1
|
Jose C, Singh A, Kalkura KN, Jose GV, Srivastava S, Ammini RK, Yadav S, Ravikrishna R, Andreae MO, Martin ST, Liu P, Gunthe SS. Complex Hygroscopic Behavior of Ambient Aerosol Particles Revealed by a Piezoelectric Technique. ACS EARTH & SPACE CHEMISTRY 2024; 8:983-991. [PMID: 38774361 PMCID: PMC11103707 DOI: 10.1021/acsearthspacechem.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/24/2024]
Abstract
Understanding the complex interactions between atmospheric aerosols and water vapor in subsaturated regions of the atmosphere is crucial for modeling and predicting aerosol-cloud-radiation-climate interactions. However, the microphysical mechanisms of these interactions for ambient aerosols remain poorly understood. For this study, size-resolved samples were collected from a high-altitude, relatively clean site situated in the Western Ghats of India during the monsoon season, in order to study background and preindustrial processes as a baseline for climate functioning within the context of the most polluted region of the world. Measurements of humidity-dependent mass-based growth factors, hygroscopicity, deliquescence behavior, and aerosol liquid water content (ALWC) were made by a novel approach using a quartz crystal microbalance based on a piezo-electric sensor. The climate-relevant fine-mode aerosols (≤2.5 μm) exhibited strong size-dependent variations in their interactions with water vapor and contributed a high fraction of ALWC. Deliquescence occurred for relatively large aerosols (diameter >180 nm) but was absent for smaller aerosols. The deliquescence relative humidity for ambient aerosols was significantly lower than that of pure inorganic salts, suggesting a strong influence of organic species. Our study establishes an improved approach for accurately measuring aerosol water uptake characteristics of ambient aerosols in the subsaturated regime, aiding in the assessment of radiative forcing effects and improving climate models.
Collapse
Affiliation(s)
- Christi Jose
- Environemntal
Engineering Division, Dept of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
| | - Aishwarya Singh
- Environemntal
Engineering Division, Dept of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
| | - Kavyashree N. Kalkura
- Environemntal
Engineering Division, Dept of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
| | - George V. Jose
- Dept
of Civil Engineering, Indian Institute of
Technology Bombay, Mumbai 400076, India
| | - Shailina Srivastava
- Environemntal
Engineering Division, Dept of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
| | | | - Shweta Yadav
- Dept
of Environmental Sciences, Central University
of Jammu, Jammu and Kashmir, Samba 181143, India
| | - Raghunathan Ravikrishna
- Centre
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
- Dept of Chemical
Engineering, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Meinrat O. Andreae
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Geology and Geophysics, King Saud University, Riyadh 11451, Saudi Arabia
| | - Scot T. Martin
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
- John
A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pengfei Liu
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sachin S. Gunthe
- Environemntal
Engineering Division, Dept of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre
for Atmospheric and Climate Sciences, Indian
Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Peng C, Chen L, Tang M. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance. FUNDAMENTAL RESEARCH 2022; 2:578-587. [PMID: 38934008 PMCID: PMC11197750 DOI: 10.1016/j.fmre.2021.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH), the two parameters that regulate phase state and hygroscopicity of substances, play important roles in atmospheric science and many other fields. A large number of experimental studies have measured the DRH and ERH values of compounds with atmospheric relevance, but these values have not yet been summarized in a comprehensive manner. In this work, we develop for the first-of-its-kind a comprehensive database which compiles the DRH and ERH values of 110 compounds (68 inorganics and 42 organics) measured in previous studies, provide the preferred DRH and ERH values at 298 K for these compounds, and discuss the effects of a few key factors (e.g., temperature and particle size) on the measured DRH and ERH values. In addition, we outline future work that will broaden the scope of this database and enhance its accessibility.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Lanxiadi Chen
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Roy P, Liu S, Dutcher CS. Droplet Interfacial Tensions and Phase Transitions Measured in Microfluidic Channels. Annu Rev Phys Chem 2021; 72:73-97. [PMID: 33607917 DOI: 10.1146/annurev-physchem-090419-105522] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measurements of droplet phase and interfacial tension (IFT) are important in the fields of atmospheric aerosols and emulsion science. Bulk macroscale property measurements with similar constituents cannot capture the effect of microscopic length scales and highly curved surfaces on the transport characteristics and heterogeneous chemistry typical in these applications. Instead, microscale droplet measurements ensure properties are measured at the relevant length scale. With recent advances in microfluidics, customized multiphase fluid flows can be created in channels for the manipulation and observation of microscale droplets in an enclosed setting without the need for large and expensive control systems. In this review, we discuss the applications of different physical principles at the microscale and corresponding microfluidic approaches for the measurement of droplet phase state, viscosity, and IFT.
Collapse
Affiliation(s)
- Priyatanu Roy
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA;
| | - Shihao Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA;
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA; .,Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
4
|
Chao HJ, Huang WC, Chen CL, Chou CCK, Hung HM. Water Adsorption vs Phase Transition of Aerosols Monitored by a Quartz Crystal Microbalance. ACS OMEGA 2020; 5:31858-31866. [PMID: 33344839 PMCID: PMC7745410 DOI: 10.1021/acsomega.0c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
A quartz crystal microbalance (QCM) with a high sensitivity of 0.1 ng was applied to monitor the oscillation frequency variation (Δf) of standard single species, two-component systems with typical ambient aerosol compositions, and ambient aerosol filter samples as a function of relative humidity (RH) and determine their deliquescence RH (DRH) and phase transition. Δf is associated with the adsorption or desorption process of water molecules for solid samples and physical properties of the sample film during solid-to-aqueous phase transition (deliquescence). During the pre-deliquescence stage, the water adsorption process led to the increased mass with decreasing Δf, especially for the hydrates such as MgCl2 and Ca(NO3)2, which have more than 20% and 40% increased mass, respectively. The water adsorption process might cause a mass deviation of ambient particulate matter measurement using similar instrument principles. During the deliquescence stage, the observed rapid increasing Δf with RH was caused by a significant change in the physical properties (such as density and viscosity) of the sample film. The determined DRH for a given single-component system is consistent with the results estimated from the thermodynamic models. For a complex system, the QCM can determine the DRH1st well as the eutonic point and track the possible variation of the physical properties of inorganic or with organic acid mixture systems. During the post-deliquescence stage, the gradual increasing trend of Δf with RH for Ca(NO3)2 and an external mixture of NaCl-Ca(NO3)2 was mainly contributed by a stronger RH dependent of physical properties for Ca(NO3)2(aq). Overall, this study provides the possible physical properties variation of common aerosol composition as a function of RH, which was consistent with the results calculated from the thermodynamic models. The stronger water adsorption for MgCl2 and Ca(NO3)2 with solid-like viscosity at RH < DRH might lead to different chemical reactivities in the atmospheric chemistry in addition to the radiative forcing of aerosols caused by the hysteresis.
Collapse
Affiliation(s)
- Hsing-Ju Chao
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Chieh Huang
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Li Chen
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Charles C.-K. Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Ming Hung
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Wu FM, Wang N, Pang SF, Zhang YH. Hygroscopic behavior and fractional crystallization of mixed (NH 4) 2SO 4/glutaric acid aerosols by vacuum FTIR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:255-261. [PMID: 30340205 DOI: 10.1016/j.saa.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The hygroscopicity and phase transition of the mixed aerosol particles are significantly dependent upon relative humidity (RH) and interactions between particle components. Although the efflorescence behavior of particles has been studied widely, the crystallization behavior of each component in the particles is still poorly understood. Here, we study the hygroscopicity and crystallization behaviors of internally mixed ammonium sulfate (AS)/glutaric acid (GA) aerosols by a vacuum FTIR spectrometer coupled with a RH-controlling system. The mixed AS/GA aerosols in two different RH control processes (equilibrium and RH pulsed processes) show the fractional crystallization upon dehydration with AS crystallizing prior to GA in mixed particles with varying organic to inorganic molar ratios (OIRs). The initial efflorescence relative humidity (ERH) of AS decreased from ~43% for pure AS particles to ~41%, ~36% and ~34% for mixed AS/GA particles with OIRs of 2:1, 1:1 and 1:2, respectively. Compared to the ERH of 35% for pure GA, the initial ERHs of GA in mixed AS/GA particles were determined to be 31%, 30% and 28% for OIRs of 2:1, 1:1 and 1:2, respectively, indicating that the presence of AS decreased the crystallization RH of GA instead of inducing the heterogeneous nucleation of GA. When the AS fractions first crystallized at around 36% RH in the 1:1 mixed particles, GA remained noncrystalline until 30% RH. For the first time, the crystallization ratios of AS and GA are obtained for the internally mixed particles during the rapid downward RH pulsed process. The crystallization ratio of AS can reach around 100% at around 24% RH for both pure AS and the 1:1 mixed particles, consistent with the equilibrium RH process. It is clear that the RH downward rate did not influence efflorescence behavior of AS in pure AS and AS in mixed particles. In contrast, the crystallization ratio of GA can reach about 90% at 15.4% RH for pure GA particles in excellent agreement with the equilibrium RH process, whereas it is only up to 50% at 16.0% RH in the 1:1 mixed particles during the rapid downward pulsed process lower than that of the equilibrium RH process. Our results reveal that the rapid RH downward rate could inhibit the efflorescence of GA in the mixed droplets.
Collapse
Affiliation(s)
- Feng-Min Wu
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Na Wang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yun-Hong Zhang
- The Institute of Chemical Physics, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
6
|
Zielinski AT, Gallimore PJ, Griffiths PT, Jones RL, Seshia AA, Kalberer M. Measuring Aerosol Phase Changes and Hygroscopicity with a Microresonator Mass Sensor. Anal Chem 2018; 90:9716-9724. [PMID: 29969232 DOI: 10.1021/acs.analchem.8b00114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between atmospheric aerosol particles and water vapor influences aerosol size, phase, and composition, parameters which critically influence their impacts in the atmosphere. Methods to accurately measure aerosol water uptake for a wide range of particle types are therefore merited. We present here a new method for characterizing aerosol hygroscopicity, an impaction stage containing a microelectromechanical systems (MEMS) microresonator. We find that deliquescence and efflorescence relative humidities (RHs) of sodium chloride and ammonium sulfate are easily diagnosed via changes in resonant frequency and peak sharpness. These agree well with literature values and thermodynamic models. Furthermore, we demonstrate that, unlike other resonator-based techniques, full hygroscopic growth curves can be derived, including for an inorganic-organic mixture (sodium chloride and malonic acid) which remains liquid at all RHs. The response of the microresonator frequency to temperature and particle mechanical properties and the resulting limitations when measuring hygroscopicity are discussed. MEMS resonators show great potential as miniaturized ambient aerosol mass monitors, and future work will consider the applicability of our approach to complex ambient samples. The technique also offers an alternative to established methods for accurate thermodynamic measurements in the laboratory.
Collapse
Affiliation(s)
- Arthur T Zielinski
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Peter J Gallimore
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Paul T Griffiths
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.,National Centre for Atmospheric Science, NCAS , Cambridge CB2 1EW , United Kingdom
| | - Roderic L Jones
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Ashwin A Seshia
- The Nanoscience Centre, Department of Engineering , University of Cambridge , Cambridge CB3 0FF , United Kingdom
| | - Markus Kalberer
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
7
|
Navea JG, Richmond E, Stortini T, Greenspan J. Water Adsorption Isotherms on Fly Ash from Several Sources. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10161-10171. [PMID: 28882043 DOI: 10.1021/acs.langmuir.7b02028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al2O3·2SiO2), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.
Collapse
Affiliation(s)
- Juan G Navea
- Chemistry Department, Skidmore College , Saratoga Springs, New York 12866-1632, United States
| | - Emily Richmond
- Chemistry Department, Skidmore College , Saratoga Springs, New York 12866-1632, United States
| | - Talia Stortini
- Chemistry Department, Skidmore College , Saratoga Springs, New York 12866-1632, United States
| | - Jillian Greenspan
- Chemistry Department, Skidmore College , Saratoga Springs, New York 12866-1632, United States
| |
Collapse
|
8
|
Tang M, Cziczo DJ, Grassian VH. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chem Rev 2016; 116:4205-59. [DOI: 10.1021/acs.chemrev.5b00529] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjin Tang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel J. Cziczo
- Department
of Earth, Atmospheric and Planetary Sciences and Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Departments
of Chemistry and Biochemistry, Nanoengineering and Scripps Institution
of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Liu LS, Kim JM, Kim WS. Simple and Reliable Quartz Crystal Microbalance Technique for Determination of Solubility by Cooling and Heating Solution. Anal Chem 2015; 87:3329-35. [DOI: 10.1021/ac504492g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Li-Shang Liu
- Department
of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Jong-Min Kim
- Department
of Chemical Engineering, Dong-A University, Hadan 840, Saha, Busan 604-741, South Korea
| | - Woo-Sik Kim
- Department
of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
10
|
Schindelholz E, Tsui LK, Kelly RG. Hygroscopic Particle Behavior Studied by Interdigitated Array Microelectrode Impedance Sensors. J Phys Chem A 2013; 118:167-77. [DOI: 10.1021/jp4098149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric Schindelholz
- University of Virginia, 395 McCormick Road, P.O. Box 400745, Charlottesville, Virginia 22904, United States
| | - Lok-kun Tsui
- University of Virginia, 395 McCormick Road, P.O. Box 400745, Charlottesville, Virginia 22904, United States
| | - Robert G. Kelly
- University of Virginia, 395 McCormick Road, P.O. Box 400745, Charlottesville, Virginia 22904, United States
| |
Collapse
|
11
|
Beyer KD, Pearson CS, Henningfield DS. Solid/Liquid Phase Diagram of the Ammonium Sulfate/Glutaric Acid/Water System. J Phys Chem A 2013; 117:3630-41. [DOI: 10.1021/jp401648y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Keith D. Beyer
- Department
of Chemistry, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, United
States
| | - Christian S. Pearson
- Department
of Chemistry, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, United
States
| | - Drew S. Henningfield
- Department
of Chemistry, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, United
States
| |
Collapse
|