1
|
Urui T, Mizuno M, Abe-Yoshizumi R, Kandori H, Mizutani Y. Structural Evolution of Retinal Chromophore in Early Intermediates of Inward and Outward Proton-Pumping Rhodopsins. J Phys Chem B 2025; 129:41-51. [PMID: 39689156 DOI: 10.1021/acs.jpcb.4c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Proton-pumping rhodopsins, which consist of seven transmembrane helices and have a retinal chromophore bound to a lysine side chain through a Schiff base linkage, offer valuable insights for developing unidirectional ion transporters. Despite identical overall structures and membrane topologies of outward and inward proton-pumping rhodopsins, these proteins transport protons in opposing directions, suggesting a rational mechanism that enables protons to move in different directions within similar protein structures. In the present study, we clarified the chromophore structures in early intermediates of inward and outward proton-pumping rhodopsins. Most importantly, common to both pumps, the hydrogen bond of the Schiff base became stronger in the L intermediate than in the unphotolyzed state. Experimental data on the chromophore structures of the L intermediates and proton-pumping activities indicated that the direction of proton release from the Schiff base during the L-to-M transition is determined not by the structure of the retinal chromophore but by the number of negative charges on the extracellular side of the Schiff base. This is in contrast to the idea that the chromophore configuration is a determinant for the direction of proton uptake. The present study, together with our previous studies, clarifies the determining factors of the transport direction in inward and outward proton-pumping rhodopsins.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Zhou Z, Chen Z, Kang XW, Ding B, Zou S, Tang S, Zhou Y, Wang B, Zhong D. Elucidation of a distinct photoreduction pathway in class II Arabidopsis thaliana photolyase. Proc Natl Acad Sci U S A 2025; 122:e2416284121. [PMID: 39739803 PMCID: PMC11725880 DOI: 10.1073/pnas.2416284121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S. Shu, A. Sancar, D. Zhong, Science 354, 209-213 (2016)]. Using layer-by-layer mutant design and femtosecond spectroscopy, we have successfully determined the rates of electron transfer and proton transfer, driving force, and reorganization energy for nine elementary steps involved in the initial photoreduction of class II Arabidopsis thaliana photolyase (AtPL), thereby constructing the photoreduction network specific to class II PLs. Several dynamic features have been revealed including a slow-rise (172 ps) and fast-decay (26 ps) kinetics between the excited lumiflavin and adenine groups within the flavin adenine dinucleotide cofactor, a slower electron transfer (ET) (22 ps) between the excited lumiflavin and the nearest Trp in the Trp triad (Wa) as compared to reported class I PL (0.8 ps), and a rapid deprotonation of the distal Trp in the Trp triad (Wc). Most strikingly, we captured a slightly energetically unfavorable ET step between Wa and the center Trp (Wb), as opposed to the decreasing reduction potential observed in class I PL that drives the electron flow unidirectionally. Such an energetically uphill ET step leads to a lower photoreduction quantum yield (~34%) in class II AtPL compared to that of class I PL (~45%), raising an important question on the evolutionary implications of various photoreduction networks in photolyases and cryptochromes.
Collapse
Affiliation(s)
- Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
3
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Raics K, Pirisi K, Zhuang B, Fekete Z, Kis-Bicskei N, Pecsi I, Ujfalusi KP, Telek E, Li Y, Collado JT, Tonge PJ, Meech SR, Vos MH, Bodis E, Lukacs A. Photocycle alteration and increased enzymatic activity in genetically modified photoactivated adenylate cyclase OaPAC. J Biol Chem 2023; 299:105056. [PMID: 37468104 PMCID: PMC10448171 DOI: 10.1016/j.jbc.2023.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.
Collapse
Affiliation(s)
- Katalin Raics
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Bo Zhuang
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Ildiko Pecsi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Elek Telek
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang City, China
| | | | - Peter J Tonge
- Department of Chemistry, Stony Brook University, New York, USA
| | | | - Marten H Vos
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Emoke Bodis
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| |
Collapse
|
6
|
Hontani Y, Mehlhorn J, Domratcheva T, Beck S, Kloz M, Hegemann P, Mathes T, Kennis JTM. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J Am Chem Soc 2023; 145:1040-1052. [PMID: 36607126 PMCID: PMC9853863 DOI: 10.1021/jacs.2c10621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands
| | - Jennifer Mehlhorn
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tatiana Domratcheva
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany,Department
of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sebastian Beck
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institute
of Physics, ELI-Beamlines, Na Slovance 2, 182
21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tilo Mathes
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,
| |
Collapse
|
7
|
Tolentino Collado J, Iuliano JN, Pirisi K, Jewlikar S, Adamczyk K, Greetham GM, Towrie M, Tame JRH, Meech SR, Tonge PJ, Lukacs A. Unraveling the Photoactivation Mechanism of a Light-Activated Adenylyl Cyclase Using Ultrafast Spectroscopy Coupled with Unnatural Amino Acid Mutagenesis. ACS Chem Biol 2022; 17:2643-2654. [PMID: 36038143 PMCID: PMC9486806 DOI: 10.1021/acschembio.2c00575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.
Collapse
Affiliation(s)
| | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States
| | - Katalin Pirisi
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti Street 12, Pecs 7624, Hungary
| | - Samruddhi Jewlikar
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States
| | - Katrin Adamczyk
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Jeremy R. H. Tame
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.,
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, New York, New York 11794, United States,
| | - Andras Lukacs
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti Street 12, Pecs 7624, Hungary,
| |
Collapse
|
8
|
The nature of proton-coupled electron transfer in a blue light using flavin domain. Proc Natl Acad Sci U S A 2022; 119:e2203996119. [PMID: 35737837 PMCID: PMC9245699 DOI: 10.1073/pnas.2203996119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proton-coupled electron transfer (PCET) is key to the activation of the blue light using flavin (BLUF) domain photoreceptors. Here, to elucidate the photocycle of the central FMN-Gln-Tyr motif in the BLUF domain of OaPAC, we eliminated the intrinsic interfering W90 in the mutant design. We integrated the stretched exponential function into the target analysis to account for the dynamic heterogeneity arising from the active-site solvation relaxation and the flexible H-bonding network as shown in the molecular dynamics simulation results, facilitating a simplified expression of the kinetics model. We find that, in both the functional wild-type (WT) and the nonfunctional Q48E and Q48A, forward PCET happens in the range of 105 ps to 344 ps, with a kinetic isotope effect (KIE) measured to be ∼1.8 to 2.4, suggesting that the nature of the forward PCET is concerted. Remarkably, only WT proceeds with an ultrafast reverse PCET process (31 ps, KIE = 4.0), characterized by an inverted kinetics of the intermediate FMNH˙. Our results reveal that the reverse PCET is driven by proton transfer via an intervening imidic Gln.
Collapse
|
9
|
Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochem Photobiol Sci 2022; 21:493-507. [PMID: 35391638 DOI: 10.1007/s43630-022-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
BLUF (blue light sensor using flavin) proteins are the blue light receptors that consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region shifts to red. Light signal received in the BLUF domain is intramolecularly or intermolecularly transmitted to the functional region. In this review, the reactions of three BLUF proteins with similar EAL functional groups within the protein (BlrP1, and YcgF), or with a separated target protein (PapB) are described using time-resolved diffusion technique. The diffusion coefficients (D) of the BLUF domains did not significantly change upon photoexcitation, whereas those of the full-length proteins BlrP1 and YcgF and the PapB-PapA system significantly decreased. The changes in D should be due to diffusion-sensitive conformational changes (DSCC) that alter the friction of diffusion. The time constants of the major D changes of BlrP1 and PapB-PapA were similar (~ 20 ms), although the magnitude of the friction change depended on the proteins. Similarities and differences among the reactions of these proteins were clarified from the viewpoint of DSCC.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
10
|
Abstract
Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a β-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.
Collapse
Affiliation(s)
- Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, Szigeti str 12, 7624 Pécs, Hungary
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-3400, United States
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
11
|
Fujisawa T, Masuda S, Takeuchi S, Tahara T. Femtosecond Time-Resolved Absorption Study of Signaling State of a BLUF Protein PixD from the Cyanobacterium Synechocystis: Hydrogen-Bond Rearrangement Completes during Forward Proton-Coupled Electron Transfer. J Phys Chem B 2021; 125:12154-12165. [PMID: 34726926 DOI: 10.1021/acs.jpcb.1c05957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond time-resolved absorption measurements were carried out for the dark and signaling states of a BLUF (Blue Light Using FAD) protein, PixD, from the cyanobacterium Synechocystis. When the dark state was excited, FAD semiquinone radical (FADH•) was produced from the S1 state, and FADH• led to the signaling state. On the other hand, photoexcitation of the signaling state generated FADH• and FAD anion radical (FAD•-), and they decayed back to the original signaling state. In both cases, FADH• was formed and decayed with a proton-coupled electron transfer (PCET) via the hydrogen-bond network that involves FAD, Gln50, and Tyr8, and hence the kinetics of FADH• directly reflects the hydrogen-bond structure in the FAD-binding sites. It was found that the formation rate of FADH• was significantly different between the dark and signaling states, whereas the decay rate was the same. This indicates that the hydrogen-bond network of FAD-Gln50-Tyr8 in the dark and signaling states is initially different but it becomes indistinguishable after FADH• is formed, implying that the FAD-Gln50-Tyr8 hydrogen-bond network is rearranged during the PCET to generate FADH•. The present results best agree with the model in which the Gln tautomerizes without rotation in the signaling-state formation.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
12
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
13
|
Pirisi K, Nag L, Fekete Z, Iuliano JN, Tolentino Collado J, Clark IP, Pécsi I, Sournia P, Liebl U, Greetham GM, Tonge PJ, Meech SR, Vos MH, Lukacs A. Identification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems. Photochem Photobiol Sci 2021; 20:369-378. [PMID: 33721272 DOI: 10.1007/s43630-021-00024-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm-1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals.
Collapse
Affiliation(s)
- Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - Lipsa Nag
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0QX, Oxon, UK
| | - Ildikó Pécsi
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0QX, Oxon, UK
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Marten H Vos
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary.
| |
Collapse
|
14
|
Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:189-206. [PMID: 33398814 DOI: 10.1007/978-981-15-8763-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
Collapse
|
15
|
Chang CF, Kuramochi H, Singh M, Abe-Yoshizumi R, Tsukuda T, Kandori H, Tahara T. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin. Phys Chem Chem Phys 2019; 21:25728-25734. [PMID: 31720623 DOI: 10.1039/c9cp04991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteorhodopsin (PR) is a proton-pumping rhodopsin, and it is known to exhibit a multi-phasic decay of the excited-state population in the primary process. So far, this complex excited-state decay has been attributed to the branching of the relaxation pathway on the excited-state potential energy surface. However, a recent ultrafast spectroscopic study on a sodium-pumping rhodopsin suggested that such a complex decay may originate from the heterogeneity in the ground state due to the acid-base equilibrium of the counterion of the protonated retinal Schiff base (PRSB). In this study, we studied the excited-state dynamics of PR at pH 11 and 4, in which the counterion of the PRSB, Asp97, is completely deprotonated and protonated, respectively. The obtained time-resolved absorption data revealed that the excited-state lifetime is decisively governed by the protonation state of Asp97, and the photoisomerization of the PRSB chromophore proceeds faster and more efficiently when Asp97 is deprotonated. This conclusion was further supported by high similarity of the excited-state dynamics between PR at pH 4 and the D97N mutant in which Asp97 is replaced with neutral Asn. The results of this study suggest that the protonation state of the PRSB counterion plays a decisive role in determining the excited-state dynamics and the photoisomerization reactivity of rhodopsins in general, by making a significant influence on the exited-state potential energy surface of the PRSB chromophore.
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nakasone Y, Kikukawa K, Masuda S, Terazima M. Time-Resolved Study of Interprotein Signaling Process of a Blue Light Sensor PapB–PapA Complex. J Phys Chem B 2019; 123:3210-3218. [DOI: 10.1021/acs.jpcb.9b00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Koutaro Kikukawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-5801, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Tahara S, Singh M, Kuramochi H, Shihoya W, Inoue K, Nureki O, Béjà O, Mizutani Y, Kandori H, Tahara T. Ultrafast Dynamics of Heliorhodopsins. J Phys Chem B 2019; 123:2507-2512. [DOI: 10.1021/acs.jpcb.9b00887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shinya Tahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Oded Béjà
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
18
|
Iwata T, Nagai T, Ito S, Osoegawa S, Iseki M, Watanabe M, Unno M, Kitagawa S, Kandori H. Hydrogen Bonding Environments in the Photocycle Process around the Flavin Chromophore of the AppA-BLUF domain. J Am Chem Soc 2018; 140:11982-11991. [DOI: 10.1021/jacs.8b05123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuya Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Takashi Nagai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinsuke Osoegawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Mineo Iseki
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Masakatsu Watanabe
- The Graduate School for the Creation of New Photonics Industries, Nishi-ku, Hamamatsu 431-1202, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, Tahara T. Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2. J Phys Chem B 2018; 122:4784-4792. [DOI: 10.1021/acs.jpcb.8b01934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Hiroyuki Ohtani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
20
|
Nakajima T, Kuroi K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M. Anomalous pressure effects on the photoreaction of a light-sensor protein from Synechocystis, PixD (Slr1694), and the compressibility change of its intermediates. Phys Chem Chem Phys 2018; 18:25915-25925. [PMID: 27711633 DOI: 10.1039/c6cp05091c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SyPixD (Slr1694) is a blue-light receptor that contains a BLUF (blue-light sensor using a flavin chromophore) domain for the function of phototaxis. The key reaction of this protein is a light-induced conformational change and subsequent dissociation reaction from the decamer to the dimer. In this study, anomalous effects of pressure on this reaction were discovered, and changes in the compressibility of its short-lived intermediates were investigated. While the absorption spectra of the dark and light states are not sensitive to pressure, the formation yield of the first intermediate decreases with pressure to about 40% at 150 MPa. Upon blue-light illumination with a sufficiently strong intensity, the transient grating signal, which represents the dissociation of the SyPixD decamer, was observed at 0.1 MPa, and the signal intensity significantly decreased with increasing pressure. This behavior shows that the dissociation of the decamer from the second intermediate state is suppressed by pressure. However, while the decamer undergoes no dissociation upon excitation of one monomer unit at 0.1 MPa, dissociation is gradually induced with increasing pressure. For solving this strange behavior, the compressibility changes of the intermediates were measured as a function of pressure at weak light intensity. Interestingly, the compressibility change was negative at low pressure, but became positive with increasing pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity was also discussed.
Collapse
Affiliation(s)
- Tsubasa Nakajima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Kunisato Kuroi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Koji Okajima
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Research Institute for Advanced Science and Technology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
21
|
Fujisawa T, Masuda S. Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys Rev 2017; 10:327-337. [PMID: 29235080 PMCID: PMC5899715 DOI: 10.1007/s12551-017-0355-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
Photoreceptor proteins have been used to study how protein conformational changes are induced by alterations in their environments and how their signals are transmitted to downstream factors to dictate physiological responses. These proteins are attractive models because their signal transduction aspects and structural changes can be precisely regulated in vivo and in vitro based on light intensity. Among the known photoreceptors, members of the blue light–using flavin (BLUF) protein family have been well characterized with regard to how they control various light-dependent physiological responses in several microorganisms. Herein, we summarize our current understanding of their photoactivation and signal-transduction mechanisms. For signal transduction, we review recent studies concerning how the BLUF protein, PixD, transmits a light-induced signal to its downstream factor, PixE, to modulate phototaxis of the cyanobacterium Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry, Graduate School of Science and Engineering, Saga University, Saga, 840-8502 Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
22
|
Gil AA, Laptenok SP, Iuliano JN, Lukacs A, Verma A, Hall CR, Yoon GE, Brust R, Greetham GM, Towrie M, French JB, Meech SR, Tonge PJ. Photoactivation of the BLUF Protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues. J Am Chem Soc 2017; 139:14638-14648. [PMID: 28876066 DOI: 10.1021/jacs.7b07849] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavin chromophore in blue-light-using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppABLUF by the introduction of fluorotyrosine (F-Tyr) analogues that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark- to light-adapted form) photoreaction was observed, the change in Y21 pKa led to a 4000-fold increase in the rate of dark-state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppABLUF, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton-coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppABLUF, despite their sharing highly conserved FAD binding architectures.
Collapse
Affiliation(s)
| | - Sergey P Laptenok
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | | | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs , Pecs H-7622, Hungary
| | - Anil Verma
- Central Laser Facility, Harwell Science and Innovation Campus , Didcot, Oxon OX11 0QX, U.K
| | - Christopher R Hall
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | | | | | - Gregory M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus , Didcot, Oxon OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, Harwell Science and Innovation Campus , Didcot, Oxon OX11 0QX, U.K
| | | | - Stephen R Meech
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | | |
Collapse
|
23
|
Piao W, Hanaoka K, Fujisawa T, Takeuchi S, Komatsu T, Ueno T, Terai T, Tahara T, Nagano T, Urano Y. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. J Am Chem Soc 2017; 139:13713-13719. [DOI: 10.1021/jacs.7b05019] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wen Piao
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomotsumi Fujisawa
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tasuku Ueno
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tetsuo Nagano
- Drug
Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate
School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AMED CREST (Japan) Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
24
|
Nag L, Sournia P, Myllykallio H, Liebl U, Vos MH. Identification of the TyrOH •+ Radical Cation in the Flavoenzyme TrmFO. J Am Chem Soc 2017; 139:11500-11505. [PMID: 28745052 DOI: 10.1021/jacs.7b04586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tyrosine (TyrOH) and tryptophan radicals play important roles as intermediates in biochemical charge-transfer reactions. Tryptophanyl radicals have been observed both in their protonated cation form and in their unprotonated neutral form, but to date, tyrosyl radicals have only been observed in their unprotonated form. With a genetically modified form of the flavoenzyme TrmFO as a suitable model system and using ultrafast fluorescence and absorption spectroscopy, we characterize its protonated precursor TyrOH•+, and we show this species to have a distinct visible absorption band and a transition moment that we suggest to lie close to the phenol symmetry axis. TyrOH•+ is formed in ∼1 ps by electron transfer to excited flavin and decays in ∼3 ps by charge recombination. These findings imply that TyrOH oxidation does not necessarily induce its concerted deprotonation. Our results will allow disentangling of photoproduct states in flavoproteins in often-encountered complex situations and more generally are important for understanding redox chains relying on tyrosyl intermediates.
Collapse
Affiliation(s)
- Lipsa Nag
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Pierre Sournia
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| |
Collapse
|
25
|
Abatedaga I, Valle L, Golic AE, Müller GL, Cabruja M, Morán Vieyra FE, Jaime PC, Mussi MA, Borsarelli CD. Integration of Temperature and Blue-Light Sensing in Acinetobacter baumannii
Through the BlsA Sensor. Photochem Photobiol 2017; 93:805-814. [DOI: 10.1111/php.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/17/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC); Universidad Nacional de Santiago del Estero (UNSE); CONICET; Santiago del Estero Argentina
| | - Lorena Valle
- Instituto de Bionanotecnología del NOA (INBIONATEC); Universidad Nacional de Santiago del Estero (UNSE); CONICET; Santiago del Estero Argentina
| | - Adrián E. Golic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Gabriela L. Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Matías Cabruja
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC); Universidad Nacional de Santiago del Estero (UNSE); CONICET; Santiago del Estero Argentina
| | - Paula C. Jaime
- Instituto de Bionanotecnología del NOA (INBIONATEC); Universidad Nacional de Santiago del Estero (UNSE); CONICET; Santiago del Estero Argentina
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC); Universidad Nacional de Santiago del Estero (UNSE); CONICET; Santiago del Estero Argentina
| |
Collapse
|
26
|
Shin N, Hanaoka K, Piao W, Miyakawa T, Fujisawa T, Takeuchi S, Takahashi S, Komatsu T, Ueno T, Terai T, Tahara T, Tanokura M, Nagano T, Urano Y. Development of an Azoreductase-based Reporter System with Synthetic Fluorogenic Substrates. ACS Chem Biol 2017; 12:558-563. [PMID: 28036168 DOI: 10.1021/acschembio.6b00852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzyme/substrate pairs, such as β-galactosidase with chromogenic x-gal substrate, are widely used as reporters to monitor biological events, but there is still a requirement for new reporter systems, which may be orthogonal to existing systems. Here, we focused on azoreductase (AzoR). We designed and synthesized a library of azo-rhodamine derivatives as candidate fluorogenic substrates. These derivatives were nonfluorescent, probably due to ultrafast conformational change around the N═N bond after photoexcitation. We found that AzoR-mediated reduction of the azo bond of derivatives bearing an electron-donating group on the azobenzene moiety was followed by nonenzymatic cleavage to afford highly fluorescent 2-methyl-rhodamine green (2-Me RG), which was well retained in cells. We show that the AzoR/compound 9 reporter system can detect azoreductase-expressing live cells at the single cell level.
Collapse
Affiliation(s)
- Narae Shin
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Wen Piao
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Miyakawa
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Wako 351-0198, Japan
| | - Shodai Takahashi
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tasuku Ueno
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Terai
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Wako 351-0198, Japan
| | - Masaru Tanokura
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsuo Nagano
- Drug
Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate
School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- AMED CREST (Japan) Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
27
|
Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, Tahara T. Ultrafast photoreaction dynamics of a light-driven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. J Phys Chem Lett 2015; 6:4481-4486. [PMID: 26582475 DOI: 10.1021/acs.jpclett.5b01994] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the first femtosecond time-resolved absorption study on ultrafast photoreaction dynamics of a recently discovered retinal protein, KR2, which functions as a light-driven sodium-ion pump. The obtained data show that the excited-state absorption around 460 nm and the stimulated emission around 720 nm decay concomitantly with a time constant of 180 fs. This demonstrates that the deactivation of the S1 state of KR2, which involves isomerization of the retinal chromophore, takes place three times faster than that of bacteriorhodopsin. In accordance with this rapid electronic relaxation, the photoproduct band assignable to the J intermediate grows up at ∼620 nm, indicating that the J intermediate is directly formed with the S1 → S0 internal conversion. The photoproduct band subsequently exhibits a ∼30 nm blue shift with a 500 fs time constant, corresponding to the conversion to the K intermediate. On the basis of the femtosecond absorption data obtained, we discuss the mechanism for the rapid photoreaction of KR2 and its relevance to the unique function of the sodium-ion pump.
Collapse
Affiliation(s)
- Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , Yokohama 226-8501, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| | - Rei Abe-Yoshizumi
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Hiroyuki Ohtani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , Yokohama 226-8501, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
28
|
Mathes T, Götze JP. A proposal for a dipole-generated BLUF domain mechanism. Front Mol Biosci 2015; 2:62. [PMID: 26579529 PMCID: PMC4630285 DOI: 10.3389/fmolb.2015.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Abstract
The resting and signaling structures of the blue-light sensing using flavin (BLUF) photoreceptor domains are still controversially debated due to differences in the molecular models obtained by crystal and NMR structures. Photocycles for the given preferred structural framework have been established, but a unifying picture combining experiment and theory remains elusive. We summarize present work on the AppA BLUF domain from both experiment and theory. We focus on IR and UV/vis spectra, and to what extent theory was able to reproduce experimental data and predict the structural changes upon formation of the signaling state. We find that the experimental observables can be theoretically reproduced employing any structural model, as long as the orientation of the signaling essential Gln63 and its tautomer state are a choice of the modeler. We also observe that few approaches are comparative, e.g., by considering all structures in the same context. Based on recent experimental findings and a few basic calculations, we suggest the possibility for a BLUF activation mechanism that only relies on electron transfer and its effect on the local electrostatics, not requiring an associated proton transfer. In this regard, we investigate the impact of dispersion correction on the interaction energies arising from weakly bound amino acids.
Collapse
Affiliation(s)
- Tilo Mathes
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Netherlands ; Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin Berlin, Germany
| | - Jan P Götze
- School of Chemistry, University of St Andrews St Andrews, UK
| |
Collapse
|
29
|
Fudim R, Mehlhorn J, Berthold T, Weber S, Schleicher E, Kennis JTM, Mathes T. Photoinduced formation of flavin radicals in BLUF domains lacking the central glutamine. FEBS J 2015; 282:3161-74. [DOI: 10.1111/febs.13297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Roman Fudim
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
| | - Jennifer Mehlhorn
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
| | - Thomas Berthold
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
| | - Stefan Weber
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS); Albert-Ludwigs-Universität Freiburg; Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
- Inorganic Chemistry Laboratory; University of Oxford; UK
| | - John T. M. Kennis
- Biophysics Section; Department of Physics and Astronomy; Faculty of Sciences; VU University; Amsterdam The Netherlands
| | - Tilo Mathes
- Institut für Biologie/Experimentelle Biophysik; Humboldt Universität zu Berlin; Berlin Germany
- Biophysics Section; Department of Physics and Astronomy; Faculty of Sciences; VU University; Amsterdam The Netherlands
| |
Collapse
|