1
|
Suzuki W, Mizuhata Y, Tokitoh N, Teranishi T. Dioxygen Activation by Gold(I)-Distorted Porphyrin Dinuclear Complexes. Chemistry 2024; 30:e202401242. [PMID: 38888030 DOI: 10.1002/chem.202401242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Interactions between gold-based materials and dioxygen (O2) have motivated researchers to understand reaction mechanisms for O2 activation by homo- and heterogeneous gold catalysts. In this work, gold(I) porphyrin dinuclear complexes were synthesized with a saddle-distorted porphyrin ligand. The gold(I) porphyrin complexes showed unprecedented O2 activation in the presence of protic solvents to form gold(III) tetradentate porphyrin complexes. Mechanistic insights into the O2 activation by the gold(I) center were elucidated by spectroscopic measurements and theoretical calculations, revealing that dissociation of halides on the gold(I) center by alcohol solvents and hydrogen bonding of an N-H proton in the distorted porphyrin with dioxygen played important roles in establishing the unique reactivities of gold(I) complexes.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, University of Hyogo, 2167 Shosha Himeji, Hyogo, 671-2280, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
2
|
Pandey N, Mandal M, Samanta D, Mukherjee G, Dutta G. A nanobody based ultrasensitive electrochemical biosensor for the detection of soluble CTLA-4 -A candidate biomarker for cancer development and progression. Biosens Bioelectron 2023; 242:115733. [PMID: 37820555 DOI: 10.1016/j.bios.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 μg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.
Collapse
Affiliation(s)
- Nidhi Pandey
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bio Science, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Rodríguez-Zamora P, Cordero-Silis CA, Fabila J, Luque-Ceballos JC, Buendía F, Heredia-Barbero A, Garzón IL. Interaction Mechanisms and Interface Configuration of Cysteine Adsorbed on Gold, Silver, and Copper Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5418-5427. [PMID: 35447033 DOI: 10.1021/acs.langmuir.1c03298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cysteine-protected metal nanoparticles (NPs) have shown interesting physicochemical properties of potential utility in biomedical applications and in the understanding of protein folding. Herein, cysteine interaction with gold, silver, and copper NPs is characterized by Raman spectroscopy and density functional theory calculations to elucidate the molecular conformation and adsorption sites for each metal. The experimental analysis of Raman spectra upon adsorption with respect to free cysteine indicates that while the C-S bond and carboxyl group are similarly affected by adsorption on the three metal NPs, the amino group is sterically influenced by the electronegativity of each metal, causing a greater modification in the case of gold NPs. A theoretical approach that takes into consideration intermolecular interactions using two cysteine molecules is proposed using a S-metal-S interface motif anchored to the metal surface. These interactions generate the stabilization of an organo-metallic complex that combines gauche (PH) and anti (PC) rotameric conformers of cysteine on the surface of all three metals. Similarities between the calculated Raman spectra and experimental data confirm the thiol and carboxyl as adsorption groups for gold, silver, and copper NPs and suggest the formation of monomeric "staple motifs" that have been found in the protecting monolayer of atomic-precise thiolate-capped metal nanoclusters.
Collapse
Affiliation(s)
| | | | - Jorge Fabila
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Fernando Buendía
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Chemical and Biomolecular Engineering Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Farkaš B, Terranova U, de Leeuw NH. The mechanism underlying the functionalisation of cobalt nanoparticles by carboxylic acids: a first-principles computational study. J Mater Chem B 2021; 9:4915-4928. [PMID: 34100480 DOI: 10.1039/d0tb02928a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promise of biocompatible magnetic nanoparticles with high magnetic saturation in the implementation as drug carriers and hyperthermia agents has generated significant interest in functionalised cobalt nanoparticles. Carboxylic acid coatings on metallic nanoparticles have been shown as an attractive option owing to their respectable stability and biocompatibility. However, only limited information is available on the molecular mechanism leading to the formation of such protective coatings. In this study, ab initio molecular dynamics simulations have been used to unravel the functionalisation mechanism starting from a neutral cobalt cluster and valeric acid molecules. Three stages were detected in the coating process: (i) rapid initial adsorption of acid molecules, (ii) simultaneous adsorption of new molecules and dissociation of those already interacting with the cluster, and, finally, (iii) grouping of dissociated hydrogen atoms and subsequent desorption of acid molecules. The fate of the hydrogen atoms was probed through a combination of static and dynamic ab initio modelling approaches, which predicted H2 generation with favourable energetics. A better understanding of the functionalisation and interaction mechanisms will aid the rational design of biocompatible cobalt nanoparticles for various applications.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | | | | |
Collapse
|
6
|
Li Q, Taylor MG, Kirschbaum K, Lambright KJ, Zhu X, Mpourmpakis G, Jin R. Site-selective substitution of gold atoms in the Au24(SR)20 nanocluster by silver. J Colloid Interface Sci 2017; 505:1202-1207. [DOI: 10.1016/j.jcis.2017.06.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022]
|
7
|
Liu G, Ciborowski SM, Bowen KH. Photoelectron Spectroscopic and Computational Study of Pyridine-Ligated Gold Cluster Anions. J Phys Chem A 2017; 121:5817-5822. [DOI: 10.1021/acs.jpca.7b05712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Sandra M. Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Taylor MG, Mpourmpakis G. Thermodynamic stability of ligand-protected metal nanoclusters. Nat Commun 2017; 8:15988. [PMID: 28685777 PMCID: PMC5504301 DOI: 10.1038/ncomms15988] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Despite the great advances in synthesis and structural determination of atomically precise, thiolate-protected metal nanoclusters, our understanding of the driving forces for their colloidal stabilization is very limited. Currently there is a lack of models able to describe the thermodynamic stability of these 'magic-number' colloidal nanoclusters as a function of their atomic-level structural characteristics. Herein, we introduce the thermodynamic stability theory, derived from first principles, which is able to address stability of thiolate-protected metal nanoclusters as a function of the number of metal core atoms and thiolates on the nanocluster shell. Surprisingly, we reveal a fine energy balance between the core cohesive energy and the shell-to-core binding energy that appears to drive nanocluster stabilization. Our theory applies to both charged and neutral systems and captures a large number of experimental observations. Importantly, it opens new avenues for accelerating the discovery of stable, atomically precise, colloidal metal nanoclusters.
Collapse
Affiliation(s)
- Michael G Taylor
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
9
|
Li Q, Luo TY, Taylor MG, Wang S, Zhu X, Song Y, Mpourmpakis G, Rosi NL, Jin R. Molecular "surgery" on a 23-gold-atom nanoparticle. SCIENCE ADVANCES 2017; 3:e1603193. [PMID: 28560348 PMCID: PMC5438218 DOI: 10.1126/sciadv.1603193] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/20/2017] [Indexed: 05/05/2023]
Abstract
Compared to molecular chemistry, nanochemistry is still far from being capable of tailoring particle structure and functionality at an atomic level. Numerous effective methodologies that can precisely tailor specific groups in organic molecules without altering the major carbon bones have been developed, but for nanoparticles, it is still extremely difficult to realize the atomic-level tailoring of specific sites in a particle without changing the structure of other parts (for example, replacing specific surface motifs and deleting one or two metal atoms). This issue severely limits nanochemists from knowing how different motifs in a nanoparticle contribute to its overall properties. We demonstrate a site-specific "surgery" on the surface motif of an atomically precise 23-gold-atom [Au23(SR)16]- nanoparticle by a two-step metal-exchange method, which leads to the "resection" of two surface gold atoms and the formation of a new 21-gold-atom nanoparticle, [Au21(SR)12(Ph2PCH2PPh2)2]+, without changing the other parts of the starting nanoparticle structure. This precise surgery of the nanocluster reveals the different reactivity of the surface motifs and the inner core: the least effect of surface motifs on optical absorption but a distinct effect on photoluminescence (that is, a 10-fold enhancement of luminescence after the tailoring). First-principles calculations further reveal the thermodynamically preferred reaction pathway for the formation of [Au21(SR)12(Ph2PCH2PPh2)2]+. This work constitutes a major step toward the development of atomically precise, versatile nanochemistry for the precise tailoring of the nanocluster structure to control its properties.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael G. Taylor
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shuxin Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xiaofan Zhu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yongbo Song
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Corresponding author.
| |
Collapse
|
10
|
Segala M, Schneider FSS, Caramori GF, Parreira RLT. Evaluation of Electron Donation as a Mechanism for the Stabilisation of Chalcogenate-Protected Gold Nanoclusters. Chemphyschem 2016; 17:3102-3111. [DOI: 10.1002/cphc.201600552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Maximiliano Segala
- Departamento de Físico-Química, Instituto de Química; Universidade Federal do Rio Grande do Sul; Porto Alegre RS 91501-970 Brazil
| | - Felipe S. S. Schneider
- Departamento de Química; Universidade Federal de Santa Catarina; Campus Universitário Trindade, CP 476 Florianópolis SC 88040-900 Brazil
| | - Giovanni F. Caramori
- Departamento de Química; Universidade Federal de Santa Catarina; Campus Universitário Trindade, CP 476 Florianópolis SC 88040-900 Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas; Universidade de Franca; Franca SP 14404-600 Brazil
| |
Collapse
|
11
|
Charchar P, Christofferson AJ, Todorova N, Yarovsky I. Understanding and Designing the Gold-Bio Interface: Insights from Simulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2395-418. [PMID: 27007031 DOI: 10.1002/smll.201503585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/01/2016] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles (AuNPs) are an integral part of many exciting and novel biomedical applications, sparking the urgent need for a thorough understanding of the physicochemical interactions occurring between these inorganic materials, their functional layers, and the biological species they interact with. Computational approaches are instrumental in providing the necessary molecular insight into the structural and dynamic behavior of the Au-bio interface with spatial and temporal resolutions not yet achievable in the laboratory, and are able to facilitate a rational approach to AuNP design for specific applications. A perspective of the current successes and challenges associated with the multiscale computational treatment of Au-bio interfacial systems, from electronic structure calculations to force field methods, is provided to illustrate the links between different approaches and their relationship to experiment and applications.
Collapse
Affiliation(s)
- Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | | | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
12
|
Pichugina DA, Kuz'menko NE, Shestakov AF. Ligand-protected gold clusters: the structure, synthesis and applications. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Fihey A, Hettich C, Touzeau J, Maurel F, Perrier A, Köhler C, Aradi B, Frauenheim T. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds. J Comput Chem 2015; 36:2075-87. [PMID: 26280464 DOI: 10.1002/jcc.24046] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/11/2023]
Abstract
We present a parametrization of a self-consistent charge density functional-based tight-binding scheme (SCC-DFTB) to describe gold-organic hybrid systems by adding new Au-X (X = Au, H, C, S, N, O) parameters to a previous set designed for organic molecules. With the aim of describing gold-thiolates systems within the DFTB framework, the resulting parameters are successively compared with density functional theory (DFT) data for the description of Au bulk, Aun gold clusters (n = 2, 4, 8, 20), and Aun SCH3 (n = 3 and 25) molecular-sized models. The geometrical, energetic, and electronic parameters obtained at the SCC-DFTB level for the small Au3 SCH3 gold-thiolate compound compare very well with DFT results, and prove that the different binding situations of the sulfur atom on gold are correctly described with the current parameters. For a larger gold-thiolate model, Au25 SCH3 , the electronic density of states and the potential energy surfaces resulting from the chemisorption of the molecule on the gold aggregate obtained with the new SCC-DFTB parameters are also in good agreement with DFT results.
Collapse
Affiliation(s)
- Arnaud Fihey
- Laboratoire Interfaces, Traitements, Organisation Et Dynamique Des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Diderot Sorbonne Paris Cité, Bâtiment Lavoisier, 15 Rue Jean Antoine De Baïf, Paris Cedex 13, 75205, France
| | - Christian Hettich
- Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Am Fallturm 1, Bremen, 28359, Germany
| | - Jérémy Touzeau
- Laboratoire Interfaces, Traitements, Organisation Et Dynamique Des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Diderot Sorbonne Paris Cité, Bâtiment Lavoisier, 15 Rue Jean Antoine De Baïf, Paris Cedex 13, 75205, France
| | - François Maurel
- Laboratoire Interfaces, Traitements, Organisation Et Dynamique Des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Diderot Sorbonne Paris Cité, Bâtiment Lavoisier, 15 Rue Jean Antoine De Baïf, Paris Cedex 13, 75205, France
| | - Aurélie Perrier
- Laboratoire Interfaces, Traitements, Organisation Et Dynamique Des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Diderot Sorbonne Paris Cité, Bâtiment Lavoisier, 15 Rue Jean Antoine De Baïf, Paris Cedex 13, 75205, France
| | - Christof Köhler
- Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Am Fallturm 1, Bremen, 28359, Germany
| | - Bálint Aradi
- Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Am Fallturm 1, Bremen, 28359, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Am Fallturm 1, Bremen, 28359, Germany
| |
Collapse
|
14
|
Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 2015; 115:6112-216. [PMID: 25898274 DOI: 10.1021/cr500506r] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amendra Fernando
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Natalia V Karimova
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
15
|
Koppen JV, Hapka M, Modrzejewski M, Szczęśniak MM, Chałasiński G. Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts. J Chem Phys 2014; 140:244313. [DOI: 10.1063/1.4885137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jessica V. Koppen
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Michał Hapka
- Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warszawa, Poland
| | - Marcin Modrzejewski
- Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warszawa, Poland
| | | | - Grzegorz Chałasiński
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
- Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warszawa, Poland
| |
Collapse
|
16
|
Fihey A, Kloss B, Perrier A, Maurel F. Density functional theory study of the conformation and optical properties of hybrid Au(n)-dithienylethene systems (n = 3, 19, 25). J Phys Chem A 2014; 118:4695-706. [PMID: 24912128 DOI: 10.1021/jp501542m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present a theoretical study of Aun-dithienylethene hybrid systems (n = 3, 19, 25), where the organic molecule is covalently linked to a nanometer-scaled gold nanoparticle (NP). We aim at gaining insights on the optical properties of such photochromic devices and proposing a size-limited gold aggregate model able to recover the optical properties of the experimental system. We thus present a DFT-based calculation scheme to model the ground-state (conformation, energetic parameters) and excited-state properties (UV-visible absorption spectra) of this type of hybrid systems. Within this framework, the structural parameters (adsorption site, orientation, and internal structure of the photochrome) are found to be slightly dependent on the size/shape of the gold aggregate. The influence of the gold fragment on the optical properties of the resulting hybrid system is then discussed with the help of TD-DFT combined with an analysis of the virtual orbitals involved in the photochromic transitions. We show that, for the open hybrid isomer, the number of gold atoms is the key parameter to recover the photoactive properties that are experimentally observed. On the contrary, for hybrid closed systems, the three-dimensional structure of the metallic aggregate is of high impact. We thus conclude that Au25 corresponds to the most appropriate fragment to model nanometer-sized NP-DTE hybrid device.
Collapse
Affiliation(s)
- Arnaud Fihey
- Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Diderot Sorbonne Paris Cité , Bâtiment Lavoisier, 15 rue Jean Antoine de Baïf, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|