1
|
Hernández B, Coïc YM, Kruglik SG, Sanchez-Cortes S, Ghomi M. Relationships between conformational and vibrational features of tryptophan characteristic Raman markers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124377. [PMID: 38701580 DOI: 10.1016/j.saa.2024.124377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Tryptophan (Trp) residue provides characteristic vibrational markers to the middle wavenumber spectral region of the Raman spectra recorded from peptides and proteins. In this report, we were particularly interested in eight Trp Raman markers, referred to as Wi (i = 1,…,8). All responsible for pronounced Raman lines, these markers originate from indole moiety, a bicyclic conjugated segment involved in the Trp structure. Numerous investigations have previously attempted to relate the variations observed in the spectral features of these markers to the environmental changes of Trp residues. To emphasize the most important points we can mention (i) the variations in the Raman profile of W4 (∼1360 cm-1) and W5 (∼1340 cm-1), frequently observed as a doublet with variable intensity ratio. These two markers were thought to result from a Fermi-resonance effect between certain planar and nonplanar modes; (ii) the changes observed in the wavenumbers and relative intensities of W4, W7 (∼880 cm-1) and W8 (∼760 cm-1) were supposed to be related to the accessibility of Trp to surrounding water molecules; and (iii) the wavenumber fluctuations of W3 (∼1550 cm-1), taken as a Trp side chain orientational marker. However, some ambiguities still exist regarding the interpretation of these markers, needing further clarification. Herein, upon a joint experimental and theoretical analysis based on a multiconformational approach, attention was paid to the relationships between structural and vibrational features of three indole-containing compounds with increasing structural complexity, i.e., skatole (3-methylindole), tryptophan, and tripeptide Gly-Trp-Gly. This study clearly shows that the existing assignments given to certain Trp Raman markers should be reconsidered, especially those based on the Fermi-resonance origin of W4-W5 (∼1360-1340 cm-1) doublet, as well as the purely environmental dependence of W7 and W8 markers.
Collapse
Affiliation(s)
- Belén Hernández
- LVTS, INSERM U1148. 74 rue Marcel Cachin. 93017 Bobigny Cédex France
| | - Yves-Marie Coïc
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, F-75015 Paris, France
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean-Perrin, 4 Place Jussieu, 75005 Paris, France
| | | | - Mahmoud Ghomi
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain.
| |
Collapse
|
2
|
Tyson K, Tangtartharakul CB, Zeug M, Findling N, Haddy A, Hvastkovs E, Choe JY, Kim JE, Offenbacher AR. Electrochemical and Structural Study of the Buried Tryptophan in Azurin: Effects of Hydration and Polarity on the Redox Potential of W48. J Phys Chem B 2023; 127:133-143. [PMID: 36542812 PMCID: PMC9841983 DOI: 10.1021/acs.jpcb.2c06677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Tryptophan serves as an important redox-active amino acid in mediating electron transfer and mitigating oxidative damage in proteins. We previously showed a difference in electrochemical potentials for two tryptophan residues in azurin with distinct hydrogen-bonding environments. Here, we test whether reducing the side chain bulk at position Phe110 to Leu, Ser, or Ala impacts the electrochemical potentials (E°) for tryptophan at position 48. X-ray diffraction confirmed the influx of crystallographically resolved water molecules for both the F110A and F110L tyrosine free azurin mutants. The local environments of W48 in all azurin mutants were further evaluated by UV resonance Raman (UVRR) spectroscopy to probe the impact of mutations on hydrogen bonding and polarity. A correlation between the frequency of the ω17 mode─considered a vibrational marker for hydrogen bonding─and E° is proposed. However, the trend is opposite to the expectation from a previous study on small molecules. Density functional theory calculations suggest that the ω17 mode reflects hydrogen bonding as well as local polarity. Further, the UVRR data reveal different intensity/frequency shifts of the ω9/ω10 vibrational modes that characterize the local H-bonding environments of tryptophan. The cumulative data support that the presence of water increases E° and reveal properties of the protein microenvironment surrounding tryptophan.
Collapse
Affiliation(s)
- Kristin Tyson
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Chanin B. Tangtartharakul
- Department
of Chemistry and Biochemistry, University
of California at San Diego, La Jolla, California 92093, United States
| | - Matthias Zeug
- Department
of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville North Carolina, 27858, United States
| | - Nathan Findling
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Alice Haddy
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Eli Hvastkovs
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Jun-yong Choe
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
- Department
of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville North Carolina, 27858, United States
| | - Judy E. Kim
- Department
of Chemistry and Biochemistry, University
of California at San Diego, La Jolla, California 92093, United States
| | - Adam R. Offenbacher
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
3
|
López-Peña I, Lee CT, Rivera JJ, Kim JE. Role of the Triplet State and Protein Dynamics in the Formation and Stability of the Tryptophan Radical in an Apoazurin Mutant. J Phys Chem B 2022; 126:6751-6761. [PMID: 35977067 PMCID: PMC9483921 DOI: 10.1021/acs.jpcb.2c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The protein, azurin,
has enabled the study of the tryptophan radical.
Upon UV excitation of tyrosine-deficient apoazurin and in the presence
of a Co(III) electron acceptor, the neutral radical (W48•)
is formed. The lifetime of W48• in apoazurin is 41 s, which
is shorter than the lifetime of several hours in Zn-substituted azurin.
Molecular dynamics simulations revealed enhanced fluctuations of apoazurin
which likely destabilize W48•. The photophysics of W48 was
investigated to probe the precursor state for ET. The phosphorescence
intensity was eliminated in the presence of an electron acceptor while
the fluorescence was unchanged; this quenching of the phosphorescence
is attributed to ET. The kinetics associated with W48• were
examined with a model that incorporates intersystem crossing, ET,
deprotonation, and decay of the cation radical. The estimated rate
constants for ET (6 × 106 s–1) and
deprotonation (3 × 105 s–1) are
in agreement with a photoinduced mechanism where W48• is derived
from the triplet state. The triplet as the precursor state for ET
was supported by photolysis of apoazurin with 280 nm in the absence
and presence of triplet-absorbing 405 nm light. Absorption bands from
the neutral radical were observed only in the presence of blue light.
Collapse
Affiliation(s)
- Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| | - Christopher T Lee
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| | - Joel J Rivera
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Sloan-Dennison S, Zoltowski CM, El-Khoury PZ, Schultz ZD. Surface Enhanced Raman Scattering Selectivity in Proteins Arises from Electron Capture and Resonant Enhancement of Radical Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:9548-9558. [PMID: 32542105 PMCID: PMC7295139 DOI: 10.1021/acs.jpcc.0c01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmon-enhanced Raman scattering is a powerful approach to detecting and characterizing proteins in live and dynamic biological systems. However, the selective detection/enhancement of specific residues as well as spectral diffusion and fluctuations have complicated the interpretation of enhanced Raman spectra and images of biological matter. In this work, we demonstrate that the amino acid tryptophan (Trp) can capture an electron from an excited plasmon, which generates a radical anion that is resonantly enhanced: a visible excited electronic state slides into resonance upon charging. This surface enhanced resonance Raman scattering (SERRS) mechanism explains the persistence of Trp signatures in the SERS and TERS spectra of proteins. Evidence for this picture includes the observation of visible resonances in the UV-Vis extinction spectrum, changes in the ground state vibrational spectrum, and plasmon-resonance dependent behavior. DFT calculations support the experimental observations. The behavior observed from the free Trp molecule is shown to explain the SERS spectrum of the Trp-cage protein. In effect, resonant Raman scattering from radicals formed through plasmonic excitation represents an under-investigated mechanism that may be exploited for chemical sensing applications.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Chelsea M. Zoltowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Patrick Z. El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- corresponding author
| |
Collapse
|
5
|
Proniewicz E, Tąta A, Wójcik A, Starowicz M, Pacek J, Molenda M. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine. Phys Chem Chem Phys 2020; 22:28100-28114. [DOI: 10.1039/d0cp03517c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work evaluates the ability of homogeneous, stable, and pure zinc oxide nanoparticles (ZnONPs-GS) synthesized by “green chemistry” for the selective detection of four neurotransmitters present in body fluids and promotion of the SERS effect.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering
- AGH University of Science and Technology
- 30-059 Krakow
- Poland
| | - Agnieszka Tąta
- Faculty of Foundry Engineering
- AGH University of Science and Technology
- 30-059 Krakow
- Poland
| | - Anna Wójcik
- Institute of Metallurgy and Materials Science of Polish Academy of Science
- 30-059 Krakow
- Poland
| | - Maria Starowicz
- Faculty of Foundry Engineering
- AGH University of Science and Technology
- 30-059 Krakow
- Poland
| | - Joanna Pacek
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Marcin Molenda
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| |
Collapse
|
6
|
Zhou Y, Liu CH, Wu B, Yu X, Cheng G, Zhu K, Wang K, Zhang C, Zhao M, Zong R, Zhang L, Shi L, Alfano RR. Optical biopsy identification and grading of gliomas using label-free visible resonance Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31512439 PMCID: PMC6997631 DOI: 10.1117/1.jbo.24.9.095001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/26/2019] [Indexed: 05/06/2023]
Abstract
Glioma is one of the most refractory types of brain tumor. Accurate tumor boundary identification and complete resection of the tumor are essential for glioma removal during brain surgery. We present a method based on visible resonance Raman (VRR) spectroscopy to identify glioma margins and grades. A set of diagnostic spectral biomarkers features are presented based on tissue composition changes revealed by VRR. The Raman spectra include molecular vibrational fingerprints of carotenoids, tryptophan, amide I/II/III, proteins, and lipids. These basic in situ spectral biomarkers are used to identify the tissue from the interface between brain cancer and normal tissue and to evaluate glioma grades. The VRR spectra are also analyzed using principal component analysis for dimension reduction and feature detection and support vector machine for classification. The cross-validated sensitivity, specificity, and accuracy are found to be 100%, 96.3%, and 99.6% to distinguish glioma tissues from normal brain tissues, respectively. The area under the receiver operating characteristic curve for the classification is about 1.0. The accuracies to distinguish normal, low grade (grades I and II), and high grade (grades III and IV) gliomas are found to be 96.3%, 53.7%, and 84.1% for the three groups, respectively, along with a total accuracy of 75.1%. A set of criteria for differentiating normal human brain tissues from normal control tissues is proposed and used to identify brain cancer margins, yielding a diagnostic sensitivity of 100% and specificity of 71%. Our study demonstrates the potential of VRR as a label-free optical molecular histopathology method used for in situ boundary line judgment for brain surgery in the margins.
Collapse
Affiliation(s)
- Yan Zhou
- PLA Air Force Medical Center, Department of Neurosurgery, Beijing, China
| | - Cheng-Hui Liu
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| | - Binlin Wu
- Southern Connecticut State University, CSCU Center for Nanotechnology, Physics Department, New Haven, Connecticut, United States
| | - Xinguang Yu
- PLA General Hospital, Department of Neurosurgery, Beijing, China
| | - Gangge Cheng
- PLA Air Force Medical Center, Department of Neurosurgery, Beijing, China
| | - Ke Zhu
- Chinese Academy of Sciences, Institute of Physics, Beijing, China
| | - Kai Wang
- Jilin University, State Key Laboratory of Superhard Materials, Changchun, China
| | - Chunyuan Zhang
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| | - Mingyue Zhao
- PLA Air Force Medical Center, Department of Neurosurgery, Beijing, China
| | - Rui Zong
- PLA General Hospital, Department of Neurosurgery, Beijing, China
| | - Lin Zhang
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| | - Lingyan Shi
- University of California San Diego, Department of Bioengineering, La Jolla, California, United States
| | - Robert R. Alfano
- City University of New York, Institute for Ultrafast Spectroscopy and Lasers, Department of Physics of the City College, New York, United States
| |
Collapse
|
7
|
Du J, Wei Y, Zhao Y, Xu F, Wang Y, Zheng W, Luo Q, Wang M, Wang F. A Photoactive Platinum(IV) Anticancer Complex Inhibits Thioredoxin-Thioredoxin Reductase System Activity by Induced Oxidization of the Protein. Inorg Chem 2018; 57:5575-5584. [PMID: 29688719 DOI: 10.1021/acs.inorgchem.8b00529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thioredoxin (Trx) is an important enzyme in the redox signaling pathway and is usually overexpressed in tumor cells. We demonstrate herein that the photoactive platinum(IV) anticancer complex trans,trans,trans-[Pt(N3)2(OH)2(Py)2] (1) can bind to His, Glu, and Gln residues of Trx upon the irradiation of blue light. More importantly, complex 1 can also induce the oxidation of Met, Trp, and the Cys catalytic sites to form disulfide bonds by generating reactive oxygen species (ROS) upon photoactivation. These eventually lead to inhibition of activity of Trx enzyme and the Trx system and further increase in the cellular ROS level. We speculate that the oxidative damage not only inhibits Trx activity but also greatly contributes to the anticancer action of complex 1.
Collapse
Affiliation(s)
- Jun Du
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials , Anhui Normal University , Wuhu 241000 , People's Republic of China
| | - Yuanyuan Wei
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials , Anhui Normal University , Wuhu 241000 , People's Republic of China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Fengmin Xu
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials , Anhui Normal University , Wuhu 241000 , People's Republic of China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
8
|
Juszczak LJ, Eisenberg AS. The Color of Cation-π Interactions: Subtleties of Amine-Tryptophan Interaction Energetics Allow for Radical-like Visible Absorbance and Fluorescence. J Am Chem Soc 2017; 139:8302-8311. [PMID: 28537725 DOI: 10.1021/jacs.7b03442] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several peptides and a protein with an inter- or intramolecular cation-π interaction between tryptophan (Trp) and an amine cation are shown to absorb and fluoresce in the visible region of the spectrum. Titration of indole with sodium hydroxide or ammonium hydroxide yields an increasing visible fluorescence as well. Visible absorption and multipeaked fluorescence excitation spectra correlate with experimental absorption spectra and the vibrational modes of calculated absorption spectra for the neutral Trp radical. The radical character of the cation-indole interaction is predicted to stem from the electrostatic dislocation of indole highest occupied molecular orbital (HOMO) charge density toward the cation with a subsequent electronic transition from the HOMO-2 to the HOMO. Because this is a vertical transition, fluorescence is possible. Hydrogen bonding at the indole amine most likely stabilizes the radical-like state. These results provide new spectroscopic tools for the investigation of cation-π interactions in numerous biological systems, among them, proteins and their myriad ligands, and show that one, or at most, two, point mutations with natural amino acids are all that is required to impart visible fluorescence to proteins.
Collapse
Affiliation(s)
- Laura J Juszczak
- Chemistry Department, Brooklyn College, The City University of New York , New York, New York 11210, United States.,PhD programs in Chemistry and Biochemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| | - Azaria S Eisenberg
- Chemistry Department, Brooklyn College, The City University of New York , New York, New York 11210, United States
| |
Collapse
|
9
|
Larson BC, Pomponio JR, Shafaat HS, Kim RH, Leigh BS, Tauber MJ, Kim JE. Photogeneration and Quenching of Tryptophan Radical in Azurin. J Phys Chem B 2015; 119:9438-49. [PMID: 25625660 PMCID: PMC5092234 DOI: 10.1021/jp511523z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptophan and tyrosine can form radical intermediates that enable long-range, multistep electron transfer (ET) reactions in proteins. This report describes the mechanisms of formation and quenching of a neutral tryptophan radical in azurin, a blue-copper protein that contains native tyrosine (Y108 and Y72) and tryptophan (W48) residues. A long-lived neutral tryptophan radical W48• is formed upon UV-photoexcitation of a zinc(II)-substituted azurin mutant in the presence of an external electron acceptor. The quantum yield of W48• formation (Φ) depends upon the tyrosine residues in the protein. A tyrosine-deficient mutant, Zn(II)Az48W, exhibited a value of Φ = 0.080 with a Co(III) electron acceptor. A nearly identical quantum yield was observed when the electron acceptor was the analogous tyrosine-free, copper(II) mutant; this result for the Zn(II)Az48W:Cu(II)Az48W mixture suggests there is an interprotein ET path. A single tyrosine residue at one of the native positions reduced the quantum yield to 0.062 (Y108) or 0.067 (Y72). Wild-type azurin with two tyrosine residues exhibited a quantum yield of Φ = 0.045. These data indicate that tyrosine is able to quench the tryptophan radical in azurin.
Collapse
Affiliation(s)
- Bethany C. Larson
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jennifer R. Pomponio
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | - Rachel H. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Antoine R, Lemoine J, Dugourd P. Electron photodetachment dissociation for structural characterization of synthetic and bio-polymer anions. MASS SPECTROMETRY REVIEWS 2014; 33:501-22. [PMID: 24285407 DOI: 10.1002/mas.21402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 05/25/2023]
Abstract
Tandem mass spectrometry (MS-MS) is a generic term evoking techniques dedicated to structural analysis, detection or quantification of molecules based on dissociation of a precursor ion into fragments. Searching for the most informative fragmentation patterns has led to the development of a vast array of activation modes that offer complementary ion reactivity and dissociation pathways. Collisional activation of ions using atoms, molecules or surface resulting in unimolecular dissociation of activated ions still plays a key role in tandem mass spectrometry. The discovery of electron capture dissociation (ECD) and then the development of other electron-ion or ion/ion reaction methods, constituted a significant breakthrough, especially for structural analysis of large biomolecules. Similarly, photon activation opened promising new frontiers in ion fragmentation owing to the ability of tightly controlled internal energy deposition and easy implementation on commercial instruments. Ion activation by photons includes slow heating methods such as infrared multiple photon dissociation (IRMPD) and black-body infrared radiative dissociation (BIRD) and higher energy methods like ultra-violet photodissociation (UVPD) and electron photo detachment dissociation (EPD). EPD occurs after UV irradiation of multiply negatively charged ions resulting in the formation of oxidized radical anions. The present paper reviews the hypothesis regarding the mechanisms of electron photo-detachment, radical formation and direct or activated dissociation pathways that support the observation of odd and even electron product ions. Finally, the value of EPD as a complementary structural analysis tool is illustrated through selected examples of synthetic polymers, oligonucleotides, polypeptides, lipids, and polysaccharides.
Collapse
Affiliation(s)
- Rodolphe Antoine
- University of Lyon, F-69622, Lyon, France; CNRS et Université Lyon 1, UMR5306, Institut Lumière Matière, Villeurbanne, France
| | | | | |
Collapse
|
11
|
Abstract
Electron transfer (ET) reactions within proteins are accomplished by a broad set of redox-active molecules, including natural amino acids. Tryptophan participates in ET chemistry as both a cation and a neutral radical. Identification and characterization of the biologically relevant species is essential to understand efficient ET mechanisms in proteins. We present resonance Raman spectra and excitation profiles of the tryptophan cation radical generated by combining a strong oxidant, Ce(IV), with tryptophan model compounds in a fast-flow mixing device. Isotopically modified derivatives, coupled with calculations, allowed the assignment of the normal modes of this radical. Raman bands that are sensitive to protonation state and hydrogen bonding environment of the cation radical were identified. The present findings, along with resonance Raman spectra of the closed-shell and neutral radical counterparts, form a foundation for probing tryptophan-mediated ET reactions in proteins.
Collapse
Affiliation(s)
- Hannah S Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Investigation of the inhibitory effects of TiO2 on the β-amyloid peptide aggregation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:227-34. [DOI: 10.1016/j.msec.2014.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/12/2014] [Accepted: 03/01/2014] [Indexed: 11/21/2022]
|
13
|
Xiong J, Roach CA, Oshokoya OO, Schroell RP, Yakubu RA, Eagleburger MK, Cooley JW, Jiji RD. Role of bilayer characteristics on the structural fate of aβ(1-40) and aβ(25-40). Biochemistry 2014; 53:3004-11. [PMID: 24702518 DOI: 10.1021/bi4016296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The β-amyloid (Aβ) peptide is derived from the transmembrane (TM) helix of the amyloid precursor protein (APP) and has been shown to interact with membrane surfaces. To understand better the role of peptide-membrane interactions in cell death and ultimately in Alzheimer's disease, a better understanding of how membrane characteristics affect the binding, solvation, and secondary structure of Aβ is needed. Employing a combination of circular dichroism and deep-UV resonance Raman spectroscopies, Aβ(25-40) was found to fold spontaneously upon association with anionic lipid bilayers. The hydrophobic portion of the disease-related Aβ(1-40) peptide, Aβ(25-40), has often been used as a model for how its legacy TM region may behave structurally in aqueous solvents and during membrane encounters. The structure of the membrane-associated Aβ(25-40) peptide was found to depend on both the hydrophobic thickness of the bilayer and the duration of incubation. Similarly, the disease-related Aβ(1-40) peptide also spontaneously associates with anionic liposomes, where it initially adopts mixtures of disordered and helical structures. The partially disordered helical structures then convert to β-sheet structures over longer time frames. β-Sheet structure is formed prior to helical unwinding, implying a model in which β-sheet structure, formed initially from disordered regions, prompts the unwinding and destabilization of membrane-stabilized helical structure. A model is proposed to describe the mechanism of escape of Aβ(1-40) from the membrane surfaces following its formation by cleavage of APP within the membrane.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu M, Strid Å, Eriksson LA. Photochemical reaction mechanism of UV-B-induced monomerization of UVR8 dimers as the first signaling event in UV-B-regulated gene expression in plants. J Phys Chem B 2014; 118:951-65. [PMID: 24410443 DOI: 10.1021/jp4104118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) protein has been identified to specifically mediate photomorphogenic UV-B responses by acting as a UV-B photoreceptor. The dimeric structure of the UVR8 protein dissociates into signaling-active monomers upon UV-B exposure, and the monomers rapidly interact with downstream signaling components to regulate gene expression. UVR8 monomers revert to dimers in the absence of UV-B radiation, thereby reversing transcription activation. UVR8 amino acid residues W233 and W285 have been identified to play critical roles in the UVR8 dimer for the response to UV-B irradiation. In the present work, the photoreaction mechanism for UVR8 monomerization is explored with quantum chemical cluster calculations and evaluated by molecular dynamics simulations using the wild-type UVR8 dimer and novel force field parameters developed for intermediate radicals formed in the photochemical process. Three different models are investigated, which show that the preferred mechanism for UVR8 monomerization involves electron transfer from residue W233 to W285 and onward to R338 initiated by UV-B irradiation, coupled to simultaneous proton transfer from W233 to D129 leading to the formation of protonated D129, a deprotonated W233 radical, and a neutral R338 radical. Due to the formation of the neutral R338 radical, salt bridges involving this residue are disrupted together with the concomitant interruption of several other key salt bridges R286-D96, R286-D107, R338-D44, R354-E43, and R354-E53. The resulting large decrease in protein-protein interaction energy arising from this sequence of events leads to the monomerization of the UVR8 dimer. The mechanism presented is in accord with all experimental data available to date.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-412 96 Göteborg, Sweden
| | | | | |
Collapse
|
15
|
Bhattacharya S, Ghosh S, Dasgupta S, Roy A. Structural differences between native Hen egg white lysozyme and its fibrils under different environmental conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:368-376. [PMID: 23786978 DOI: 10.1016/j.saa.2013.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
The difference in molecular structure of native HEWL and its fibrils, grown at a pH value near physiological pH 7.4 and at a pH value just above the pI, 10.7 in presence and absence of Cu(II) ions, is discussed. We focus on differences between the molecular structure of the native protein and fibrils using principal component analysis of their Raman spectra. The overlap areas of the scores of each species are used to quantify the difference in the structure of the native HEWL and fibrils in different environments. The overall molecular structures are significantly different for fibrils grown at two pH values. However, in presence of Cu(II) ions, the fibrils have similarities in their molecular structures at these pH environments. Spectral variation within each species, as obtained from the standard deviations of the scores in PCA plots, reveals the variability in the structure within a particular species.
Collapse
|
16
|
Ren H, Biggs JD, Mukamel S. Two-Dimensional Stimulated Ultraviolet Resonance Raman Spectra of Tyrosine and Tryptophan; A Simulation Study. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2013; 44:544-559. [PMID: 23585708 PMCID: PMC3622277 DOI: 10.1002/jrs.4210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report an ab-initio simulation study of the ultrafast broad bandwidth ultraviolet (UV) stimulated resonance Raman spectra (SRRS) of L-tyrosine, L-tryptophan and trans-L-tryptophan-L-tyrosine (WY) dipeptide. Two-pulse one-dimensional (1D) SRRS and three-pulse 2D SRRS that reveal inter- and intra-residue vibrational coorelations are simulated using electronically resonant or preresonant pulse configurations that select the Raman signal and discriminate against excited state pathways. Multimode effects are incorporated via the cumulant expansion. The 2D SRRS technique is more sensitive to residue couplings than spontaneous Raman.
Collapse
Affiliation(s)
- Hao Ren
- Department of Chemistry, University of California, Irvine, CA 92697
| | | | | |
Collapse
|
17
|
Bernini C, Andruniów T, Olivucci M, Pogni R, Basosi R, Sinicropi A. Effects of the Protein Environment on the Spectral Properties of Tryptophan Radicals in Pseudomonas aeruginosa Azurin. J Am Chem Soc 2013; 135:4822-33. [DOI: 10.1021/ja400464n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caterina Bernini
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Tadeusz Andruniów
- Quantum Chemistry and Molecular
Modelling Lab, Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Massimo Olivucci
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio
43403, United States
| | - Rebecca Pogni
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riccardo Basosi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
18
|
Butler JS, Woods JA, Farrer NJ, Newton ME, Sadler PJ. Tryptophan Switch for a Photoactivated Platinum Anticancer Complex. J Am Chem Soc 2012; 134:16508-11. [DOI: 10.1021/ja3074159] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Julie A. Woods
- Photobiology Unit, Department
of Dermatology, Ninewells Hospital, Dundee
DD1 9SY, U.K
| | | | | | | |
Collapse
|
19
|
Correlation of TrpGly and GlyTrp Rotamer Structure with W7 and W10 UV Resonance Raman Modes and Fluorescence Emission Shifts. JOURNAL OF AMINO ACIDS 2012; 2012:735076. [PMID: 22888404 PMCID: PMC3408653 DOI: 10.1155/2012/735076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022]
Abstract
Tryptophyl glycine (TrpGly) and glycyl tryptophan (GlyTrp) dipeptides at pH 5.5 and pH 9.3 show a pattern of fluorescence emission shifts with the TrpGly zwitterion emission solely blue shifted. This pattern is matched by shifts in the UV resonance Raman (UVRR) W10 band position and the W7 Fermi doublet band ratio. Ab initio calculations show that the 1340 cm−1 band of the W7 doublet is composed of three modes, two of which determine the W7 band ratios for the dipeptides. Molecular dynamics simulations show that the dipeptides take on two conformations: one with the peptide backbone extended; one with the backbone curled over the indole. The dihedral angle critical to these conformations is χ1 and takes on three discrete values. Only the TrpGly zwitterion spends an appreciable amount of time in the extended backbone conformation as this is stabilized by two hydrogen bonds with the terminal amine cation. According to a Stark effect model, a positive charge near the pyrrole keeps the 1La transition at high energy, limiting fluorescence emission red shift, as observed for the TrpGly zwitterion. The hydrogen bond stabilized backbone provides a rationale for the Cmethylene-Cα-Ccarbonyl W10 symmetric stretch that is unique to the TrpGly zwitterion.
Collapse
|
20
|
Pagba CV, Barry BA. Redox-Induced Conformational Switching in Photosystem-II-Inspired Biomimetic Peptides: A UV Resonance Raman Study. J Phys Chem B 2012; 116:10590-9. [DOI: 10.1021/jp303607b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cynthia V. Pagba
- School of Chemistry and
Biochemistry and the Parker
H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Bridgette A. Barry
- School of Chemistry and
Biochemistry and the Parker
H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
21
|
Barry BA, Chen J, Keough J, Jenson D, Offenbacher A, Pagba C. Proton Coupled Electron Transfer and Redox Active Tyrosines: Structure and Function of the Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II. J Phys Chem Lett 2012; 3:543-554. [PMID: 22662289 PMCID: PMC3362996 DOI: 10.1021/jz2014117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proton coupled electron transfer (PCET) reactions are important in many biological processes. Tyrosine oxidation/reduction can play a critical role in facilitating these reactions. Two examples are photosystem II (PSII) and ribonucleotide reductase (RNR). RNR is essential in DNA synthesis in all organisms. In E. coli RNR, a tyrosyl radical, Y122(•), is required as a radical initiator. Photosystem II (PSII) generates molecular oxygen from water. In PSII, an essential tyrosyl radical, YZ(•), oxidizes the oxygen evolving center. However, the mechanisms, by which the extraordinary oxidizing power of the tyrosyl radical is controlled, are not well understood. This is due to the difficulty in acquiring high-resolution structural information about the radical state. Spectroscopic approaches, such as EPR and UV resonance Raman (UVRR), can give new information. Here, we discuss EPR studies of PCET and the PSII YZ radical. We also present UVRR results, which support the conclusion that Y122 undergoes an alteration in ring and backbone dihedral angle when it is oxidized. This conformational change results in a loss of hydrogen bonding to the phenolic oxygen. Our analysis suggests that access of water is an important factor in determining tyrosyl radical lifetime and function. TOC graphic.
Collapse
|
22
|
Bellina B, Compagnon I, Houver S, Maître P, Allouche AR, Antoine R, Dugourd P. Spectroscopic Signatures of Peptides Containing Tryptophan Radical Cations. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Bellina B, Compagnon I, Houver S, Maître P, Allouche AR, Antoine R, Dugourd P. Spectroscopic Signatures of Peptides Containing Tryptophan Radical Cations. Angew Chem Int Ed Engl 2011; 50:11430-2. [DOI: 10.1002/anie.201104783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Indexed: 11/06/2022]
|
24
|
Dieng SD, Schelvis JPM. Analysis of measured and calculated Raman spectra of indole, 3-methylindole, and tryptophan on the basis of observed and predicted isotope shifts. J Phys Chem A 2011; 114:10897-905. [PMID: 20860352 DOI: 10.1021/jp107295p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aromatic amino acid tryptophan plays an important role in protein electron-transfer and in enzyme catalysis. Tryptophan is also used as a probe of its local protein environment and of dynamic changes in this environment. Raman spectroscopy of tryptophan has been an important tool to monitor tryptophan, its radicals, and its protein environment. The proper interpretation of the Raman spectra requires not only the correct assignment of Raman bands to vibrational normal modes but also the correct identification of the Raman bands in the spectrum. A significant amount of experimental and computational work has been devoted to this problem, but inconsistencies still persist. In this work, the Raman spectra of indole, 3-methylindole (3MI), tryptophan, and several of their isotopomers have been measured to determine the isotope shifts of the Raman bands. Density functional theory calculations with the B3LYP functional and the 6-311+G(d,p) basis set have been performed on indole, 3MI, 3-ethylindole (3EI), and several of their isotopomers to predict isotope shifts of the vibrational normal modes. Comparison of the observed and predicted isotope shifts results in a consistent assignment of Raman bands to vibrational normal modes that can be used for both assignment and identification of the Raman bands. For correct assignments, it is important to determine force field scaling factors for each molecule separately, and scaling factors of 0.9824, 0.9843, and 0.9857 are determined for indole, 3MI, and 3EI, respectively. It is also important to use more than one parameter to assign vibrational normal modes to Raman bands, for example, the inclusion of isotope shifts other than those obtained from H/D-exchange. Finally, the results indicate that the Fermi doublet of indole may consist of just two fundamentals, whereas one fundamental and one combination band are identified for the Fermi resonance that gives rise to the doublet in 3MI and tryptophan.
Collapse
Affiliation(s)
- Senghane D Dieng
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, USA
| | | |
Collapse
|
25
|
Stoll S, NejatyJahromy Y, Woodward JJ, Ozarowski A, Marletta MA, Britt RD. Nitric oxide synthase stabilizes the tetrahydrobiopterin cofactor radical by controlling its protonation state. J Am Chem Soc 2010; 132:11812-23. [PMID: 20669954 DOI: 10.1021/ja105372s] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide synthase (NOS), a homodimeric enzyme with a flavin reductase domain and a P450-type heme-containing oxygenase domain, catalyzes the formation of NO from L-arginine, NADPH, and O(2) in a two-step reaction sequence. In the first step, a tetrahydrobiopterin (H(4)B) cofactor bound near one of the heme propionate groups acts as an electron donor to the P450-type heme active site, yielding a one-electron oxidized radical that is subsequently re-reduced. In solution, H(4)B undergoes two-electron oxidation, showing that the enzyme significantly alters the proton- and electron-transfer properties of the cofactor. Multifrequency EPR and ENDOR spectroscopy were used to determine magnetic parameters, and from them the (de)protonation state of the H(4)B radical in the oxygenase domain dimer of inducible NO synthase that was trapped by rapid freeze quench. From 9.5 and 330-416 GHz EPR and from 34 GHz (1)H ENDOR spectroscopy, the g tensor of the radical and the hyperfine tensors of several N and H nuclei in the radical were obtained. Density functional theory calculations at the PBE0/EPR-II level for H(4)B radical models predict different spin density distributions and g and hyperfine tensors for different protonation states. Comparison of the predicted and experimental values leads to the conclusion that the radical is cationic H(4)B(*+), suggesting that NOS stabilizes this protonated form to utilize the cofactor in a unique dual one-electron redox role, where it can deliver an electron to the active site for reductive oxygen activation and also remove an electron from the active site to generate NO and not NO(-). The protein environment also prevents further oxidation and subsequent loss of function of the cofactor, thus enabling the enzyme to perform the unusual catalytic one-electron chemistry.
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
26
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure. J Am Chem Soc 2010; 132:9030-9. [DOI: 10.1021/ja101322g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
27
|
Schlamadinger DE, Gable JE, Kim JE. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins. J Phys Chem B 2010; 113:14769-78. [PMID: 19817473 DOI: 10.1021/jp905473y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectra of tryptophan compounds in various solvents and a model peptide are presented and reveal systematic changes that reflect solvent polarity, hydrogen bond strength, and cation-pi interaction. The commonly utilized UVRR spectral marker for environment polarity that has been based on off-resonance Raman data, the tryptophan Fermi doublet ratio I1360/I1340, exhibits different values in on- and off-resonance Raman spectra as well as for different tryptophan derivatives. Specifically, the UVRR Fermi doublet ratio for indole ranges from 0.3 in polar solvents to 0.8 in nonpolar solvents, whereas the respective values reported here and previously for off-resonance Raman spectra are 0.5-1.3. UVRR Fermi doublet ratios for the more biologically relevant molecule, N-acetyl tryptophan ethyl ester (NATEE), are in a smaller range of 1.1 (polar solvent) to 1.7 (nonpolar solvent) and correlate to the solvent polarity/polarization parameters pi* and ETN. As has been reported previously, several UVRR modes are also sensitive to the hydrogen bond strength of the indole N-H moiety. Here, we report a new unambiguous marker for H-bonding: the ratio of the W10 (approximately 1237 cm-1) intensity to that of the W9 (approximately 1254 cm-1) mode (RW10). This ratio is 0.7 for NATEE in the absence of hydrogen bond acceptors and increases to 3.1 in the presence of strong hydrogen bond acceptors, with a value of 2.3 in water. The W8 and W17 modes shift more than +10 and approximately -5 cm-1 upon increase in hydrogen bond strength; this range for W17 is smaller than that reported previously and reflects a more realistic range for proteins and peptides in solution. Finally, our data provide evidence for change in the W18 and W16 relative intensity in the presence of cation-pi interactions. These UVRR markers are utilized to interpret spectra of model membrane-bound systems tryptophan octyl ester and the peptide toxin melittin. These spectra reveal the importance of intra- and intermolecular hydrogen bonding and cation-pi interactions that likely influence the partitioning of membrane-associated biomolecules to lipid bilayers or self-associated soluble oligomers. The UVRR analysis presented here modifies and augments prior reports and provides an unambiguous set of spectral makers that can be applied to elucidate the molecular microenvironment and structure of a wide range of complex systems, including anchoring tryptophan residues in membrane proteins and peptides.
Collapse
Affiliation(s)
- Diana E Schlamadinger
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
28
|
Chen J, Bender SL, Keough JM, Barry BA. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study. J Phys Chem B 2009; 113:11367-70. [PMID: 19639977 PMCID: PMC2846372 DOI: 10.1021/jp906491r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photosystem I (PSI) is one of the two membrane-associated reaction centers involved in oxygenic photosynthesis. In photosynthesis, solar energy is converted to chemical energy in the form of a transmembrane charge separation. PSI oxidizes cytochrome c(6) or plastocyanin and reduces ferredoxin. In cyanobacterial PSI, there are 10 tryptophan residues with indole side chains located less than 10 A from the electron transfer cofactors. In this study, we apply pump-probe difference UV resonance Raman (UVRR) spectroscopy to acquire the spectrum of aromatic amino acids in cyanobacterial PSI. This UVRR technique allows the use of the tryptophan vibrational spectrum as a reporter for structural changes, which are linked to PSI electron transfer reactions. Our results show that photo-oxidation of the chlorophyll a/a' heterodimer, P(700), causes shifts in the vibrational frequencies of two or more tryptophan residues. Similar perturbations of tryptophan are observed when P(700) is chemically oxidized. The observed spectral frequencies suggest that the perturbed tryptophan side chains are only weakly or not hydrogen bonded and are located in an environment in which there is steric repulsion. The direction of the spectral shifts is consistent with an oxidation-induced increase in dielectric constant or a change in hydrogen bonding. To explain our results, the perturbation of tryptophan residues must be linked to a PSI conformational change, which is, in turn, driven by P(700) oxidation.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - James M. Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|