatively unexplored. Among the performed gene manipulations studies, most of them focus on primary metabolites with limited focus on secondary metabolite production. The targeted genes can be overexpressed to enhance the production of the desired metabolite or redesigning them using the synthetic biology. A mutant (KOR1) rich in carotenoid and lipid content was developed in a recent study employing mutational breeding in microalgae (Kato, Commun. Biol, 2021, 4, 450). There are lot of challenges in genetic engineering associated with large algal diversity but the numerous applications of secondary metabolites make this field of research very vital for the biotech industries. This review, summarise all the genetic engineering studies and their significance with respect to secondary metabolite production from microalgae. Further, current genetic engineering strategies, their limitations and future strategies are also discussed.
Collapse
Affiliation(s)
- Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Thirvarur, India
| | | | - Amit K Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| |
Collapse
|
5
|
Parise A, De Simone BC, Marino T, Toscano M, Russo N. Quantum Mechanical Predictions of the Antioxidant Capability of Moracin C Isomers. Front Chem 2021; 9:666647. [PMID: 33968905 PMCID: PMC8097241 DOI: 10.3389/fchem.2021.666647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The antioxidant capability of moracin C and iso-moracin C isomers against the OOH free radical was studied by applying density functional theory (DFT) and choosing the M05-2X exchange-correlation functional coupled with the all electron basis set, 6-311++G(d,p), for computations. Different reaction mechanisms [hydrogen atom transfer (HAT), single electron transfer (SET), and radical adduct formation (RAF)] were taken into account when considering water- and lipid-like environments. Rate constants were obtained by applying the conventional transition state theory (TST). The results show that, in water, scavenging activity mainly occurs through a radical addition mechanism for both isomers, while, in the lipid-like environment, the radical addition process is favored for iso-moracin C, while, redox- and non-redox-type reactions can equally occur for moracin C. The values of pKa relative to the deprotonation paths at physiological pH were predicted in aqueous solution.
Collapse
Affiliation(s)
- Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, France
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| |
Collapse
|
6
|
Yang C, Yan H, Jiang X, Xu H, Tsao R, Zhang L. Preparation of 9 Z-β-Carotene and 9 Z-β-Carotene High-Loaded Nanostructured Lipid Carriers: Characterization and Storage Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13844-13853. [PMID: 33164495 DOI: 10.1021/acs.jafc.0c02342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cis (Z)-β-carotenes with 25.3% 9Z-β-carotene were prepared for nanostructured lipid carriers (NLCs). The optimal conditions for NLC preparation using an orthogonal experimental method were as follows: the total lipid concentration was 9% (w/v), the surfactant concentration was 1.4% (w/v), the solid to liquid lipid ratio was 3:1 (w/w), and the homogenization pressure was set at 500 bar for three cycles. Under these conditions, the encapsulation efficiency (%) of the NLC was 95.64%, and the total β-carotene in NLCs was 2.9 mg/mL, which was significantly higher than those reported by others. The proportion of total Z-β-carotenes was as high as 53.3%, the particle size was 191 ± 6.46 nm, and the polydispersity index was 0.2 ± 0.03. Storage stability results indicated that the β-carotene-loaded NLC stabilizes both 9Z-β-carotene and total β-carotene from leakage and degradation during 21 days of storage at pH 3.5-7.5 at low temperatures (4 °C), especially for the more bioactive 9Z-β-carotene. The technique with an improved ratio of 9Z-β-carotene, loading capacity, water solubility, and bioaccessibility of the β-carotene NLC provides an effective strategy for β-carotene applications in functional foods or beverages and in nutraceutical preparations.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongxiao Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huaneng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Zheng T, Zhou M, Yang L, Wang Y, Wang Y, Meng Y, Liu J, Zuo Z. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110313. [PMID: 32066007 DOI: 10.1016/j.ecoenv.2020.110313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Cyanobacteria always massively grow and even occur blooms in summer, with releasing amount of β-cyclocitral. To uncover the effects of summer high irradiance and temperature on cyanobacterial growth and β-cyclocitral emission, the cell growth, reactive oxygen species (ROS) levels, photosynthetic pigment content, chlorophyll fluorescence and β-cyclocitral emission were investigated in Microcystis aeruginosa under high light and temperature. Compared to the control under 50 μmol m-2·s-1, the cell growth was promoted under 100 μmol m-2·s-1, but inhibited under 500 and 1000 μmol m-2·s-1. The inhibition was also detected under high temperature at 30 and 35 °C in contrast to the control at 25 °C. Under high light and high temperature, M. aeruginosa increased ROS levels and reduced photosynthetic pigment content and photosystem II (PSII) efficiency, which resulted in the inhibition on cell growth. With increasing the light intensity and temperature, 1O2 levels gradually increased, while β-carotene content gradually decreased by quenching 1O2, with increasing β-cyclocitral emission. In summer, high irradiance and temperature not benefited the growth of cyanobacteria, but the emission of β-cyclocitral derived from β-carotene quenching 1O2 may offset the disadvantages by poisoning other algae.
Collapse
Affiliation(s)
- Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yaya Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yiyu Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jialu Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Thallmair S, Vainikka PA, Marrink SJ. Lipid Fingerprints and Cofactor Dynamics of Light-Harvesting Complex II in Different Membranes. Biophys J 2019; 116:1446-1455. [PMID: 30954210 PMCID: PMC6486485 DOI: 10.1016/j.bpj.2019.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 11/29/2022] Open
Abstract
Plant light-harvesting complex II (LHCII) is the key antenna complex for plant photosynthesis. We present coarse-grained molecular dynamics simulations of monomeric and trimeric LHCII in a realistic thylakoid membrane environment based on the Martini force field. The coarse-grained protein model has been optimized with respect to atomistic reference simulations. Our simulations provide detailed insights in the thylakoid lipid fingerprint of LHCII which compares well with experimental data from membrane protein purification. Comparing the monomer and trimeric LHCII reveals a stabilizing effect of trimerization on the chromophores as well as the protein. Moreover, the average chromophore distance shortens in the trimer leading to stronger excitonic couplings. When changing the native thylakoid environment to a model membrane the protein flexibility remains constant, whereas the chromophore flexibility is reduced. Overall, the presented LHCII model lays the foundation to investigate the μs dynamics of this key antenna protein of plants.
Collapse
Affiliation(s)
- Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands.
| | - Petteri A Vainikka
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands; Department of Chemistry, University of Turku, Turku, Finland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Saini DK, Pabbi S, Shukla P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem Toxicol 2018; 120:616-624. [PMID: 30077705 DOI: 10.1016/j.fct.2018.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are the oxygenic photosynthesis performing prokaryotes and show a connecting link between plastids of eukaryotic autotrophs and prokaryotes. A variety of pigments, like chlorophyll, carotenoids and phycobiliproteins which exhibit different colors are present in cyanobacteria. Increasing consciousness about the harmful effects of synthetic or chemical dyes encouraged people to give more preference towards the usage of natural products, such as plant or microbial-derived colors in food and cosmetics. That is why cyanobacteria are exploited as a source of natural colors and have high commercial value in many industries. This review mainly focuses on different cyanobacterial pigments, their applications and modern biotechnological approaches such as genetic engineering, systems biology to enhance the production of biopigments for their potential use in pharmaceuticals, food, research, and cosmetics industries.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
10
|
Hernandez DA, Tenorio FJ. Reactivity indexes of antioxidant molecules from Rosmarinus officinalis. Struct Chem 2017. [DOI: 10.1007/s11224-017-1066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Thakur D, Jain A, Ghoshal G, Shivhare U, Katare O. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality. AAPS PharmSciTech 2017; 18:1447-1459. [PMID: 28550604 DOI: 10.1208/s12249-017-0806-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/08/2017] [Indexed: 01/16/2023] Open
Abstract
β-Carotene, abundant majorly in carrot, pink guava yams, spinach, kale, sweet potato, and palm oil, is an important nutrient for human health due to its scavenging action upon reactive free radicals wherever produced in the body. Inclusion of liposoluble β-carotene in foods and food ingredients is a challenging aspect due to its labile nature and low absorption from natural sources. This fact has led to the application of encapsulation of β-carotene to improve stability and bioavailability. The present work was aimed to fabricate microcapsules (MCs) of β-carotene oily dispersion using the complex coacervation technique with casein (CA) and guar gum (GG) blend. The ratio of CA:GG was found to be 1:0.5 (w/v) when optimized on the basis of zeta potential-yield stress phenomenon. These possessed a higher percentage yield (71.34 ± 0.55%), lower particle size (176.47 ± 4.65 μm), higher encapsulation efficiency (65.95 ± 5.33%), and in general, a uniform surface morphology was observed with particles showing optimized release behavior. Prepared MCs manifested effective and controlled release (up to 98%) following zero-order kinetics which was adequately explained by the Korseymer-Peppas model. The stability of the freeze-dried MCs was established in simulated gastrointestinal fluids (SGF, SIF) for 8 h. Antioxidant activity of the MCs was studied and revealed the retention of the functional architecture of β-carotene in freeze-dried MCs. Minimal photolytic degradation upon encapsulation of β-carotene addressed the challenge regarding photo-stability of β-carotene as confirmed via mass spectroscopy.
Collapse
|
12
|
Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chem 2017; 217:37-44. [DOI: 10.1016/j.foodchem.2016.08.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
|
13
|
Peng C, Svirskis D, Lee SJ, Oey I, Kwak HS, Chen G, Bunt C, Wen J. Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene. Pharm Dev Technol 2017; 23:682-688. [PMID: 28125945 DOI: 10.1080/10837450.2017.1287729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.
Collapse
Affiliation(s)
- Cheng Peng
- a School of Pharmacy, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| | - Darren Svirskis
- a School of Pharmacy, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| | - Sung Je Lee
- b Department of Agricultural Sciences , Lincoln University , Lincoln , New Zealand
| | - Indrawati Oey
- c Institute of Food , Nutrition and Human Health, Massey University , Auckland , New Zealand
| | - Hae-Soo Kwak
- d Department of Food Science , University of Otago , Dunedin , New Zealand
| | - Guanyu Chen
- a School of Pharmacy, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| | - Craig Bunt
- e Department of Food Science and Technology , Sejong University , Seoul , South Korea
| | - Jingyuan Wen
- a School of Pharmacy, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand
| |
Collapse
|
14
|
Misra SK, Mukherjee P, Chang HH, Tiwari S, Gryka M, Bhargava R, Pan D. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy. Sci Rep 2016; 6:29299. [PMID: 27405011 PMCID: PMC4941412 DOI: 10.1038/srep29299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/14/2016] [Indexed: 12/22/2022] Open
Abstract
Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C(3)-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C(3)-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C(3) with phospholipid was used to generate C(3)-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Prabuddha Mukherjee
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huei-Huei Chang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saumya Tiwari
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mark Gryka
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rohit Bhargava
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Cerón-Carrasco JP, Jacquemin D, Laurent AD. First computational step towards the understanding of the antioxidant activity of the Phycocyanobilin:Ferredoxin Oxidoreductase in complex with biliverdin IXα. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Exploiting the cyclodextrins ability for antioxidants encapsulation: A computational approach to carnosol and carnosic acid embedding. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Oliver TAA, Fleming GR. Following Coupled Electronic-Nuclear Motion through Conical Intersections in the Ultrafast Relaxation of β-Apo-8′-carotenal. J Phys Chem B 2015; 119:11428-41. [DOI: 10.1021/acs.jpcb.5b04893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas A. A. Oliver
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Graham R. Fleming
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Agostini-Costa T, Pêssoa G, Silva D, Gomes I, Silva J. Carotenoid composition of berries and leaves from a Cactaceae – Pereskia sp. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Theoretical insights on the antioxidant activity of edaravone free radical scavengers derivatives. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Martínez-González E, Frontana C. Employment of electrodonating capacity as an index of reactive modulation by substituent effects: application for electron-transfer-controlled hydrogen bonding. J Org Chem 2014; 79:1131-7. [PMID: 24428630 DOI: 10.1021/jo402565t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Evaluation of the substituent effect in reaction series is an issue of interest, as it is fundamental for controlling chemical reactivity in molecules. Within the framework of density functional theory, employment of the chemical potential, μ, and the chemical hardness, η, leads to the calculation of properties of common use, such as the electrodonating (ω(-)) and electroaccepting (ω(+)) powers, in many chemical systems. In order to examine the predictive character of the substituent effect by these indexes, a comparison between these and experimental binding constants (Kb) for binding of a series of radical anions from para- and ortho-substituted nitrobenzenes with 1,3-diethylurea in acetonitrile was performed, and fair correlations were obtained; furthermore, this strategy was suitable for all of the studied compounds, even those for which empirical approximations, such as Hammett's model, are not valid. Visual representations of substituent effects are presented by considering the local electrodonating power ω(-)(r).
Collapse
Affiliation(s)
- Eduardo Martínez-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica , Parque Tecnológico Querétaro Sanfandila, 76703 Pedro Escobedo, Querétaro, Mexico
| | | |
Collapse
|
21
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1638-56. [PMID: 24440426 DOI: 10.1016/j.bbamem.2014.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
Abstract
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | | | - Sara Jaramillo
- Laboratory of Phytochemicals and Food Quality, Instituto de la Grasa, CSIC, 41014 Seville, Spain
| | - Lourdes M Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain.
| |
Collapse
|
22
|
Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Mendes-Pinto MM, Galzerano D, Telfer A, Pascal AA, Robert B, Ilioaia C. Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J Biol Chem 2013; 288:18758-65. [PMID: 23720734 DOI: 10.1074/jbc.m112.423681] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets.
Collapse
Affiliation(s)
- Maria M Mendes-Pinto
- Institut de Biologie et de Technologies de Saclay, UMR 8221 CNRS, Université Paris Sud, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
24
|
Hernandez-Marin E, Galano A, Martínez A. Cis Carotenoids: Colorful Molecules and Free Radical Quenchers. J Phys Chem B 2013; 117:4050-61. [DOI: 10.1021/jp401647n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elizabeth Hernandez-Marin
- Instituto de Investigaciones
en Materiales, Universidad Nacional Autónoma de México, Circuito Ext. s/n, Ciudad Universitaria,
P.O. Box 70-360, Coyoacán, 04510 México, D. F. México
| | - Annia Galano
- Departamento de Química,
División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. A.P. 55-534,
09340, México DF, México
| | - Ana Martínez
- Instituto de Investigaciones
en Materiales, Universidad Nacional Autónoma de México, Circuito Ext. s/n, Ciudad Universitaria,
P.O. Box 70-360, Coyoacán, 04510 México, D. F. México
| |
Collapse
|
25
|
Cerezo J, Zúñiga J, Bastida A, Requena A, Pedro Cerón-Carrasco J. Conformational changes of β-carotene and zeaxanthin immersed in a model membrane through atomistic molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:6527-38. [DOI: 10.1039/c3cp43947j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Liu W, Wang Z, Zheng Z, Jiang L, Yang Y, Zhao L, Su W. Density Functional Theoretical Analysis of the Molecular Structural Effects on Raman Spectra ofβ-Carotene and Lycopene. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Durchan M, Tichý J, Litvín R, Šlouf V, Gardian Z, Hříbek P, Vácha F, Polívka T. Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. J Phys Chem B 2012; 116:8880-9. [PMID: 22764831 DOI: 10.1021/jp3042796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromophytes are an important group of microorganisms that contribute significantly to the carbon cycle on Earth. Their photosynthetic capacity depends on efficiency of the light-harvesting system that differs in pigment composition from that of green plants and other groups of algae. Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the main light-harvesting complex of Xanthonema debile, denoted XLH, which contains four carotenoids--diadinoxanthin, heteroxanthin, diatoxanthin, and vaucheriaxanthin--and Chl-a. Overall carotenoid-to-chlorophyll energy transfer efficiency is about 60%, but energy transfer pathways are excitation wavelength dependent. Energy transfer from the carotenoid S(2) state is active after excitation at both 490 nm (maximum of carotenoid absorption) and 510 nm (red edge of carotenoid absorption), but this channel is significantly more efficient after 510 nm excitation. Concerning the energy transfer pathway from the S(1) state, XLH contains two groups of carotenoids: those that have the S(1) route active (~25%) and those having the S(1) pathway silent. For a fraction of carotenoids that transfer energy via the S(1) channel, energy transfer is observed after both excitation wavelengths, though energy transfer times are different, yielding 3.4 ps (490 nm excitation) and 1.5 ps (510 nm excitation). This corresponds to efficiencies of the S(1) channel of ~85% that is rather unusual for a donor-acceptor pair consisting of a noncarbonyl carotenoid and Chl-a. Moreover, major carotenoids in XLH, diadinoxanthin and diatoxanthin, have their S(1) energies in solution lower than the energy of the acceptor state, Q(y) state of Chl-a. Thus, binding of these carotenoids to XLH must tune their S(1) energy to allow for efficient energy transfer. Besides the light-harvesting function, carotenoids in XLH also have photoprotective role; they quench Chl-a triplets via triplet-triplet energy transfer from Chl-a to carotenoid.
Collapse
Affiliation(s)
- Milan Durchan
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|