1
|
Garza-Miyazato D, Hanashima S, Umegawa Y, Murata M, Kinoshita M, Matsumori N, Greimel P. Mode of molecular interaction of triterpenoid saponin ginsenoside Rh2 with membrane lipids in liquid-disordered phases. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184366. [PMID: 38960300 DOI: 10.1016/j.bbamem.2024.184366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.
Collapse
Affiliation(s)
- Darcy Garza-Miyazato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Paarvanova B, Tacheva B, Savova G, Karabaliev M, Georgieva R. Hemolysis by Saponin Is Accelerated at Hypertonic Conditions. Molecules 2023; 28:7096. [PMID: 37894578 PMCID: PMC10609376 DOI: 10.3390/molecules28207096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Saponins are a large group of organic amphiphilic substances (surfactants) mainly extracted from herbs with biological activity, considered as one of the main ingredients in numerous remedies used in traditional medicine since ancient times. Anti-inflammatory, antifungal, antibacterial, antiviral, antiparasitic, antitumor, antioxidant and many other properties have been confirmed for some. There is increasing interest in the elucidation of the mechanisms behind the effects of saponins on different cell types at the molecular level. In this regard, erythrocytes are a very welcome model, having very simple structures with no organelles. They react to changing external conditions and substances by changing shape or volume, with damage to their membrane ultimately leading to hemolysis. Hemolysis can be followed spectrophotometrically and provides valuable information about the type and extent of membrane damage. We investigated hemolysis of erythrocytes induced by various saponin concentrations in hypotonic, isotonic and hypertonic media using measurements of real time and end-point hemolysis. The osmotic pressure was adjusted by different concentrations of NaCl, manitol or a NaCl/manitol mixture. Unexpectedly, at a fixed saponin concentration, hemolysis was accelerated at hypertonic conditions, but was much faster in NaCl compared to mannitol solutions at the same osmotic pressure. These findings confirm the colloid-osmotic mechanism behind saponin hemolysis with pore formation with increasing size in the membrane.
Collapse
Affiliation(s)
- Boyana Paarvanova
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria
| | - Bilyana Tacheva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria
| | - Gergana Savova
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria
| | - Miroslav Karabaliev
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria
| | - Radostina Georgieva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Weissenfeld F, Wesenberg L, Nakahata M, Müller M, Tanaka M. Modulation of wetting of stimulus responsive polymer brushes by lipid vesicles: experiments and simulations. SOFT MATTER 2023; 19:2491-2504. [PMID: 36942886 DOI: 10.1039/d2sm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interactions between vesicle and substrate have been studied by simulation and experiment. We grafted polyacrylic acid brushes containing cysteine side chains at a defined area density on planar lipid membranes. Specular X-ray reflectivity data indicated that the addition of Cd2+ ions induces the compaction of the polymer brush layer and modulates the adhesion of lipid vesicles. Using microinterferometry imaging, we determined the onset level, [CdCl2] = 0.25 mM, at which the wetting of the vesicle emerges. The characteristics of the interactions between vesicle and brush were quantitatively evaluated by the shape of the vesicle near the substrate and height fluctuations of the membrane in contact with brushes. To analyze these experiments, we have systematically studied the shape and adhesion of axially symmetric vesicles for finite-range membrane-substrate interaction, i.e., a relevant experimental characteristic, through simulations. The wetting of vesicles sensitively depends on the interaction range and the approximate estimates of the capillary length change significantly, depending on the adhesion strength. We found, however, that the local transversality condition that relates the maximal curvature at the edge of the adhesion zone to the adhesion strength remains rather accurate even for a finite interaction range as long as the vesicle is large compared to the interaction range.
Collapse
Affiliation(s)
- Felix Weissenfeld
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lucia Wesenberg
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 560-8531 Osaka, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-8531 Osaka, Japan
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.
- Center for Advanced Study, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|
4
|
Ondevilla JC, Hanashima S, Mukogawa A, Miyazato DG, Umegawa Y, Murata M. Effect of the number of sugar units on the interaction between diosgenyl saponin and membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184145. [PMID: 36914020 DOI: 10.1016/j.bbamem.2023.184145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Saponin is the main bioactive component of the Dioscorea species, which are traditionally used for treating chronic diseases. An understanding of the interaction process of bioactive saponins with biomembranes provides insights into their development as therapeutic agents. The biological effects of saponins have been thought to be associated with membrane cholesterol (Chol). To shed light on the exact mechanisms of their interactions, we investigated the effects of diosgenyl saponins trillin (TRL) and dioscin (DSN) on the dynamic behavior of lipids and membrane properties in palmitoyloleolylphosphatidylcholine (POPC) bilayers using solid-state NMR and fluorescence spectroscopy. The membrane effects of diosgenin, a sapogenin of TRL and DSN, are similar to those of Chol, suggesting that diosgenin plays a major role in membrane binding and POPC chain ordering. The amphiphilicity of TRL and DSN enabled them to interact with POPC bilayers, regardless of Chol. In the presence of Chol, the sugar residues more prominently influenced the membrane-disrupting effects of saponins. The activity of DSN, which bears three sugar units, led to perturbation and further disruption of the membrane in the presence of Chol. However, TRL, which bears one sugar residue, increased the ordering of POPC chains while maintaining the integrity of the bilayer. This effect on the phospholipid bilayers is similar to that of cholesteryl glucoside. The influence of the number of sugars in saponin is discussed in more detail.
Collapse
Affiliation(s)
- Joan Candice Ondevilla
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Akane Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Darcy Garza Miyazato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
5
|
Horse Chestnut Saponins-Escins, Isoescins, Transescins, and Desacylescins. Molecules 2023; 28:molecules28052087. [PMID: 36903330 PMCID: PMC10004172 DOI: 10.3390/molecules28052087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut-HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure-activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.
Collapse
|
6
|
Sokolov SS, Volynsky PE, Zangieva OT, Severin FF, Glagoleva ES, Knorre DA. Cytostatic effects of structurally different ginsenosides on yeast cells with altered sterol biosynthesis and transport. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183993. [PMID: 35724740 DOI: 10.1016/j.bbamem.2022.183993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Triterpene glycosides are a diverse group of plant secondary metabolites, consisting of a sterol-like aglycon and one or several sugar groups. A number of triterpene glycosides show membranolytic activity, and, therefore, are considered to be promising antimicrobial drugs. However, the interrelation between their structure, biological activities, and target membrane lipid composition remains elusive. Here we studied the antifungal effects of four Panax triterpene glycosides (ginsenosides) with sugar moieties at the C-3 (ginsenosides Rg3, Rh2), C-20 (compound K), and both (ginsenoside F2) positions in Saccharomyces cerevisiae mutants with altered sterol plasma membrane composition. We observed reduced cytostatic activity of the Rg3 and compound K in the UPC2-1 strain with high membrane sterol content. Moreover, LAM gene deletion reduced yeast resistance to Rg3 and digitonin, another saponin with glycosylated aglycon in the C-3 position. LAM genes encode plasma membrane-anchored StARkin superfamily-member sterol transporters. We also showed that the deletion of the ERG6 gene that inhibits ergosterol biosynthesis at the stage of zymosterol increased the cytostatic effects of Rg3 and Rh2, but not the other two tested ginsenosides. At the same time, in silico simulation revealed that the substitution of ergosterol with zymosterol in the membrane changes the spatial orientation of Rg3 and Rh2 in the membranes. These results imply that the plasma membrane sterol composition defines its interaction with triterpene glycoside depending on their glycoside group position. Our results also suggest that the biological role of membrane-anchored StARkin family protein is to protect eukaryotic cells from triterpenes glycosylated at the C-3 position.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-40, Moscow, Russia
| | - Pavel E Volynsky
- Laboratory of Biomolecular Modeling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya Str., 16/10, Moscow, Russia
| | - Olga T Zangieva
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I.Pirogov" of the Ministry of Healthcare of the Russian Federation, 105203, Nizhnyaya Pervomayskaya str., 70, Moscow, Russia
| | - Fedor F Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-40, Moscow, Russia
| | - Elena S Glagoleva
- Faculty of Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-12, Moscow, Russia
| | - Dmitry A Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-40, Moscow, Russia.
| |
Collapse
|
7
|
Wink M. Current Understanding of Modes of Action of Multicomponent Bioactive Phytochemicals: Potential for Nutraceuticals and Antimicrobials. Annu Rev Food Sci Technol 2022; 13:337-359. [PMID: 35333591 DOI: 10.1146/annurev-food-052720-100326] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants produce a diversity of plant secondary metabolites (PSMs), which function as defense chemicals against herbivores and microorganisms but also as signal compounds. An individual plant produces and accumulates mixtures of PSMs with different structural features using different biosynthetic pathways. Almost all PSMs exert one or several biological activities that can be useful for nutrition and health. This review discusses the modes of action of PSMs alone and in combinations. In a mixture, most individual PSMs can modulate different molecular targets; they are thus multitarget drugs. In an extract with many multitarget chemicals, additive and synergistic effects occur. Experiments with the model system Caenorhabditis elegans show that polyphenols and carotenoids can function as powerful antioxidative and longevity-promoting PSMs. PSMs of food plants and spices often exhibit antioxidant, anti-inflammatory, and antimicrobial properties, which can be beneficial for health and the prevention of diseases. Some extracts from food plants and spices with bioactive PSMs have potential for nutraceuticals and antimicrobials.
Collapse
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
8
|
Yang M, Ding J, Luo Q, Chen X, Chen F. Improving the diagnostic efficacy of squamous cell carcinoma antigen for oral squamous cell carcinoma via saponin disruption of serum extracellular vesicles. Clin Chim Acta 2021; 525:40-45. [PMID: 34921893 DOI: 10.1016/j.cca.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The diagnostic value of squamous cell carcinoma antigen (SCCA) for oral squamous cell carcinoma (OSCC) is insufficient. Recently, extracellular vesicles (EVs) have displayed great potential for improving diagnostic efficacy. However, one of the main challenges that restricts the application of EVs is the lack of a clinically suitable separation method for the intra-vesicular protein detection. METHODS Saponin was used to destroy serum EVs membranes for releasing the intra-vesicular SCCA into the serum, circumventing the purification process of EVs. The concentrations of SCCA were measured and compared in 113 healthy people and 73 OSCC patients pre- and post-saponin treatment. RESULTS The concentration of serum SCCA significantly increased after saponin destroyed the membrane of EVs. The area under the curve (AUC) of serum SCCA for OSCC diagnosis was 0.6444 (95% CI, 0.5595 to 0.7293). The diagnostic AUC of serum EVs-derived SCCA reached 0.7969 (95% CI, 0.735 to 0.8588). CONCLUSIONS The results suggested that serum EVs disrupted by saponin could improve the diagnostic efficacy of SCCA for OSCC, which provides a simple, rapid, and high-throughput method to detect the intra-vesicular proteins of EVs and holds great potential for clinical application.
Collapse
Affiliation(s)
- Meng Yang
- Department of Clinical Laboratory Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jieying Ding
- Department of Clinical Laboratory Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Qingqiong Luo
- Department of Clinical Laboratory Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xu Chen
- Department of Clinical Laboratory Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Fuxiang Chen
- Department of Clinical Laboratory Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Faculty of Medical Laboratory Science, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China.
| |
Collapse
|
9
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Fewer DP, Jokela J, Heinilä L, Aesoy R, Sivonen K, Galica T, Hrouzek P, Herfindal L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. PHYSIOLOGIA PLANTARUM 2021; 173:639-650. [PMID: 34145585 DOI: 10.1111/ppl.13484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/11/2023]
Abstract
Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lassi Heinilä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Tomáš Galica
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Pavel Hrouzek
- Academy of Science of the Czech Republic, Institute of Microbiology, Centre Algatech, Třeboň, Czech Republic
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Acaricide activity of the Ximenia americana L. (Olacaceae) stem bark hydroethanolic extract against Rhipicephalus (Boophilus) microplus. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00862-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Ondevilla JC, Hanashima S, Mukogawa A, Umegawa Y, Murata M. Diosgenin-induced physicochemical effects on phospholipid bilayers in comparison with cholesterol. Bioorg Med Chem Lett 2021; 36:127816. [PMID: 33516912 DOI: 10.1016/j.bmcl.2021.127816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Diosgenin (DGN), which is a sterol occurring in plants of the Dioscorea family, has attracted increasing attention for its various pharmacological activities. DGN has a structural similarity to cholesterol (Cho). In this study we investigated the effects of the common tetracyclic cores and the different side chains on the physicochemical properties of lipid bilayer membranes. Differential scanning calorimetry showed that DGN and Cho reduce the phase transition enthalpy to a similar extent. In 2H NMR, deuterated-DGN/Cho and POPC showed similar ordering in POPC bilayers, which revealed that DGN is oriented parallel to the membrane normal like Cho. It was suggested that the affinity of DGN-Cho in membrane is stronger than that of DGN-DGN or Cho-Cho interaction. 31P NMR of POPC in bilayers revealed that, unlike Cho, DGN altered the interactions of POPC headgroups at 30 mol%. These results suggest that DGN below 30 mol% has similar effects with Cho on basic biomembrane properties.
Collapse
Affiliation(s)
- Joan Candice Ondevilla
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Akane Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
13
|
Korchowiec B, Janikowska-Sagan M, Kwiecińska K, Stachowicz-Kuśnierz A, Korchowiec J. The role of cholesterol in membrane activity of digitonin: Experimental and theoretical model studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, Datey A, Sahu RP, Goswami C, Chattopadhyay S, Chattopadhyay S. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol 2020; 166:139-155. [PMID: 33125586 DOI: 10.1007/s00705-020-04852-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca2+-permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5'-iodoresiniferatoxin (5'-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca2+ imaging that TRPV1 regulates Ca2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.,Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Saikat De
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ankita Datey
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ram P Sahu
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
15
|
Malabed R, Hanashima S, Murata M, Sakurai K. Interactions of OSW-1 with Lipid Bilayers in Comparison with Digitonin and Soyasaponin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3600-3610. [PMID: 32160747 DOI: 10.1021/acs.langmuir.9b03957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OSW-1, a unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, has potent cell-growth inhibition activity. In this study, we conducted fluorescence measurements and microscopic observations using palmitoyloleoylphosphatidylcholine (POPC)-cholesterol (Chol) bilayers to evaluate the membrane-binding affinity of OSW-1 in comparison with another steroidal saponin, digitonin, and the triterpenoid saponin, soyasaponin Bb(I). The membrane activities of these saponins were evaluated using calcein leakage assays and fitted to the binding isotherm by changing the ratios of saponin-lipids. Digitonin showed the highest binding affinity for the POPC-Chol membrane (Kapp = 0.38 μM-1) and the strongest membrane disruptivity in the bound saponin-lipid ratio at the point of 50% calcein leakage (r50 = 0.47) occurrence. OSW-1 showed slightly lower activity (Kapp = 0.31 μM-1; r50 = 0.78), and the soyasaponin was the lowest in the membrane affinity and the calcein leakage activity (Kapp = 0.017 μM-1; r50 = 1.66). The effect of OSW-1 was further assessed using confocal microscopy in an experiment utilizing DiI and rhodamine 6G as the fluorescence probes. The addition of 30 μM OSW-1 induced inward membrane curvature in some giant unilamellar vesicles (GUVs). At the higher OSW-1 concentration (58 μM, r50 = 0.78) where the 50% calcein leakage was observed, the morphology of some GUVs became elongated. With digitonin at the corresponding concentration (35 μM, r50 = 0.47), membrane disruption and formation of large aggregates in aqueous solution were observed, probably due to a detergent-type mechanism. These saponins, including OSW-1, required Chol to exhibit their potent membrane activity although their mechanisms are thought to be different. At the effective concentration, OSW-1 preferably binds to the bilayers without prominent disruption of vesicles and exerts its activity through the formation of saponin-Chol complexes, probably resulting in membrane permeabilization.
Collapse
Affiliation(s)
- Raymond Malabed
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
16
|
In Search of High-Yielding and Single-Compound-Yielding Plants: New Sources of Pharmaceutically Important Saponins from the Primulaceae Family. Biomolecules 2020; 10:biom10030376. [PMID: 32121337 PMCID: PMC7175136 DOI: 10.3390/biom10030376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/04/2022] Open
Abstract
So far, only a few primrose species have been analyzed regarding their saponin composition and content. Moreover, the roots of only two of them are defined by the European Union (EU) Pharmacopoeia monograph and commercially utilized by the pharmaceutical industry. Thus, this study intended to find some new sources of main triterpene saponins from Primulae radix, namely primulasaponins I and II together with the closely related sakurasosaponin. Using isolated standards, UHPLC-ESI-HRMS served to assess over 155 Primulaceae members qualitatively and quantitatively. Nine examples of plants accumulating over 5% of primulasaponin I in their roots were found. Among them, in one case, it was found as the almost sole secondary metabolite with the concentration of 15–20% (Primula grandis L.). A reasonable content of primulasaponin II was found to be typical for Primula vulgaris Huds. and P. megaseifolia Boiss. & Bal. The sakurasosaponin level was found in seven species to exceed 5%. The finding of new, single and rich sources of the abovementioned biomolecules among species that were never analyzed phytochemically is important for future research and economic benefit. The chemotaxonomic significance of the occurrence of these three saponins in Primulaceae is discussed.
Collapse
|
17
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
18
|
Glycoalkaloids: Structure, Properties, and Interactions with Model Membrane Systems. Processes (Basel) 2019. [DOI: 10.3390/pr7080513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The glycoalkaloids which are secondary metabolites from plants have proven to be of significant interest for their biological properties both in terms of their roles in plant biology and the effects they exhibit when ingested by humans. The main feature of the action of glycoalkaloids is their strong binding to 3β-hydroxysterols, such as cholesterol, to form complexes with the consequence that membrane structure is significantly perturbed, and leakage or release of contents inside cells or liposomes becomes possible. The glycoalkaloids have been studied for their ability to inhibit the growth of cancer cells and in other roles such as vaccine adjuvants and as synergistic agents when combined with other therapeutics. The glycoalkaloids have rich and complex physical behavior when interacting with model membranes for which many aspects are yet to be understood. This review introduces the general properties of glycoalkaloids and aspects of their behavior, and then summarizes their effects against model membrane systems. While there are many glycoalkaloids that have been identified, most physical or biological studies have focused on the readily available ones from tomatoes (α-tomatine), potatoes (α-chaconine and α-solanine), and eggplant (α-solamargine and α-solasonine).
Collapse
|
19
|
Humisto A, Jokela J, Teigen K, Wahlsten M, Permi P, Sivonen K, Herfindal L. Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1510-1521. [DOI: 10.1016/j.bbamem.2019.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 01/30/2023]
|
20
|
Zheng S, Wang Y, Liu H, Chang W, Xu Y, Lin F. Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods. Chem Res Toxicol 2019; 32:1014-1026. [DOI: 10.1021/acs.chemrestox.8b00347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
- Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Yibing Wang
- Genetic Screening Center, National Institute of Biological Sciences, Beijing 102206, P. R. China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, P. R. China
| | - Hongmei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Wenping Chang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Yong Xu
- Center of Chemical Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, P. R. China
| | - Fu Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
21
|
Amadei F, Fröhlich B, Stremmel W, Tanaka M. Nonclassical Interactions of Phosphatidylcholine with Mucin Protect Intestinal Surfaces: A Microinterferometry Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14046-14057. [PMID: 30359036 DOI: 10.1021/acs.langmuir.8b03035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Albeit many studies demonstrated that the accumulation of phospholipids in the intestinal mucosal surfaces is essential for the protection of colon epithelia against pathogenic bacteria, the mechanism of interactions between phospholipids and the surface protein mucin is not well understood. In this study, the significance of interfacial interactions between phospholipids and mucin proteins was quantified by the combination of an in vitro intestinal surface model and label-free microinterferometry. The model of intestinal surfaces consists of planar lipid membranes deposited on solid substrates (supported membranes) that display mucin proteins at defined surface densities. Following the quantitative characterization of the systems, we monitored the vertical fluctuation of 10 μm-large particles on model intestinal surfaces by using microinterferometry, and calculated the effective interfacial interaction potentials by analytically solving the Langevin equation. We found that the spring constant of interfacial potentials calculated based on a harmonic approximation increased concomitantly with the increase in surface potentials, indicating the dominant role of electrostatic interactions. Intriguingly, the spring constants of particles coated with phospholipids do not follow electrostatic interactions. The spring constant of particles coated with zwitterionic phosphatidylcholine was larger compared to membranes incorporating positively or negatively charged lipids. Our data suggested the presence of another underlying molecular level interaction, such as phosphocholine-saccharide interactions. The fact that phosphatidylcholine sustains the binding capability to enzymatically degraded mucin suggests that the direct delivery of phosphatidylcholine to the damaged mucus is a promising strategy for the better treatment of patients affected by inflammatory bowel diseases.
Collapse
Affiliation(s)
- Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | - Benjamin Fröhlich
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | - Wolfgang Stremmel
- Medical Center Baden-Baden , D76530 Baden-Baden , Germany
- Internal Medicine IV , University Hospital Heidelberg , D69120 Heidelberg , Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study , Kyoto University , 606-8501 Kyoto , Japan
| |
Collapse
|
22
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
23
|
Membrane cholesterol delays cellular apoptosis induced by ginsenoside Rh2, a steroid saponin. Toxicol Appl Pharmacol 2018; 352:59-67. [DOI: 10.1016/j.taap.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 01/25/2023]
|
24
|
Matsuzaki T, Ito H, Chevyreva V, Makky A, Kaufmann S, Okano K, Kobayashi N, Suganuma M, Nakabayashi S, Yoshikawa HY, Tanaka M. Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Phys Chem Chem Phys 2018; 19:19937-19947. [PMID: 28721420 DOI: 10.1039/c7cp02771k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physical interactions of four major green tea catechin derivatives with cell membrane models were systemically investigated. Catechins with the galloyl moiety caused the aggregation of small unilamellar vesicles and an increase in the surface pressure of lipid monolayers, while those without did not. Differential scanning calorimetry revealed that, in a low concentration regime (≤10 μM), catechin molecules are not significantly incorporated into the hydrophobic core of lipid membranes as substitutional impurities. Partition coefficient measurements revealed that the galloyl moiety of catechin and the cationic quaternary amine of lipids dominate the catechin-membrane interaction, which can be attributed to the combination of electrostatic and cation-π interactions. Finally, we shed light on the mechanical consequence of catechin-membrane interactions using the Fourier-transformation of the membrane fluctuation. Surprisingly, the incubation of cell-sized vesicles with 1 μM galloyl catechins, which is comparable to the level in human blood plasma after green tea consumption, significantly increased the bending stiffness of the membranes by a factor of more than 60, while those without the galloyl moiety had no detectable influence. Atomic force microscopy and circular dichroism spectroscopy suggest that the membrane stiffening is mainly attributed to the adsorption of galloyl catechin aggregates to the membrane surfaces. These results contribute to our understanding of the physical and thus the generic functions of green tea catechins in therapeutics, such as cancer prevention.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Chemistry, Saitama University, Sakura-ku, Saitama, 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rosilio V. How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions? ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.abl.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Malabed R, Hanashima S, Murata M, Sakurai K. Sterol-recognition ability and membrane-disrupting activity of Ornithogalum saponin OSW-1 and usual 3-O-glycosyl saponins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2516-2525. [PMID: 28947142 DOI: 10.1016/j.bbamem.2017.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
OSW-1 is a structurally unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, and has exhibited highly potent and selective cytotoxicity in tumor cell lines. This study aimed to investigate the molecular mechanism for the membrane-permeabilizing activity of OSW-1 in comparison with those of other saponins by using various spectroscopic approaches. The membrane effects and hemolytic activity of OSW-1 were markedly enhanced in the presence of membrane cholesterol. Binding affinity measurements using fluorescent cholestatrienol and solid-state NMR spectroscopy of a 3-d-cholesterol probe suggested that OSW-1 interacts with membrane cholesterol without forming large aggregates while 3-O-glycosyl saponin, digitonin, forms cholesterol-containing aggregates. The results suggest that OSW-1/cholesterol interaction is likely to cause membrane permeabilization and pore formation without destroying the whole membrane integrity, which could partly be responsible for its highly potent cell toxicity.
Collapse
Affiliation(s)
- Raymond Malabed
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
27
|
Li C, Li Z, Xun S, Jiang P, Yan R, Chen M, Hu F, Rupp RA, Zhang X, Pan L, Xu J. Protection of the biconcave profile of human erythrocytes against osmotic damage by ultraviolet-A irradiation through membrane-cytoskeleton enhancement. Cell Death Discov 2017; 3:17040. [PMID: 28729912 PMCID: PMC5512140 DOI: 10.1038/cddiscovery.2017.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
To perform various physiological functions, erythrocytes possess a unique biconcave shape provided by a special architecture of the membrane-skeleton system. In the present work, we use a simple irradiation method to treat human erythrocytes with 365 nm ultraviolet-A (UVA) light at the single-cell level in vitro. Depending on the irradiation dose, UVA show protection of the biconcave profile against the detrimental action of distilled water. This protective effect can also be confirmed for saponin that damages the membrane-skeleton by vesiculation and pore formation. Interestingly, at two irradiation doses of UVA pretreatment, erythrocytes still seem to exhibit cell viability as tested by trypan blue assay even if distilled water or saponin is added. The oxidants hydrogen peroxide and cumene hydroperoxide partly simulate the protective effects. Taken together, these results demonstrate that 365 nm UVA irradiation can protect the biconcave profile of human erythrocytes through membrane-skeleton enhancement associated with a production of oxidants.
Collapse
Affiliation(s)
- Cunbo Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Zheming Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Shuang Xun
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Pengchong Jiang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mincai Chen
- Department of Blood Transfusion, PLA 307 Hospital, Beijing, China
| | - Fen Hu
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Romano A Rupp
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Xinzheng Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Leiting Pan
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.,The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
| | - Jingjun Xu
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
28
|
John T, Voo ZX, Kubeil C, Abel B, Graham B, Spiccia L, Martin LL. Effects of guanidino modified aminoglycosides on mammalian membranes studied using a quartz crystal microbalance. MEDCHEMCOMM 2017; 8:1112-1120. [PMID: 30108822 PMCID: PMC6072410 DOI: 10.1039/c7md00054e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023]
Abstract
The increase in bacterial and viral resistance to current therapeutics has led to intensive research for new antibacterial and antiviral agents. Among these, aminoglycosides and their guanidino derivatives are potent candidates targeting specific RNA sequences. It is necessary that these substances can pass across mammalian membranes in order to reach their intracellular targets. This study investigated the effects of the aminoglycosides kanamycin A and neomycin B and their guanidino derivatives on mammalian mimetic membranes using a quartz crystal microbalance with dissipation monitoring (QCM-D). Lipid bilayers as membrane models were deposited onto gold coated quartz crystals and aminoglycosides added afterwards. Notably, the guanidino derivatives exhibited an initial stiffening of the membrane layer indicating a quick insertion of the planar guanidino groups into the membrane. The guanidino derivatives also reached their maximum binding to the membrane at lower concentrations than the native compounds. Therefore, these modified aminoglycosides are promising agents for the development of new antimicrobial treatments.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
- Leibniz Institute of Surface Modification, and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Zhi Xiang Voo
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Clemens Kubeil
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Bernd Abel
- Leibniz Institute of Surface Modification, and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Bim Graham
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Leone Spiccia
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Lisandra L Martin
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| |
Collapse
|
29
|
Orczyk M, Wojciechowski K, Brezesinski G. Disordering Effects of Digitonin on Phospholipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3871-3881. [PMID: 28333465 DOI: 10.1021/acs.langmuir.6b04613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Digitonin, a steroidal saponin obtained from the foxglove plant (Digitalis purpurea), displays a wide spectrum of biological properties and is often used as a model in mechanistic investigations of the biological activity of saponins. In the present study, Langmuir monolayers of zwitterionic (DPPC, DMPE, POPC, POPE, DSPC, DSPE, and DPPE) and ionic (DPPS and DPPG) phospholipids were employed in order to better understand the effect of digitonin on the lipid organization. For this purpose, a combination of surface pressure relaxation, infrared reflection absorption spectroscopy (IRRAS), and fluorescence microscopy measurements was used. The observed increase in surface pressure (Π) suggests that digitonin can adsorb at the air/water interface, both bare and covered with the uncompressed phospholipid monolayers. However, the detailed analysis of IRRAS and fluorescence microscopy data shows that digitonin interacts with the lipid monolayers in a very selective way, and both the headgroup and the lipid tails affect this interaction. Nevertheless, it should be noted that in no case did digitonin cause any disruptive effects on the monolayers. The DPPE and DPPS monolayers get disordered by penetration with digitonin, despite an increase in surface pressure, leading to an unprecedented LC-LE transition. Interestingly, saponin could be easily squeezed out of these monolayers by mechanical compression.
Collapse
Affiliation(s)
- M Orczyk
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - K Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - G Brezesinski
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Smith WS, Baker EJ, Holmes SE, Koster G, Hunt AN, Johnston DA, Flavell SU, Flavell DJ. Membrane cholesterol is essential for triterpenoid saponin augmentation of a saporin-based immunotoxin directed against CD19 on human lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:993-1007. [PMID: 28235471 DOI: 10.1016/j.bbamem.2017.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/06/2023]
Abstract
Triterpenoid saponins from Saponinum Album (SA) exert potent lytic effects on eukaryotic cell plasma membranes and, when used at sub-lytic concentrations, significantly augment the cytotoxicity of saporin-based immunotoxins (IT). To help elucidate the mechanism(s) behind these two phenomena we investigated the role of cholesterol to both. Human Daudi lymphoma cells were lipid deprived using a combination of three different approaches. Following treatment, the total cellular lipid content was analyzed by electrospray ionization mass spectrometry (ESI-MS) and plasma membrane (PM) cholesterol content measured using the lipophilic fluorescent probe NR12S. Maximal lipid deprivation of cells resulted in a complete loss of sensitivity to lysis by SA. Similarly augmentation of the anti-CD19 immunotoxin (IT) BU12-SAPORIN by SA was lost but without a concomitant loss of intrinsic IT cytotoxicity. The lytic activity of SA was restored following incubation of lipid deprived Daudi cells with Synthecol or LDL. The augmentative effect of SA on IT cytotoxicity for Daudi cells was restored following repletion of PM cholesterol levels with LDL. NR12S fluorescence and ESI-MS analysis of cellular lipids demonstrated that restoration of SA lytic activity by Synthecol was entirely due to increased PM cholesterol levels. Restoration of cellular and PM cholesterol levels by LDL also restored the augmentative effect of SA for IT, an effect associated with repletion of PM cholesterol with minor changes in some phospholipid species. These results indicate that the lytic and IT augmentative properties of SA are cholesterol-dependent in contrast to intrinsic IT cytotoxicity that is at least partially cholesterol independent.
Collapse
Affiliation(s)
- Wendy S Smith
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Ella J Baker
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Suzanne E Holmes
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Grielof Koster
- NIHR Respiratory Biomedical Research Unit, UHS, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Alan N Hunt
- Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Sopsamorn U Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom.
| |
Collapse
|
31
|
Wojciechowski K, Orczyk M, Trapp M, Gutberlet T. Effect of triterpene and steroid saponins on lecithin bilayers. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538:183-192. [DOI: 10.1038/nature19764] [Citation(s) in RCA: 537] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
|
33
|
Wojciechowski K, Orczyk M, Gutberlet T, Brezesinski G, Geue T, Fontaine P. On the Interaction between Digitonin and Cholesterol in Langmuir Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9064-9073. [PMID: 27518122 DOI: 10.1021/acs.langmuir.6b01737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this article, we describe the effect of a highly hemolytic saponin, digitonin, on model lipids cholesterol and dipalmitoylphosphatidylcholine (DPPC) using a combination of tensiometric (surface pressure and dilatational surface elasticity), spectroscopic (infrared reflection absorption spectroscopy, IRRAS), microscopic (fluorescence microscopy), and scattering techniques (neutron reflectivity, NR, and grazing incidence X-ray diffraction, GIXD). The monolayers of individual lipids and their 10:9 (mol/mol) mixture were exposed to an aqueous solution of digitonin (10(-4) M) by subphase exchange using a setup developed recently in our laboratory. The results confirm that digitonin can adsorb onto both bare and lipid-covered water-air interfaces. In the case of DPPC, a relatively weak interaction can be observed, but the presence of cholesterol drastically enhances the effect of digitonin. The latter is shown to dissociate the weak cholesterol-DPPC complexes and to bind cholesterol in an additional layer attached to the original lipid monolayer.
Collapse
Affiliation(s)
- Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marta Orczyk
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Thomas Gutberlet
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Germany
| | - Thomas Geue
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , WHGA/110, 5232 Villigen - PSI, Switzerland
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, Gif-sur-Yvette Cedex, France
| |
Collapse
|
34
|
Poyton MF, Sendecki AM, Cong X, Cremer PS. Cu2+ Binds to Phosphatidylethanolamine and Increases Oxidation in Lipid Membranes. J Am Chem Soc 2016; 138:1584-90. [DOI: 10.1021/jacs.5b11561] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Matthew F. Poyton
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16801, United States
| | - Anne M. Sendecki
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16801, United States
| | - Xiao Cong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Paul S. Cremer
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16801, United States
- Department
of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
35
|
Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:363-73. [PMID: 26654784 DOI: 10.1016/j.bbamem.2015.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023]
Abstract
The interactions between three triterpene saponins: α-hederin, hederacoside C and ammonium glycyrrhizate with model lipids: cholesterol and dipalmitoylphosphatidylcholine (DPPC) are described. The oleanolic acid-type saponins (α-hederin and hederacoside C) were shown to form 1:1 complexes with lipids in bulk, characterized by stability constants in the range (4.0±0.2)·10(3)-(5.0±0.4)·10(4) M(-1). The complexes with cholesterol are generally stronger than those with DPPC. On the contrary, ammonium glycyrrhizate does not form complexes with any of the lipids in solution. The saponin-lipid interactions were also studied in a confined environment of Langmuir monolayers of DPPC and DPPC/cholesterol with the saponins present in the subphase. A combined monolayer relaxation, surface dilational rheology, fluorescence microscopy and neutron reflectivity (NR) study showed that all three saponins are able to penetrate pure DPPC and mixed DPPC/cholesterol monolayers. Overall, the effect of the saponins on the model lipid monolayers does not fully correlate with the lipid-saponin complex formation in the homogeneous solution. The best correlation was found for α-hederin, for which even the preference for cholesterol over DPPC observed in bulk is well reflected in the monolayer studies and the literature data on its membranolytic activity. Similarly, the lack of interaction of ammonium glycyrrhizate with both lipids is evident equally in bulk and monolayer experiments, as well as in its weak membranolytic activity. The combined bulk and monolayer results are discussed in view of the role of confinement in modulating the saponin-lipid interactions and possible mechanism of membranolytic activity of saponins.
Collapse
|
36
|
Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol. Molecules 2015; 20:20146-60. [PMID: 26569199 PMCID: PMC6332127 DOI: 10.3390/molecules201119682] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
In the present investigation we studied the molecular mechanisms of the monodesmosidic saponin digitonin on natural and artificial membranes. We measured the hemolytic activity of digitonin on red blood cells (RBCs). Also different lipid membrane models (large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs) in the presence and absence of cholesterol were employed. The stability and permeability of the different vesicle systems were studied by using calcein release assay, GUVs membrane permeability assay using confocal microscopy (CM) and fluorescence correlation spectroscopy (FCS) and vesicle size measurement by dynamic light scattering (DLS). The results support the essential role of cholesterol in explaining how digitonin can disintegrate biological and artificial membranes. Digitonin induces membrane permeability or causes membrane rupturing only in the presence of cholesterol in an all-or-none mechanism. This effect depends on the concentrations of both digitonin and cholesterol. At low concentrations, digitonin induces membrane permeability while keeping the membrane intact. When digitonin is combined with other drugs, a synergistic potentiation can be observed because it facilitates their uptake.
Collapse
|
37
|
Wink M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. MEDICINES 2015; 2:251-286. [PMID: 28930211 PMCID: PMC5456217 DOI: 10.3390/medicines2030251] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/13/2023]
Abstract
Plants produce a wide diversity of secondary metabolites (SM) which serve them as defense compounds against herbivores, and other plants and microbes, but also as signal compounds. In general, SM exhibit a wide array of biological and pharmacological properties. Because of this, some plants or products isolated from them have been and are still used to treat infections, health disorders or diseases. This review provides evidence that many SM have a broad spectrum of bioactivities. They often interact with the main targets in cells, such as proteins, biomembranes or nucleic acids. Whereas some SM appear to have been optimized on a few molecular targets, such as alkaloids on receptors of neurotransmitters, others (such as phenolics and terpenoids) are less specific and attack a multitude of proteins by building hydrogen, hydrophobic and ionic bonds, thus modulating their 3D structures and in consequence their bioactivities. The main modes of action are described for the major groups of common plant secondary metabolites. The multitarget activities of many SM can explain the medical application of complex extracts from medicinal plants for more health disorders which involve several targets. Herbal medicine is not a placebo medicine but a rational medicine, and for several of them clinical trials have shown efficacy.
Collapse
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, Heidelberg D-69120, Germany.
| |
Collapse
|
38
|
Foglia F, Lawrence M, Barlow D. Studies of model biological and bio-mimetic membrane structure: Reflectivity vs diffraction, a critical comparison. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Makky A, Tanaka M. Impact of lipid oxidization on biophysical properties of model cell membranes. J Phys Chem B 2015; 119:5857-63. [PMID: 25870900 DOI: 10.1021/jp512339m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The oxidization of glycerophospholipids in cell membranes due to aging and environmental stresses may cause a variety of pathological and physiological consequences. A variety of oxidized phospholipid products (OxPl) are produced by the chemical oxidization of unsaturated hydrocarbon chains, which would significantly change the physicochemical properties of cell membranes. In this work, we constructed cell membrane models in the absence and presence of two stable oxidized lipid products and investigated their impact on physical properties of supported membranes using quartz crystal microbalance with dissipation (QCM-D) and high-energy X-ray reflectivity (XRR). Our experimental findings suggest that the lipid oxidization up to 20 mol % leads to the rupture of vesicles right after the adsorption. Our XRR analysis unravels the membrane thinning and the decrease in the lateral ordering of lipids, which can be explained by the decrease in the lateral packing of hydrocarbon chains. Further studies on mechanics of membranes incorporating oxidized lipids can be attributed to the decrease in the bending rigidity and the increase in the permeability.
Collapse
Affiliation(s)
- Ali Makky
- †Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
| | - Motomu Tanaka
- †Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany.,‡Institute for Toxicology and Genetics, Karlsruhe Institute for Technology, D76021 Karlsruhe, Germany.,§Institute for Integrated Cell-Material Sciences (WPI iCeMS), Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|