1
|
Ben‐Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, Mileo E, Su X, Goldfarb D. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. Protein Sci 2024; 33:e4903. [PMID: 38358137 PMCID: PMC10868451 DOI: 10.1002/pro.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Collapse
Affiliation(s)
- Yasmin Ben‐Ishay
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Barak
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Akiva Feintuch
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Olivier Ouari
- CNRS, ICR, Institut de Chimie RadicalaireAix‐Marseille UniversitéMarseilleFrance
| | - Annalisa Pierro
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
- Present address:
Konstanz Research School Chemical Biology, Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Elisabetta Mileo
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento‐organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of Chemistry, Nankai UniversityTianjinChina
| | - Daniella Goldfarb
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
2
|
Gerbaud G, Barbat B, Tribout M, Etienne E, Belle V, Douzi B, Voulhoux R, Bonucci A. Refining the Dynamic Network of T2SS Endopilus Tip Heterocomplex Combining cw-EPR and Nitroxide-Gd III Distance Measurements. Chembiochem 2023; 24:e202300099. [PMID: 36999435 DOI: 10.1002/cbic.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.
Collapse
Affiliation(s)
- Guillaume Gerbaud
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Brice Barbat
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Mathilde Tribout
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Emilien Etienne
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Valérie Belle
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Badreddine Douzi
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
- Present address: INRAE, DynAMic, Université de Lorraine, 54000, Nancy, France
| | - Romé Voulhoux
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Alessio Bonucci
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| |
Collapse
|
3
|
Ketter S, Joseph B. Gd 3+-Trityl-Nitroxide Triple Labeling and Distance Measurements in the Heterooligomeric Cobalamin Transport Complex in the Native Lipid Bilayers. J Am Chem Soc 2023; 145:960-966. [PMID: 36599418 PMCID: PMC9853854 DOI: 10.1021/jacs.2c10080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 01/06/2023]
Abstract
Increased efforts are being made for observing proteins in their native environments. Pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) is a powerful tool for this purpose. Conventionally, PELDOR employs an identical spin pair, which limits the output to a single distance for monomeric samples. Here, we show that the Gd3+-trityl-nitroxide (NO) three-spin system is a versatile tool to study heterooligomeric membrane protein complexes, even within their native membrane. This allowed for an independent determination of four different distances (Gd3+-trityl, Gd3+-NO, trityl-NO, and Gd3+-Gd3+) within the same sample. We demonstrate the feasibility of this approach by observing sequential ligand binding and the dynamics of complex formation in the cobalamin transport system involving four components (cobalamin, BtuB, TonB, and BtuF). Our results reveal that TonB binding alone is sufficient to release cobalamin from BtuB in the native asymmetric bilayers. This approach provides a potential tool for the structural and quantitative analysis of dynamic protein-protein interactions in oligomeric complexes, even within their native surroundings.
Collapse
Affiliation(s)
- Sophie Ketter
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| | - Benesh Joseph
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| |
Collapse
|
4
|
Seal M, Feintuch A, Goldfarb D. The effect of spin-lattice relaxation on DEER background decay. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107327. [PMID: 36410061 DOI: 10.1016/j.jmr.2022.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The common approach to background removal in double electron-electron resonance (DEER) measurements on frozen solutions with a three-dimensional homogeneous distribution of doubly labeled biomolecules is to fit the background to an exponential decay function. Excluded volume effects or distribution in a dimension lower than three, such as proteins in a membrane, can lead to a stretched exponential decay. In this work, we show that in cases of spin labels with short spin-lattice relaxation time, up to an order of magnitude longer than the DEER trace length, relevant for metal-based spin labels, spin flips that take place during the DEER evolution time affect the background decay shape. This was demonstrated using a series of temperature-dependent DEER measurements on frozen solutions of a nitroxide radical, a Gd(III) complex, Cu(II) ions, and a bis-Gd(III) model complex. As expected, the background decay was exponential for the nitroxide, whereas deviations were noted for Gd(III) and Cu(II). Based on the theoretical approach of Keller et al. (Phys. Chem. Chem. Phys. 21 (2019) 8228-8245), which addresses the effect of spin-lattice relaxation-induced spin flips during the evolution time, we show that the background decay can be fitted to an exponent including a linear and quadratic term in t, which is the position of the pump pulse. Analysis of the data in terms of the probability of spontaneous spin flips induced by spin-lattice relaxation showed that this approach worked well for the high temperature range studied for Gd(III) and Cu(II). At the low temperature range, the spin flips that occured during the DEER evolution time for Gd(III) exceeded the measured spin-lattice relaxation rate and include contributions from spin flips due to another mechanisms, most likely nuclear spin diffusion.
Collapse
Affiliation(s)
- Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
5
|
Scherer A, Yao X, Qi M, Wiedmaier M, Godt A, Drescher M. Increasing the Modulation Depth of Gd III-Based Pulsed Dipolar EPR Spectroscopy (PDS) with Porphyrin-Gd III Laser-Induced Magnetic Dipole Spectroscopy. J Phys Chem Lett 2022; 13:10958-10964. [PMID: 36399541 PMCID: PMC9720741 DOI: 10.1021/acs.jpclett.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Distance determination with pulsed EPR has become an important technique for the structural investigation of biomacromolecules, with double electron-electron resonance spectroscopy (DEER) as the most important method. GdIII-based spin labels are one of the most frequently used spin labels for DEER owing to their stability against reduction, high magnetic moment, and absence of orientation selection. A disadvantage of GdIII-GdIII DEER is the low modulation depth due to the broad EPR spectrum of GdIII. Here, we introduce laser-induced magnetic dipole spectroscopy (LaserIMD) with a spin pair consisting of GdIII(PymiMTA) and a photoexcited porphyrin as an alternative technique. We show that the excited state of the porphyrin is not disturbed by the presence of the GdIII complex and that herewith modulation depths of almost 40% are possible. This is significantly higher than the value of 7.2% that was achieved with GdIII-GdIII DEER.
Collapse
Affiliation(s)
- Andreas Scherer
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Xuemei Yao
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Max Wiedmaier
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Adelheid Godt
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Mekkattu Tharayil S, Mahawaththa MC, Feintuch A, Maleckis A, Ullrich S, Morewood R, Maxwell MJ, Huber T, Nitsche C, Goldfarb D, Otting G. Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:169-182. [PMID: 37904871 PMCID: PMC10539774 DOI: 10.5194/mr-3-169-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2023]
Abstract
The paramagnetism of a lanthanoid tag site-specifically installed on a protein provides a rich source of structural information accessible by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. Here we report a lanthanoid tag for selective reaction with cysteine or selenocysteine with formation of a (seleno)thioether bond and a short tether between the lanthanoid ion and the protein backbone. The tag is assembled on the protein in three steps, comprising (i) reaction with 4-fluoro-2,6-dicyanopyridine (FDCP); (ii) reaction of the cyano groups with α -cysteine, penicillamine or β -cysteine to complete the lanthanoid chelating moiety; and (iii) titration with a lanthanoid ion. FDCP reacts much faster with selenocysteine than cysteine, opening a route for selective tagging in the presence of solvent-exposed cysteine residues. Loaded with Tb 3 + and Tm 3 + ions, pseudocontact shifts were observed in protein NMR spectra, confirming that the tag delivers good immobilisation of the lanthanoid ion relative to the protein, which was also manifested in residual dipolar couplings. Completion of the tag with different 1,2-aminothiol compounds resulted in different magnetic susceptibility tensors. In addition, the tag proved suitable for measuring distance distributions in double electron-electron resonance experiments after titration with Gd 3 + ions.
Collapse
Affiliation(s)
| | - Mithun C. Mahawaththa
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael J. Maxwell
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Keeley J, Choudhury T, Galazzo L, Bordignon E, Feintuch A, Goldfarb D, Russell H, Taylor MJ, Lovett JE, Eggeling A, Fábregas Ibáñez L, Keller K, Yulikov M, Jeschke G, Kuprov I. Neural networks in pulsed dipolar spectroscopy: A practical guide. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107186. [PMID: 35344921 DOI: 10.1016/j.jmr.2022.107186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
This is a methodological guide to the use of deep neural networks in the processing of pulsed dipolar spectroscopy (PDS) data encountered in structural biology, organic photovoltaics, photosynthesis research, and other domains featuring long-lived radical pairs and paramagnetic metal ions. PDS uses distance dependence of magnetic dipolar interactions; measuring a single well-defined distance is straightforward, but extracting distance distributions is a hard and mathematically ill-posed problem requiring careful regularisation and background fitting. Neural networks do this exceptionally well, but their "robust black box" reputation hides the complexity of their design and training - particularly when the training dataset is effectively infinite. The objective of this paper is to give insight into training against simulated databases, to discuss network architecture choices, to describe options for handling DEER (double electron-electron resonance) and RIDME (relaxation-induced dipolar modulation enhancement) experiments, and to provide a practical data processing flowchart.
Collapse
Affiliation(s)
- Jake Keeley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tajwar Choudhury
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hannah Russell
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Michael J Taylor
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Andrea Eggeling
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Katharina Keller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
8
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
9
|
Timofeev IO, Politanskaya LV, Tretyakov EV, Polienko YF, Tormyshev VM, Bagryanskaya E, Krumkacheva OA, Fedin MV. Fullerene-based triplet spin labels: methodology aspects for pulsed dipolar EPR spectroscopy. Phys Chem Chem Phys 2022; 24:4475-4484. [DOI: 10.1039/d1cp05545c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for Pulsed Dipolar Electron Paramagnetic Resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown...
Collapse
|
10
|
Meichsner SL, Kutin Y, Kasanmascheff M. In‐Cell Characterization of the Stable Tyrosyl Radical in
E. coli
Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shari L. Meichsner
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
11
|
Meichsner SL, Kutin Y, Kasanmascheff M. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19155-19161. [PMID: 33844392 PMCID: PMC8453577 DOI: 10.1002/anie.202102914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Indexed: 12/21/2022]
Abstract
The E. coli ribonucleotide reductase (RNR), a paradigm for class Ia enzymes including human RNR, catalyzes the biosynthesis of DNA building blocks and requires a di‐iron tyrosyl radical (Y122.) cofactor for activity. The knowledge on the in vitro Y122. structure and its radical distribution within the β2 subunit has accumulated over the years; yet little information exists on the in vivo Y122.. Here, we characterize this essential radical in whole cells. Multi‐frequency EPR and electron‐nuclear double resonance (ENDOR) demonstrate that the structure and electrostatic environment of Y122. are identical under in vivo and in vitro conditions. Pulsed dipolar EPR experiments shed light on a distinct in vivo Y122. per β2 distribution, supporting the key role of Y. concentrations in regulating RNR activity. Additionally, we spectroscopically verify the generation of an unnatural amino acid radical, F3Y122., in whole cells, providing a crucial step towards unique insights into the RNR catalysis under physiological conditions.
Collapse
Affiliation(s)
- Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
12
|
Bahrenberg T, Yardeni EH, Feintuch A, Bibi E, Goldfarb D. Substrate binding in the multidrug transporter MdfA in detergent solution and in lipid nanodiscs. Biophys J 2021; 120:1984-1993. [PMID: 33771471 PMCID: PMC8204392 DOI: 10.1016/j.bpj.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
MdfA from Escherichia coli is a prototypical secondary multi-drug (Mdr) transporter that exchanges drugs for protons. MdfA-mediated drug efflux is driven by the proton gradient and enabled by conformational changes that accompany the recruitment of drugs and their release. In this work, we applied distance measurements by W-band double electron-electron resonance (DEER) spectroscopy to explore the binding of mito-TEMPO, a nitroxide-labeled substrate analog, to Gd(III)-labeled MdfA. The choice of Gd(III)-nitroxide DEER enabled measurements in the presence of excess of mito-TEMPO, which has a relatively low affinity to MdfA. Distance measurements between mito-TEMPO and MdfA labeled at the periplasmic edges of either of three selected transmembrane helices (TM3101, TM5168, and TM9310) revealed rather similar distance distributions in detergent micelles (n-dodecyl-β-d-maltopyranoside, DDM)) and in lipid nanodiscs (ND). By grafting the predicted positions of the Gd(III) tag on the inward-facing (If) crystal structure, we looked for binding positions that reproduced the maxima of the distance distributions. The results show that the location of the mito-TEMPO nitroxide in DDM-solubilized or ND-reconstituted MdfA is similar (only 0.4 nm apart). In both cases, we located the nitroxide moiety near the ligand binding pocket in the If structure. However, according to the DEER-derived position, the substrate clashes with TM11, suggesting that for mito-TEMPO-bound MdfA, TM11 should move relative to the If structure. Additional DEER studies with MdfA labeled with Gd(III) at two sites revealed that TM9 also dislocates upon substrate binding. Together with our previous reports, this study demonstrates the utility of Gd(III)-Gd(III) and Gd(III)-nitroxide DEER measurements for studying the conformational behavior of transporters.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eliane Hadas Yardeni
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akiva Feintuch
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Wort JL, Ackermann K, Norman DG, Bode BE. A general model to optimise Cu II labelling efficiency of double-histidine motifs for pulse dipolar EPR applications. Phys Chem Chem Phys 2021; 23:3810-3819. [PMID: 33533341 DOI: 10.1039/d0cp06196d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the dH motif for EPR applications at sub-μM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, depending upon pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - David G Norman
- School of Life Sciences, University of Dundee, Medical Sciences Institute, Dundee, DD1 5EH, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
14
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Torricella F, Pierro A, Mileo E, Belle V, Bonucci A. Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140653. [PMID: 33757896 DOI: 10.1016/j.bbapap.2021.140653] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Site-Directed Spin Labelling (SDSL) technique is based on the attachment of a paramagnetic label onto a specific position of a protein (or other bio-molecules) and the subsequent study by Electron Paramagnetic Resonance (EPR) spectroscopy. In particular, continuous-wave EPR (cw-EPR) spectra can detect the local conformational dynamics for proteins under various conditions. Moreover, pulse-EPR experiments on doubly spin-labelled proteins allow measuring distances between spin centres in the 1.5-8 nm range, providing information about structures and functions. This review focuses on SDSL-EPR spectroscopy as a structural biology tool to investigate proteins using nitroxide labels. The versatility of this spectroscopic approach for protein structural characterization has been demonstrated through the choice of recent studies. The main aim is to provide a general overview of the technique, particularly for non-experts, to spread the applicability of this technique in various fields of structural biology.
Collapse
Affiliation(s)
- F Torricella
- CERM-Magnetic Resonance Center, Department of Chemistry, University of Florence, via L.Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - A Pierro
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - E Mileo
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - V Belle
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - A Bonucci
- CERM-Magnetic Resonance Center, Department of Chemistry, University of Florence, via L.Sacconi 6, 50019 Sesto Fiorentino, Italy; Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France.
| |
Collapse
|
16
|
Soetbeer J, Millen M, Zouboulis K, Hülsmann M, Godt A, Polyhach Y, Jeschke G. Dynamical decoupling in water-glycerol glasses: a comparison of nitroxides, trityl radicals and gadolinium complexes. Phys Chem Chem Phys 2021; 23:5352-5369. [PMID: 33635938 DOI: 10.1039/d1cp00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previous study on nitroxides in o-terphenyl (OTP) revealed two separable decoherence processes at low temperatures, best captured by the sum of two stretched exponentials (SSE) model. Dynamical decoupling (DD) extends both associated dephasing times linearly for 1 to 5 refocusing pulses [Soetbeer et al., Phys. Chem. Chem. Phys., 2018, 20, 1615]. Here we demonstrate an analogous DD behavior of water-soluble nitroxides in water-glycerol glass by using nitroxide and/or solvent deuteration for component assignment. Compared to the conventional Hahn experiment, we show that Carr-Purcell and Uhrig DD schemes are superior in resolving and identifying active dephasing mechanisms. Thereby, we observe a partial coherence loss to intramolecular nitroxide and trityl nuclei that can be alleviated, while the zero field splitting-induced losses for gadolinium labels cannot be refocused and contribute even at the central transition of this spin-7/2 system. Independent of the studied spin system, Uhrig DD leads to a characteristic convex dephasing envelope in both protonated water-glycerol and OTP glass, thus outperforming the Carr-Purcell scheme.
Collapse
Affiliation(s)
- Janne Soetbeer
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Marthe Millen
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Konstantin Zouboulis
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Miriam Hülsmann
- Bielefeld University, Department of Chemistry, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Adelheid Godt
- Bielefeld University, Department of Chemistry, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| |
Collapse
|
17
|
Teucher M, Qi M, Cati N, Hintz H, Godt A, Bordignon E. Strategies to identify and suppress crosstalk signals in double electron-electron resonance (DEER) experiments with gadolinium III and nitroxide spin-labeled compounds. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:285-299. [PMID: 37904822 PMCID: PMC10500692 DOI: 10.5194/mr-1-285-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/31/2020] [Indexed: 11/01/2023]
Abstract
Double electron-electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO-NO, NO-Gd, and Gd-Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd-Gd distance appears in a DEER channel optimized to detect NO-Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO-NO, NO-Gd, and Gd-Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.
Collapse
Affiliation(s)
- Markus Teucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ninive Cati
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
18
|
Williams L, Tischlik S, Scherer A, Fischer JWA, Drescher M. Site-directed attachment of photoexcitable spin labels for light-induced pulsed dipolar spectroscopy. Chem Commun (Camb) 2020; 56:14669-14672. [PMID: 33159780 DOI: 10.1039/d0cc03101a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoexcited triplet states are gaining popularity as spin labels in pulsed electron paramagnetic resonance (EPR) spectroscopy. Here, we demonstrate that the fluorophores Eosin Y, Rose Bengal and Atto Thio12 are suitable markers for distance determination by laser-induced magnetic dipole (LaserIMD) spectroscopy in proteins that lack an intrinsic photoexcitable center.
Collapse
Affiliation(s)
- Lara Williams
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
19
|
Bordignon E, Seeger MA, Galazzo L, Meier G. From in vitro towards in situ: structure-based investigation of ABC exporters by electron paramagnetic resonance spectroscopy. FEBS Lett 2020; 594:3839-3856. [PMID: 33219535 DOI: 10.1002/1873-3468.14004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) exporters have been studied now for more than four decades, and recent structural investigation has produced a large number of protein database entries. Yet, important questions about how ABC exporters function at the molecular level remain debated, such as which are the molecular recognition hotspots and the allosteric couplings dynamically regulating the communication between the catalytic cycle and the export of substrates. This conundrum mainly arises from technical limitations confining all research to in vitro analysis of ABC transporters in detergent solutions or embedded in membrane-mimicking environments. Therefore, a largely unanswered question is how ABC exporters operate in situ, namely in the native membrane context of a metabolically active cell. This review focuses on novel mechanistic insights into type I ABC exporters gained through a unique combination of structure determination, biochemical characterization, generation of conformation-specific nanobodies/sybodies and double electron-electron resonance.
Collapse
Affiliation(s)
- Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
20
|
Assafa TE, Nandi S, Śmiłowicz D, Galazzo L, Teucher M, Elsner C, Pütz S, Bleicken S, Robin AY, Westphal D, Uson I, Stoll R, Czabotar PE, Metzler-Nolte N, Bordignon E. Biophysical Characterization of Pro-apoptotic BimBH3 Peptides Reveals an Unexpected Capacity for Self-Association. Structure 2020; 29:114-124.e3. [PMID: 32966763 DOI: 10.1016/j.str.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 08/29/2020] [Indexed: 01/11/2023]
Abstract
Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.
Collapse
Affiliation(s)
- Tufa E Assafa
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sukhendu Nandi
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Dariusz Śmiłowicz
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus Teucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christina Elsner
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefanie Pütz
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Bleicken
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adeline Y Robin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dana Westphal
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Dermatology, Medical Faculty and University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Isabel Uson
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain; ICREA, Baldiri Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
21
|
EPR of site-directed spin-labeled proteins: A powerful tool to study structural flexibility. Arch Biochem Biophys 2020; 684:108323. [DOI: 10.1016/j.abb.2020.108323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
|
22
|
Braun TS, Widder P, Osswald U, Groß L, Williams L, Schmidt M, Helmle I, Summerer D, Drescher M. Isoindoline-Based Nitroxides as Bioresistant Spin Labels for Protein Labeling through Cysteines and Alkyne-Bearing Noncanonical Amino Acids. Chembiochem 2020; 21:958-962. [PMID: 31657498 PMCID: PMC7187341 DOI: 10.1002/cbic.201900537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/18/2019] [Indexed: 12/15/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful tool in protein structural research. Nitroxides are highly suitable spin labeling reagents, but suffer from limited stability, particularly in the cellular environment. Herein we present the synthesis of a maleimide- and an azide-modified tetraethyl-shielded isoindoline-based nitroxide (M- and Az-TEIO) for labeling of cysteines or the noncanonical amino acid para-ethynyl-l-phenylalanine (pENF). We demonstrate the high stability of TEIO site-specifically attached to the protein thioredoxin (TRX) against reduction in prokaryotic and eukaryotic environments, and conduct double electron-electron resonance (DEER) measurements. We further generate a rotamer library for the new residue pENF-Az-TEIO that affords a distance distribution that is in agreement with the measured distribution.
Collapse
Affiliation(s)
- Theresa Sophie Braun
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Pia Widder
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Uwe Osswald
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Lina Groß
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Lara Williams
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Moritz Schmidt
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Irina Helmle
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Present address: Faculty of ScienceDepartment of Pharmaceutical BiologyUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical BiologyTU DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| | - Malte Drescher
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Konstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
23
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
24
|
Galazzo L, Meier G, Timachi MH, Hutter CAJ, Seeger MA, Bordignon E. Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes. Proc Natl Acad Sci U S A 2020; 117:2441-2448. [PMID: 31964841 PMCID: PMC7007536 DOI: 10.1073/pnas.1913737117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nanobodies are emerging tools in a variety of fields such as structural biology, cell imaging, and drug discovery. Here we pioneer the use of their spin-labeled variants as reporters of conformational dynamics of membrane proteins using DEER spectroscopy. At the example of the bacterial ABC transporter TM287/288, we show that two gadolinium-labeled nanobodies allow us to quantify, via analysis of the modulation depth of DEER traces, the fraction of transporters adopting the outward-facing state under different experimental conditions. Additionally, we quantitatively follow the interconversion from the outward- to the inward-facing state in the conformational ensemble under ATP turnover conditions. We finally show that the specificity of the nanobodies for the target protein allows the direct attainment of structural information on the wild-type TM287/288 expressed in cellular membranes without the need to purify or label the investigated membrane protein.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
25
|
Kucher S, Korneev S, Klare JP, Klose D, Steinhoff HJ. In cell Gd3+-based site-directed spin labeling and EPR spectroscopy of eGFP. Phys Chem Chem Phys 2020; 22:13358-13362. [DOI: 10.1039/d0cp01930e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly synthesized Gd3+ chelate complex allows in cell spin labeling and detection of eGFP by EPR spectroscopy.
Collapse
Affiliation(s)
| | - Sergej Korneev
- Department of Biology
- Osnabrück University
- Osnabrück
- Germany
| | | | - Daniel Klose
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- Zurich
- Switzerland
| | | |
Collapse
|
26
|
Widder P, Schuck J, Summerer D, Drescher M. Combining site-directed spin labeling in vivo and in-cell EPR distance determination. Phys Chem Chem Phys 2020; 22:4875-4879. [DOI: 10.1039/c9cp05584c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Non-canonical amino acid incorporation via amber stop codon suppression and in vivo site-directed spin labeling allow in-cell EPR distance determination in E. coli.
Collapse
Affiliation(s)
- Pia Widder
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- Konstanz
- Germany
| | - Julian Schuck
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- Konstanz
- Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- Konstanz
- Germany
| |
Collapse
|
27
|
Bondarenko V, Wells MM, Chen Q, Singewald KC, Saxena S, Xu Y, Tang P. 19F Paramagnetic Relaxation-Based NMR for Quaternary Structural Restraints of Ion Channels. ACS Chem Biol 2019; 14:2160-2165. [PMID: 31525026 DOI: 10.1021/acschembio.9b00692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quaternary distance restraints are essential to define the three-dimensional structures of protein assemblies. These distances often fall within a range of 10-18 Å, which challenges the high and low measurement limits of conventional nuclear magnetic resonance (NMR) and double electron-electron resonance electron spin resonance spectroscopies. Here, we report the use of 19F paramagnetic relaxation enhancement (PRE) NMR in combination with 19F/paramagnetic labeling to equivalent sites in different subunits of a protein complex in micelles to determine intersubunit distances. The feasibility of this strategy was evaluated on a pentameric ligand-gated ion channel, for which we found excellent agreement of the 19F PRE NMR results with previous structural information. The study suggests that 19F PRE NMR is a viable tool in extracting distance restraints to define quaternary structures.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marta M. Wells
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiang Chen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin C. Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
Goldfarb D. Pulse EPR in biological systems - Beyond the expert's courtyard. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:102-108. [PMID: 31337564 DOI: 10.1016/j.jmr.2019.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 05/14/2023]
Abstract
Application of EPR to biological systems includes many techniques and applications. In this short perspective, which dares to look into the future, I focus on pulse EPR, which is my field of expertise. Generally, pulse EPR techniques can be divided into two main groups: (1) hyperfine spectroscopy, which explores electron-nuclear interactions, and (2) pulse-dipolar (PD) EPR spectroscopy, which is based on electron-electron spin interactions. Here I focus on PD-EPR because it has a better chance of becoming a widely applied, easy-to-use table-top method to study the structural and dynamic aspects of bio-molecules. I will briefly introduce this technique, its current state of the art, the challenges it is facing, and finally I will describe futuristic scenarios of low-cost PD-EPR approaches that can cross the diffusion barrier from the core of experts to the bulk of the scientific community.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub-Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu II -labelling of Double-Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019; 58:11681-11685. [PMID: 31218813 PMCID: PMC6771633 DOI: 10.1002/anie.201904848] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double-histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol-specific labelling. However, the non-covalent CuII coordination approach is vulnerable to low binding-affinity. Herein, dissociation constants (KD ) are investigated directly from the modulation depths of relaxation-induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low- to sub-μm CuII KD s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double-histidine motif for EPR applications even at sub-μm protein concentrations in orthogonally labelled CuII -nitroxide systems using a commercial Q-band EPR instrument.
Collapse
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Angeliki Giannoulis
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alan J. Stewart
- School of MedicineBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9TFUK
| | - David G. Norman
- School of Life SciencesUniversity of Dundee, Medical Sciences InstituteDundeeDD1 5EHUK
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
30
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu
II
‐labelling of Double‐Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Alan J. Stewart
- School of Medicine Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9TF UK
| | - David G. Norman
- School of Life Sciences University of Dundee, Medical Sciences Institute Dundee DD1 5EH UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| |
Collapse
|
31
|
Abdullin D, Matsuoka H, Yulikov M, Fleck N, Klein C, Spicher S, Hagelueken G, Grimme S, Lützen A, Schiemann O. Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. Chemistry 2019; 25:8820-8828. [PMID: 31017706 DOI: 10.1002/chem.201900977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+ /nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006, 30, 683-702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Current address: Graduate School of Science, Osaka City University, Osaka, Japan
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Christoph Klein
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Brodrecht M, Herr K, Bothe S, de Oliveira M, Gutmann T, Buntkowsky G. Efficient Building Blocks for Solid-Phase Peptide Synthesis of Spin Labeled Peptides for Electron Paramagnetic Resonance and Dynamic Nuclear Polarization Applications. Chemphyschem 2019; 20:1475-1487. [PMID: 30950574 DOI: 10.1002/cphc.201900211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Indexed: 11/11/2022]
Abstract
Specific spin labeling allows the site-selective investigation of biomolecules by EPR and DNP enhanced NMR spectroscopy. A novel spin labeling strategy for commercially available Fmoc-amino acids is developed. In this approach, the PROXYL spin label is covalently attached to the hydroxyl side chain of three amino acids hydroxyproline (Hyp), serine (Ser) and tyrosine (Tyr) by a simple three-step synthesis route. The obtained PROXYL containing building-blocks are N-terminally protected by the Fmoc-protection group, which makes them applicable for the use in solid-phase peptide synthesis (SPPS). This approach allows the insertion of the spin label at any desired position during SPPS, which makes it more versatile than the widely used post synthetic spin labeling strategies. For the final building-blocks, the radical activity is proven by EPR. DNP enhanced solid-state NMR experiments employing these building-blocks in a TCE solution show enhancement factors of up to 26 for 1 H and 13 C (1 H→13 C cross-polarization). To proof the viability of the presented building-blocks for insertion of the spin label during SPPS the penta-peptide Acetyl-Gly-Ser(PROXYL)-Gly-Gly-Gly was synthesized employing the spin labeled Ser building-block. This peptide could successfully be isolated and the spin label activity proved by EPR and DNP NMR measurements, showing enhancement factors of 12.1±0.1 for 1 H and 13.9±0.5 for 13 C (direct polarization).
Collapse
Affiliation(s)
- Martin Brodrecht
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Kevin Herr
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Sarah Bothe
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Marcos de Oliveira
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.,University Kassel, Institute for Chemistry, Heinrich-Plett-Straße 40, D-34132, Kassel
| | - Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
33
|
Shah A, Roux A, Starck M, Mosely JA, Stevens M, Norman DG, Hunter RI, El Mkami H, Smith GM, Parker D, Lovett JE. A Gadolinium Spin Label with Both a Narrow Central Transition and Short Tether for Use in Double Electron Electron Resonance Distance Measurements. Inorg Chem 2019; 58:3015-3025. [DOI: 10.1021/acs.inorgchem.8b02892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anokhi Shah
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Amandine Roux
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Michael Stevens
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David G. Norman
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Hassane El Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
34
|
Braun T, Drescher M, Summerer D. Expanding the Genetic Code for Site-Directed Spin-Labeling. Int J Mol Sci 2019; 20:ijms20020373. [PMID: 30654584 PMCID: PMC6359334 DOI: 10.3390/ijms20020373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy enables studies of the structure, dynamics, and interactions of proteins in the noncrystalline state. The scope and analytical value of SDSL⁻EPR experiments crucially depends on the employed labeling strategy, with key aspects being labeling chemoselectivity and biocompatibility, as well as stability and spectroscopic properties of the resulting label. The use of genetically encoded noncanonical amino acids (ncAA) is an emerging strategy for SDSL that holds great promise for providing excellent chemoselectivity and potential for experiments in complex biological environments such as living cells. We here give a focused overview of recent advancements in this field and discuss their potentials and challenges for advancing SDSL⁻EPR studies.
Collapse
Affiliation(s)
- Theresa Braun
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| |
Collapse
|
35
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
36
|
Giannoulis A, Yang Y, Gong YJ, Tan X, Feintuch A, Carmieli R, Bahrenberg T, Liu Y, Su XC, Goldfarb D. DEER distance measurements on trityl/trityl and Gd(iii)/trityl labelled proteins. Phys Chem Chem Phys 2019; 21:10217-10227. [DOI: 10.1039/c8cp07249c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trityl–trityl and trityl–Gd(iii) DEER distance measurements in proteins are performed using a new trityl spin label affording thioether–protein conjugation.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Akiva Feintuch
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Raanan Carmieli
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
37
|
Dal Farra MG, Ciuti S, Gobbo M, Carbonera D, Di Valentin M. Triplet-state spin labels for highly sensitive pulsed dipolar spectroscopy. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. G. Dal Farra
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - S. Ciuti
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - M. Gobbo
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - D. Carbonera
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| | - M. Di Valentin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Padova, Italy
| |
Collapse
|
38
|
Kuzhelev AA, Krumkacheva OA, Shevelev GY, Yulikov M, Fedin MV, Bagryanskaya EG. Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide. Phys Chem Chem Phys 2018; 20:10224-10230. [PMID: 29594278 DOI: 10.1039/c8cp01093e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as 'pumped' species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels. In the present study, we report the first demonstration of room-temperature RIDME distance measurements in nucleic acids using TAM as the slow-relaxing detected species and traditional nitroxide as the fast-relaxing partner spin. Two types of immobilizers, glassy trehalose and the modified silica gel Nucleosil, were used for immobilization of the spin-labeled biomolecules. The room-temperature RIDME-based distance distributions are in good agreement with those measured at 80 K by other techniques. Room-temperature RIDME on the spin pairs trityl/nitroxide may become a useful method for the structural characterization of biomacromolecules and biomolecular complexes at near physiological temperatures.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
39
|
Prokopiou G, Lee MD, Collauto A, Abdelkader EH, Bahrenberg T, Feintuch A, Ramirez-Cohen M, Clayton J, Swarbrick JD, Graham B, Otting G, Goldfarb D. Small Gd(III) Tags for Gd(III)–Gd(III) Distance Measurements in Proteins by EPR Spectroscopy. Inorg Chem 2018; 57:5048-5059. [DOI: 10.1021/acs.inorgchem.8b00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgia Prokopiou
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elwy H. Abdelkader
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marie Ramirez-Cohen
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jessica Clayton
- Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
40
|
Gmeiner C, Dorn G, Allain FHT, Jeschke G, Yulikov M. Spin labelling for integrative structure modelling: a case study of the polypyrimidine-tract binding protein 1 domains in complexes with short RNAs. Phys Chem Chem Phys 2018; 19:28360-28380. [PMID: 29034946 DOI: 10.1039/c7cp05822e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A combined method, employing NMR and EPR spectroscopies, has demonstrated its strength in solving structures of protein/RNA and other types of biomolecular complexes. This method works particularly well when the large biomolecular complex consists of a limited number of rigid building blocks, such as RNA-binding protein domains (RBDs). A variety of spin labels is available for such studies, allowing for conventional as well as spectroscopically orthogonal double electron-electron resonance (DEER) measurements in EPR. In this work, we compare different types of nitroxide-based and Gd(iii)-based spin labels attached to isolated RBDs of the polypyrimidine-tract binding protein 1 (PTBP1) and to short RNA fragments. In particular, we demonstrate experiments on spectroscopically orthogonal labelled RBD/RNA complexes. For all experiments we analyse spin labelling, DEER method performance, resulting distance distributions, and their consistency with the predictions from the spin label rotamers analysis. This work provides a set of intra-domain calibration DEER data, which can serve as a basis to start structure determination of the full length PTBP1 complex with an RNA derived from encephalomycarditis virus (EMCV) internal ribosomal entry site (IRES). For a series of tested labelling sites, we discuss their particular advantages and drawbacks in such a structure determination approach.
Collapse
Affiliation(s)
- Christoph Gmeiner
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Mahawaththa MC, Lee MD, Giannoulis A, Adams LA, Feintuch A, Swarbrick JD, Graham B, Nitsche C, Goldfarb D, Otting G. Small neutral Gd(iii) tags for distance measurements in proteins by double electron–electron resonance experiments. Phys Chem Chem Phys 2018; 20:23535-23545. [DOI: 10.1039/c8cp03532f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small Gd(iii) tags based on DO3A deliver narrow and readily predictable distances by double electron–electron resonance (DEER) measurements.
Collapse
Affiliation(s)
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Angeliki Giannoulis
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Luke A. Adams
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Akiva Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Christoph Nitsche
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Gottfried Otting
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
42
|
Wu Z, Feintuch A, Collauto A, Adams LA, Aurelio L, Graham B, Otting G, Goldfarb D. Selective Distance Measurements Using Triple Spin Labeling with Gd 3+, Mn 2+, and a Nitroxide. J Phys Chem Lett 2017; 8:5277-5282. [PMID: 28990781 DOI: 10.1021/acs.jpclett.7b01739] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Distance measurements by pulse electron paramagnetic resonance techniques, such as double electron-electron resonance (DEER, also called PELDOR), have become an established tool to explore structural properties of biomacromolecules and their assemblies. In such measurements a pair of spin labels provides a single distance constraint. Here we show that by employing three different types of spin labels that differ in their spectroscopic and spin dynamics properties it is possible to extract three independent distances from a single sample. We demonstrate this using the Antennapedia homeodomain orthogonally labeled with Gd3+ and Mn2+ tags in complex with its cognate DNA binding site labeled with a nitroxide.
Collapse
Affiliation(s)
- Zuyan Wu
- Research School of Chemistry, Australian National University , Canberra ACT 2601, Australia
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Luke A Adams
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville VIC 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University , Canberra ACT 2601, Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
43
|
Gmeiner C, Klose D, Mileo E, Belle V, Marque SRA, Dorn G, Allain FHT, Guigliarelli B, Jeschke G, Yulikov M. Orthogonal Tyrosine and Cysteine Site-Directed Spin Labeling for Dipolar Pulse EPR Spectroscopy on Proteins. J Phys Chem Lett 2017; 8:4852-4857. [PMID: 28933855 DOI: 10.1021/acs.jpclett.7b02220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Site-directed spin labeling of native tyrosine residues in isolated domains of the protein PTBP1, using a Mannich-type reaction, was combined with conventional spin labeling of cysteine residues. Double electron-electron resonance (DEER) EPR measurements were performed for both the nitroxide-nitroxide and Gd(III)-nitroxide label combinations within the same protein molecule. For the prediction of distance distributions from a structure model, rotamer libraries were generated for the two linker forms of the tyrosine-reactive isoindoline-based nitroxide radical Nox. Only moderate differences exist between the spatial spin distributions for the two linker forms of Nox. This strongly simplifies DEER data analysis, in particular, if only mean distances need to be predicted.
Collapse
Affiliation(s)
- Christoph Gmeiner
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| | - Elisabetta Mileo
- Aix Marseille Univ , CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Valérie Belle
- Aix Marseille Univ , CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Sylvain R A Marque
- Aix Marseille Univ , CNRS, ICR, Institut de Chimie Radicalaire, Marseille 13397, France
- N. N. Vorozhtsov Novosibirsk Insititute of Organic Chemistry , 630090 Novosibirsk, Russia
| | - Georg Dorn
- Institute of Molecular Biology and Biophysics, ETH Zurich , Zurich 8093, Switzerland
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich , Zurich 8093, Switzerland
| | - Bruno Guigliarelli
- Aix Marseille Univ , CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| |
Collapse
|
44
|
Giovenzana GB, Lattuada L, Negri R. Recent Advances in Bifunctional Paramagnetic Chelates for MRI. Isr J Chem 2017. [DOI: 10.1002/ijch.201700028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale “A. Avogadro”; L.go Donegani 2/3 I-28100 Novara Italy
| | - Luciano Lattuada
- Bracco Imaging SpA, Bracco Research Centre; Via Ribes 5 I-10010 Colleretto Giacosa TO, Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale “A. Avogadro”; L.go Donegani 2/3 I-28100 Novara Italy
| |
Collapse
|
45
|
Clayton JA, Qi M, Godt A, Goldfarb D, Han S, Sherwin MS. Gd 3+-Gd 3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Phys Chem Chem Phys 2017; 19:5127-5136. [PMID: 28139788 PMCID: PMC5394103 DOI: 10.1039/c6cp07119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA-spacer-Gd-PyMTA, with Gd-Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |-1/2〉 → |1/2〉 transition occurs at 30 K for Gd-Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/r3 dependence for the electron-electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron-electron dipolar interactions with a neighboring S = 7/2 spin.
Collapse
Affiliation(s)
- Jessica A Clayton
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Songi Han
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
46
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Lawless
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica L. Sarver
- Division of Biological, Chemical, and Environmental Sciences; Westminster College; 319 S Market St. New Wilmington PA 16172 USA
| | - Sunil Saxena
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
47
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:2115-2117. [PMID: 28090713 DOI: 10.1002/anie.201611197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/14/2016] [Indexed: 01/05/2023]
Abstract
A site-specific Cu2+ binding motif within a DNA duplex for distance measurements by ESR spectroscopy is reported. This motif utilizes a commercially available 2,2'-dipicolylamine (DPA) phosphormadite easily incorporated into any DNA oligonucleotide during initial DNA synthesis. The method only requires the simple post-synthetic addition of Cu2+ without the need for further chemical modification. Notably, the label is positioned within the DNA duplex, as opposed to outside the helical perimeter, for an accurate measurement of duplex distance. A distance of 2.7 nm was measured on a doubly Cu2+ -labeled DNA sequence, which is in exact agreement with the expected distance from both DNA modeling and molecular dynamic simulations. This result suggests that with this labeling strategy the ESR measured distance directly reports on backbone DNA distance, without the need for further modeling. Furthermore, the labeling strategy is structure- and nucleotide-independent.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica L Sarver
- Division of Biological, Chemical, and Environmental Sciences, Westminster College, 319 S Market St., New Wilmington, PA, 16172, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
48
|
Di Valentin M, Albertini M, Dal Farra MG, Zurlo E, Orian L, Polimeno A, Gobbo M, Carbonera D. Light-Induced Porphyrin-Based Spectroscopic Ruler for Nanometer Distance Measurements. Chemistry 2016; 22:17204-17214. [DOI: 10.1002/chem.201603666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Marilena Di Valentin
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Marco Albertini
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Maria Giulia Dal Farra
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Enrico Zurlo
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
- Leiden Institute of Physics; Leiden University; Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Laura Orian
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Marina Gobbo
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| |
Collapse
|
49
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016; 55:11538-42. [DOI: 10.1002/anie.201606335] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
50
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|