1
|
Cherepanov D, Aybush A, Johnson TW, Shelaev I, Gostev F, Mamedov M, Nadtochenko V, Semenov A. Inverted region in the reaction of the quinone reduction in the A 1-site of photosystem I from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 159:115-131. [PMID: 37093503 DOI: 10.1007/s11120-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.
Collapse
Affiliation(s)
- Dmitry Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - T Wade Johnson
- Department of Chemistry, Susquehanna University, 514 University Ave., Selinsgrove, PA, 17870, USA
| | - Ivan Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992
| | - Victor Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russia, 119991
| | - Alexey Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| |
Collapse
|
2
|
Haxhija J, Guischard F, Koslowski T. A trick of the tail: computing the entropic contribution to the energetics of quinone-protein unbindung. Phys Chem Chem Phys 2023; 25:27498-27505. [PMID: 37800323 DOI: 10.1039/d3cp03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
We estimate the entropic contributions to the free energy of quinone unbinding in bacterial and mitochondrial respiratory chains using molecular dynamics (MD) and Monte Carlo (MC) computer simulations. For a varying length of the isoprenoid side chain, MD simulations in lipid bilayers and in unpolar solvents are used to assess the dihedral angle distributions along the chain. These form the basis of a MC estimate of the number of molecular structures that do not exhibit steric self-overlap and that are confined to the bilayer. We obtain an entropy drive of TΔS = 1.4 kcal mol-1 for each isoprene unit, which in sum is comparable to the redox potential differences involved in respiratory chain electron transfer. We postulate an entropy-driven zipper for quinone unbinding and discuss it in the context of the bioenergetics and the structure of complex I, and we indicate possible consequences of our findings for MD-based free energy computations.
Collapse
Affiliation(s)
- Jetmir Haxhija
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| | - Felix Guischard
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| | - Thorsten Koslowski
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
de Souza AS, Ribeiro RCB, Costa DCS, Pauli FP, Pinho DR, de Moraes MG, da Silva FDC, Forezi LDSM, Ferreira VF. Menadione: a platform and a target to valuable compounds synthesis. Beilstein J Org Chem 2022; 18:381-419. [PMID: 35529893 PMCID: PMC9039524 DOI: 10.3762/bjoc.18.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 01/26/2023] Open
Abstract
Naphthoquinones are important natural or synthetic compounds belonging to the general class of quinones. Many compounds in this class have become drugs that are on the pharmaceutical market for the treatment of various diseases. A special naphthoquinone derivative is menadione, a synthetic naphthoquinone belonging to the vitamin K group. This compound can be synthesized by different methods and it has a broad range of biological and synthetic applications, which will be highlighted in this review.
Collapse
Affiliation(s)
- Acácio S de Souza
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Dora C S Costa
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - David R Pinho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| |
Collapse
|
4
|
Sakaya A, Durantini AM, Gidi Y, Šverko T, Wieczny V, McCain J, Cosa G. Fluorescence-Amplified Detection of Redox Turnovers in Supported Lipid Bilayers Illuminates Redox Processes of α-Tocopherol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13872-13882. [PMID: 35266688 DOI: 10.1021/acsami.1c23931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.
Collapse
Affiliation(s)
- Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Andrés M Durantini
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Tara Šverko
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Vincent Wieczny
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| |
Collapse
|
5
|
Agarwala N, Rohani L, Hastings G. Experimental and calculated infrared spectra of disubstituted naphthoquinones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120674. [PMID: 34894562 DOI: 10.1016/j.saa.2021.120674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
In recent years there has been interest in incorporating substituted 1,4-naphthoquinones (NQs) into the A1 binding site in photosystem I (PSI) photosynthetic protein complexes. This interest in part stems from the considerably altered bioenergetics of electron transfer that occur in PSI with such substitutions. Time resolved FTIR studies of PSI complexes with disubstituted NQs incorporated have and currently are being undertaken, and with this in mind it is worth considering FTIR absorption spectra of these disubstituted NQs in solution. Here we present FTIR absorbance spectra for 2-bromo-3-methyl-1,4-naphthoquinone (BrMeNQ), 2-chloromethyl-3-methyl-1,4-naphthoquinone (CMMeNQ) and 2-ethylthio-3-methyl-1,4-naphthoquinone (ETMeNQ) in tetrahydrofuran (THF). The FTIR spectra of these di-substituted naphthoquinones (NQs) were compared to FTIR spectra of 2-methyl-3-phytyl-1,4-naphthoquinone [phylloquinone (PhQ)], 2,3-dimethyl-1,4-naphthoquinone (DMNQ), and 2-methyl-1,4-naphthoquinone (2MNQ). To aid in the assignment of bands in the experimental spectra, density functional theory (DFT) based vibrational frequency calculations for all the substituted NQs in solution were undertaken. The calculated and experimental spectra agree well. By calculating normal mode potential energy distributions, unambiguous quantitative band assignments were made. The calculated and experimental spectra together make predictions about what may be observable in time resolved FTIR difference spectra obtained using PSI with the different NQs incorporated. Time resolved FTIR difference spectra are presented that support these predictions.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Venil CK, Velmurugan P, Dufossé L, Renuka Devi P, Veera Ravi A. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. J Fungi (Basel) 2020; 6:E68. [PMID: 32443916 PMCID: PMC7344934 DOI: 10.3390/jof6020068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches.
Collapse
Affiliation(s)
| | - Palanivel Velmurugan
- Department of Biotechnology, Alagappa University – Science Campus, Karaikudi 630003, Tamil Nadu, India; (P.V.); (A.V.R.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, Indian Ocean, France
| | - Ponnuswamy Renuka Devi
- Department of Biotechnology, Anna University, Regional Campus – Coimbatore, Coimbatore 641046, Tamil Nadu, India;
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University – Science Campus, Karaikudi 630003, Tamil Nadu, India; (P.V.); (A.V.R.)
| |
Collapse
|
7
|
Córdova-Rivas S, Araujo-Huitrado JG, Rivera-Avalos E, Escalante-García IL, Durón-Torres SM, López-Hernández Y, Hernández-López H, López L, de Loera D, López JA. Differential Proliferation Effect of the Newly Synthesized Valine, Tyrosine and Tryptophan-Naphthoquinones in Immortal and Tumorigenic Cervical Cell Lines. Molecules 2020; 25:molecules25092058. [PMID: 32354078 PMCID: PMC7248809 DOI: 10.3390/molecules25092058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
We previously showed that microwave assisted synthesis is the best method for the synthesis of naphthoquinone amino acid and chloride-naphthoquinone amino acid derivatives by a complete evaluation of reaction conditions such as stoichiometry, bases, and pH influence. Following the same strategy, we synthesized chloride and non-chloride tyrosine, valine, and tryptophan-naphthoquinones achieving 85–95%, 80–92%, and 91–95% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone amino acid derivatives mainly display one redox reaction process. Overall, chloride naphthoquinone amino acid derivatives exhibited redox potential values (E1/2) more positive than non-chloride compounds. The six newly synthesized compounds were tested in HPV positive and negative as well as in immortal and tumorigenic cell lines to observe the effects in different cellular context simulating precancerous and cancerous status. A dose-response was achieved to determine the IC50 of six newly synthesized compounds in SiHa (Tumorigenic and HPV16 positive), CaLo (Tumorigenic and HPV18 positive), C33-A (Tumorigenic and HPV negative) and HaCaT (Keratinocytes immortal HPV negative) cell lines. Non-chloride tryptophan-naphthoquinone (3c) and chloride tyrosine-naphthoquine (4a) effects were more potent in tumorigenic SiHa, CaLo, and C33-A cells with respect to non-tumorigenic HaCaT cells. Interestingly, there seems to be a differential effect in non-chloride and chloride naphthoquinone amino acid derivatives in tumorigenic versus non tumorigenic cells. Considering all naphthoquinone amino acid derivatives that our group synthesized, it seems that hydrophobic and aromatic amino acids have the greatest effect on cell proliferation inhibition. These results show promising compounds for cervical cancer treatment.
Collapse
Affiliation(s)
- Sergio Córdova-Rivas
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Jorge Gustavo Araujo-Huitrado
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Ernesto Rivera-Avalos
- School of Chemistry, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Sergio M. Durón-Torres
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Yamilé López-Hernández
- CONACYT, Laboratorio de Metabolómica y Proteómica, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Lluvia López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78377, Mexico
| | - Denisse de Loera
- School of Chemistry, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Correspondence: (D.d.L.); (J.A.L.); Tel.: +52-444-826-2300 x6415 (D.d.L.); +52-492-149-2648 (J.A.L.)
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
- Correspondence: (D.d.L.); (J.A.L.); Tel.: +52-444-826-2300 x6415 (D.d.L.); +52-492-149-2648 (J.A.L.)
| |
Collapse
|
8
|
Zuleta EC, Goenaga GA, Zawodzinski TA, Elder T, Bozell JJ. Deactivation of Co-Schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02040c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Those features which enhance the reactivity of Co-Schiff base oxidation catalysts can also contribute to their demise.
Collapse
Affiliation(s)
- Ernesto C. Zuleta
- Center for Renewable Carbon
- University of Tennessee
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| | - Gabriel A. Goenaga
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| | - Thomas A. Zawodzinski
- Bredesen Center for Interdisciplinary Research and Education
- Knoxville
- USA
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
| | | | - Joseph J. Bozell
- Center for Renewable Carbon
- University of Tennessee
- Knoxville
- USA
- Bredesen Center for Interdisciplinary Research and Education
| |
Collapse
|
9
|
Synthesis of Amino Acid-Naphthoquinones and In Vitro Studies on Cervical and Breast Cell Lines. Molecules 2019; 24:molecules24234285. [PMID: 31775253 PMCID: PMC6930466 DOI: 10.3390/molecules24234285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
We performed an extensive analysis about the reaction conditions of the 1,4-Michael addition of amino acids to 1,4-naphthoquinone and substitution to 2,3-dichloronaphthoquinone, and a complete evaluation of stoichiometry, use of different bases, and the pH influence was performed. We were able to show that microwave-assisted synthesis is the best method for the synthesis of naphthoquinone–amino acid and chloride–naphthoquinone–amino acid derivatives with 79–91% and 78–91% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone–amino acid derivatives mainly display one quasi-reversible redox reaction process. Interestingly, it was shown that naphthoquinone derivatives possess a selective antitumorigenic activity against cervix cancer cell lines and chloride–naphthoquinone–amino acid derivatives against breast cancer cell lines. Furthermore, the newly synthetized compounds with asparagine–naphthoquinones (3e and 4e) inhibited ~85% of SiHa cell proliferation. These results show promising compounds for specific cervical and breast cancer treatment.
Collapse
|
10
|
Calculated vibrational properties of semiquinones in the A1 binding site in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:699-707. [DOI: 10.1016/j.bbabio.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
|
11
|
Chumillas S, Palomäki T, Zhang M, Laurila T, Climent V, Feliu JM. Analysis of catechol, 4-methylcatechol and dopamine electrochemical reactions on different substrate materials and pH conditions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, Silva FCDA, Rozental S, Ferreira VF. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018; 90:1187-1214. [PMID: 29873671 DOI: 10.1590/0001-3765201820170815] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Naphthoquinones are the most commonly occurring type of quinones in nature. They are a diverse family of secondary metabolites that occur naturally in plants, lichens and various microorganisms. This subgroup is constantly being expanded through the discovery of new natural products and by the synthesis of new compounds via innovative techniques. Interest in quinones and the search for new biological activities within the members of this class have intensified in recent years, as evidenced by the evaluation of the potential antimicrobial activities of quinones. Among fungi of medical interest, yeasts of the genus Candida are of extreme importance due to their high frequency of colonization and infection in humans. The objective of this review is to describe the development of naphthoquinones as antifungals for the treatment of Candida species and to note the most promising compounds. By using certain criteria for selection of publications, 68 reports involving both synthetic and natural naphthoquinones are discussed. The activities of a large number of substances were evaluated against Candida albicans as well as against 7 other species of the genus Candida. The results discussed in this review allowed the identification of 30 naphthoquinones with higher antifungal activities than those of the currently used drugs.
Collapse
Affiliation(s)
- Débora O Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Caroline D Nicoletti
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luana P Borba-Santos
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C DA Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Sonia Rozental
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
13
|
Potential cytotoxic and selective effect of new benzo[b]xanthenes against oral squamous cell carcinoma. Future Med Chem 2018; 10:1141-1157. [DOI: 10.4155/fmc-2017-0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The current work shows a new synthetic methodology to obtain 21 naphthoquinones that have been evaluated against oral cavity cancer. The compounds were obtained by a three-component reaction involving lawsone, dimedone and aromatic aldehydes catalyzed by lithium chloride under microwave irradiation to produce families of 1,4- and 1,2-naphthoquinones. Results: A clonogenic assay was performed on SCC9 cell line cultures with all compounds, revealing five very active compounds. In the 3,4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide cell viability assay using three different cell lines (SCC9, SCC4 and SCC25), 8c had an average IC50 of approximately 1.45 μM capable of reducing tumor cell viability, approximately 90-times higher than carboplatin.Conclusion: Therefore, the xanthene-naphthoquinone derivatives show promising bioactivity for oral cavity cancer treatment.
Collapse
|
14
|
FUTURO DÉBORAO, FERREIRA PATRICIAG, NICOLETTI CAROLINED, BORBA-SANTOS LUANAP, SILVA FERNANDOCDA, ROZENTAL SONIA, FERREIRA VITORFRANCISCO. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018. [DOI: 10.1590/0001-3765201820170815 pmid: 29873671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
15
|
Dual Modes and Dual Emissions of an Amino-Naphthoquinone Derivative. J Fluoresc 2017; 27:1923-1928. [DOI: 10.1007/s10895-017-2130-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/13/2017] [Indexed: 11/26/2022]
|
16
|
Tse ECM, Barile CJ, Li Y, Zimmerman SC, Hosseini A, Gewirth AA. Proton transfer dynamics dictate quinone speciation at lipid-modified electrodes. Phys Chem Chem Phys 2017; 19:7086-7093. [PMID: 28225090 DOI: 10.1039/c6cp07586j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous in biochemistry and alternative energy schemes. Natural enzymes utilize quinones in proton transfer chains and energy conversion processes. Here, we utilize a bio-inspired hybrid bilayer membrane system to control the reaction mechanism of a quinone molecule covalently bound to an electrode surface. In particular, by impeding proton access to the quinone moiety, we change the reaction pathway from a PCET process to a pure electron transfer step. We further alter the reaction pathway to a stepwise PCET process by controlling the proton flux through the use of an alkyl proton carrier incorporated in the lipid membrane. By modulating proton availability, we control the quinone reaction pathway without changing the molecular structure of the redox species. This work provides unique insight into PCET reactions and a novel electrochemical platform for interrogating them.
Collapse
Affiliation(s)
- Edmund C M Tse
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Christopher J Barile
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Ying Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Ali Hosseini
- Manufacturing Systems Ltd, Auckland 0632, New Zealand
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. and International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Ding Y, Li Y, Yu G. Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study. Chem 2016. [DOI: 10.1016/j.chempr.2016.09.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Elling FJ, Becker KW, Könneke M, Schröder JM, Kellermann MY, Thomm M, Hinrichs KU. Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environ Microbiol 2015; 18:692-707. [PMID: 26472620 DOI: 10.1111/1462-2920.13086] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/28/2015] [Accepted: 10/10/2015] [Indexed: 11/30/2022]
Abstract
The distribution of respiratory quinone electron carriers among cultivated organisms provides clues on both the taxonomy of their producers and the redox processes these are mediating. Our study of the quinone inventories of 25 archaeal species belonging to the phyla Eury-, Cren- and Thaumarchaeota facilitates their use as chemotaxonomic markers for ecologically important archaeal clades. Saturated and monounsaturated menaquinones with six isoprenoid units forming the alkyl chain may serve as chemotaxonomic markers for Thaumarchaeota. Other diagnostic biomarkers are thiophene-bearing quinones for Sulfolobales and methanophenazines as functional quinone analogues of the Methanosarcinales. The ubiquity of saturated menaquinones in the Archaea in comparison to Bacteria suggests that these compounds may represent an ancestral and diagnostic feature of the Archaea. Overlap between quinone compositions of distinct thermophilic and halophilic archaea and bacteria may indicate lateral gene transfer. The biomarker potential of thaumarchaeal quinones was exemplarily demonstrated on a water column profile of the Black Sea. Both, thaumarchaeal quinones and membrane lipids showed similar distributions with maxima at the chemocline. Quinone distributions indicate that Thaumarchaeota dominate respiratory activity at a narrow interval in the chemocline, while they contribute only 9% to the microbial biomass at this depth, as determined by membrane lipid analysis.
Collapse
Affiliation(s)
- Felix J Elling
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Kevin W Becker
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Martin Könneke
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Jan M Schröder
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Matthias Y Kellermann
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, 93053, Regensburg, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
19
|
Evidence that histidine forms a coordination bond to the A0A and A0B chlorophylls and a second H-bond to the A1A and A1B phylloquinones in M688HPsaA and M668HPsaB variants of Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1362-75. [DOI: 10.1016/j.bbabio.2014.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/21/2022]
|
20
|
Ashizawa R, Noguchi T. Effects of hydrogen bonding interactions on the redox potential and molecular vibrations of plastoquinone as studied using density functional theory calculations. Phys Chem Chem Phys 2014; 16:11864-76. [DOI: 10.1039/c3cp54742f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|