1
|
Stapleton JT. Human Pegivirus Type 1: A Common Human Virus That Is Beneficial in Immune-Mediated Disease? Front Immunol 2022; 13:887760. [PMID: 35707535 PMCID: PMC9190258 DOI: 10.3389/fimmu.2022.887760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Two groups identified a novel human flavivirus in the mid-1990s. One group named the virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence analyses found these two isolates to be the same virus, and subsequent studies found that the virus does not cause hepatitis despite sharing genome organization with hepatitis C virus. Although HGV/GBV-C infection is common and may cause persistent infection in humans, the virus does not appear to directly cause any other known disease state. Thus, the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1 infection associated with prolonged survival in people living with HIV. Co-infection of human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to reduced HIV-related mortality appear to result from a global reduction in immune activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1 immunomodulatory effects are associated with beneficial outcomes in other diseases including Ebola virus infection and possibly graft-versus-host-disease following stem cell transplantation. Better understanding of HPgV-1 immune escape and mechanisms of inflammation may identify novel therapies for immune-based diseases.
Collapse
Affiliation(s)
- Jack T. Stapleton
- Medicine Service, Iowa City Veterans Administration Healthcare, Iowa City, IA, United States
- Departments of Internal Medicine, Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Jack T. Stapleton,
| |
Collapse
|
2
|
Yu Y, Wan Z, Wang JH, Yang X, Zhang C. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence 2022; 13:324-341. [PMID: 35132924 PMCID: PMC8837232 DOI: 10.1080/21505594.2022.2029328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual contact, and vertical mother-to-child transmission. It is widely prevalent in general population, especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of infection in most healthy individuals, but may persist for longer periods of time in immunocompromised individuals and/or those co-infected by other viruses. A large body of evidences indicate that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be related to a significant reduction of immune activation, and/or the inhabitation of co-infected viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and preferentially replicates in bone marrow and spleen without cytopathic effect, implying a therapeutic potential. The paper aims to summarize the natural history, prevalence and distribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other human viral diseases, and potential use in therapy as a biovaccine or viral vector.
Collapse
Affiliation(s)
- Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Kovesdi I, Bakacs T. Therapeutic Exploitation of Viral Interference. Infect Disord Drug Targets 2021; 20:423-432. [PMID: 30950360 DOI: 10.2174/1871526519666190405140858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Viral interference, originally, referred to a state of temporary immunity, is a state whereby infection with a virus limits replication or production of a second infecting virus. However, replication of a second virus could also be dominant over the first virus. In fact, dominance can alternate between the two viruses. Expression of type I interferon genes is many times upregulated in infected epithelial cells. Since the interferon system can control most, if not all, virus infections in the absence of adaptive immunity, it was proposed that viral induction of a nonspecific localized temporary state of immunity may provide a strategy to control viral infections. Clinical observations also support such a theory, which gave credence to the development of superinfection therapy (SIT). SIT is an innovative therapeutic approach where a non-pathogenic virus is used to infect patients harboring a pathogenic virus. For the functional cure of persistent viral infections and for the development of broad- spectrum antivirals against emerging viruses a paradigm shift was recently proposed. Instead of the virus, the therapy should be directed at the host. Such a host-directed-therapy (HDT) strategy could be the activation of endogenous innate immune response via toll-like receptors (TLRs). Superinfection therapy is such a host-directed-therapy, which has been validated in patients infected with two completely different viruses, the hepatitis B (DNA), and hepatitis C (RNA) viruses. SIT exerts post-infection interference via the constant presence of an attenuated non-pathogenic avian double- stranded (ds) RNA viral vector which boosts the endogenous innate (IFN) response. SIT could, therefore, be developed into a biological platform for a new "one drug, multiple bugs" broad-spectrum antiviral treatment approach.
Collapse
Affiliation(s)
- Imre Kovesdi
- ImiGene, Inc., Rockville, MD, USA,HepC, Inc., Budapest, Hungary
| | | |
Collapse
|
4
|
Gomara MJ, Perez Y, Gomez-Gutierrez P, Herrera C, Ziprin P, Martinez JP, Meyerhans A, Perez JJ, Haro I. Importance of structure-based studies for the design of a novel HIV-1 inhibitor peptide. Sci Rep 2020; 10:14430. [PMID: 32879375 PMCID: PMC7468280 DOI: 10.1038/s41598-020-71404-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the structure of an HIV-1 entry inhibitor peptide two stapled- and a retro-enantio peptides have been designed to provide novel prevention interventions against HIV transmission. The three peptides show greater inhibitory potencies in cellular and mucosal tissue pre-clinical models than the parent sequence and the retro-enantio shows a strengthened proteolytic stability. Since HIV-1 fusion inhibitor peptides need to be embedded in the membrane to properly interact with their viral target, the structural features were determined by NMR spectroscopy in micelles and solved by using restrained molecular dynamics calculations. Both parent and retro-enantio peptides demonstrate a topology compatible with a shared helix–turn–helix conformation and assemble similarly in the membrane maintaining the active conformation needed for its interaction with the viral target site. This study represents a straightforward approach to design new targeted peptides as HIV-1 fusion inhibitors and lead us to define a retro-enantio peptide as a good candidate for pre-exposure prophylaxis against HIV-1.
Collapse
Affiliation(s)
- María J Gomara
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - Yolanda Perez
- Nuclear Magnetic Resonance Facility, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Patricia Gomez-Gutierrez
- Department of Chemical Engineering (ETSEIB), Universitat Politecnica de Catalunya, Barcelona, Spain
| | | | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London, UK
| | - Javier P Martinez
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Juan J Perez
- Department of Chemical Engineering (ETSEIB), Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Vitrenko Y, Kostenko I, Kulebyakina K, Sorochynska K. Prevalence of human pegivirus-1 and sequence variability of its E2 glycoprotein estimated from screening donors of fetal stem cell-containing material. Virol J 2017; 14:167. [PMID: 28859680 PMCID: PMC5580293 DOI: 10.1186/s12985-017-0837-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Human pegivirus-1 (HPgV-1) is a member of the Flaviviridae family whose genomic organization and mode of cellular entry is similar to that of hepatitis C virus (HCV). The E2 glycoprotein of HPgV-1 is the principle mediator in the virus-cell interaction and as such harbors most of HPgV-1’s antigenic determinants. HPgV-1 persists in blood cell precursors which are increasingly used for cell therapy. Methods We studied HPgV-1 prevalence in a large cohort of females donating fetal tissues for clinical use. PCR was used for screening and estimation of viral load in viremic plasma and fetal samples. Sequence analysis was performed for portions of the 5′-untranslated and E2 regions of HPgV-1 purified from donor plasmas. Sequencing was followed by phylogenetic analysis. Results HPgV-1 was revealed in 13.7% of plasmas, 5.0% of fetal tissues, 5.4% of chorions, exceeding the prevalence of HCV in these types of samples. Transmission of HPgV-1 occurred in 25.8% of traceable mother-chorion-fetal tissues triads. For HPgV-1-positive donors, a high viral load in plasma appears to be a prerequisite for transmission. However, about one third of fetal samples acquired infection from non-viremic individuals. Sequencing of 5′-untranslated region placed most HPgV-1 samples to genotype 2a. At the same time, a portion of E2 sequence provided a much weaker support for this grouping apparently due to a higher variability. Polymorphisms were detected in important structural and antigenic motifs of E2. Conclusion HPgV-1 is efficiently transmitted to fetus at early embryonic stages. A high variability in E2 may pose a risk of generation of pathogenic subtypes. Although HPgV-1 is considered benign and no longer tested mandatorily in blood banks, the virus may have adversary effects at target niches if delivered with infected graft upon cell transplantation. This argues for the necessity of HPgV-1 testing of cell samples aimed for clinical use.
Collapse
|
6
|
A cyclic GB virus C derived peptide with anti-HIV-1 activity targets the fusion peptide of HIV-1. Eur J Med Chem 2014; 86:589-604. [DOI: 10.1016/j.ejmech.2014.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 12/23/2022]
|
7
|
Wu H, Tien P, Gong X. Phylogenetic diversity of GB virus C at the antigenic site of E2 protein. Virus Res 2013; 178:502-505. [PMID: 24512753 DOI: 10.1016/j.virusres.2013.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022]
Abstract
Amino acids at position 267-298 in E2 protein of GB virus C (GBV-C) were recognized as the antigenic site, and peptides within the region were previously reported to have inhibitory effect on HIV entry. The effect of sequence variability between different types of GBV-C on the antigenic region of the E2 protein was studied by using phylogenetic analysis. Eighty-one unique sequences encompassing this region derived from all seven GBV-C genotypes were compared to each other in this study. The results showed that GBV-C E2 antigenic nucleotide sites belonging to genotype 3 clustered together regardless of synonymous or nonsynonmous sites in the region, whereas, GBV-C E2 antigenic nucleotide sites belonging to the other 6 genotypes clustered together regardless of genotypes. Despite the fact that GBV-C genotypes might confer different degree of 'protection' against HIV, the lack of clustering as a unique group based on the amino acid differences in the antigenic site among the six genotypes suggested some other genomic regions or secondary structure of E2 protein might have played a crucial role in determining the variable protection effect of GBV-C on HIV infection.
Collapse
Affiliation(s)
- Haoming Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Po Tien
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Timmons CL, Shao Q, Wang C, Liu L, Liu H, Dong X, Liu B. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 assembly through interference with HIV-1 gag plasma membrane targeting. J Infect Dis 2013; 207:1171-80. [PMID: 23303812 PMCID: PMC3583272 DOI: 10.1093/infdis/jit001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/31/2012] [Indexed: 02/02/2023] Open
Abstract
GB virus type C (GBV-C) is a single-stranded positive-sense RNA virus classified in the Flaviviridae family. Persistent coinfection with GBV-C is associated with lower human immunodeficiency virus type 1 (HIV-1) load, higher CD4(+) T-cell count, and prolonged survival in HIV-1 coinfected patients. The GBV-C envelope glycoprotein E2 has been reported to interfere with HIV-1 entry. In this study, we showed that the expression of GBV-C E2 inhibited HIV-1 Gag assembly and release. Expression of glycosylated GBV-C E2 inhibited HIV-1 Gag precursor processing, resulting in lower production of CAp24 and MAp17, while the overall expression level of the Gag precursor Pr55 remained unchanged. Membrane floatation gradient and indirect immunofluorescence confocal microscopy analysis showed that glycosylated E2 disrupted HIV-1 Gag trafficking to the plasma membrane, resulting in Gag accumulation in subcellular compartments. This interference in HIV-1 Gag trafficking led to diminished HIV-1 particle production, which is a critical step for HIV-1 to infect new host cells. These findings shed light on a novel mechanism used by GBV-C E2 to inhibit HIV-1 replication and may provide insight into new approaches for suppressing HIV-1 replication.
Collapse
Affiliation(s)
- Christine L Timmons
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
McLinden JH, Stapleton JT, Klinzman D, Murthy KK, Chang Q, Kaufman TM, Bhattarai N, Xiang J. Chimpanzee GB virus C and GB virus A E2 envelope glycoproteins contain a peptide motif that inhibits human immunodeficiency virus type 1 replication in human CD4⁺ T-cells. J Gen Virol 2013; 94:774-782. [PMID: 23288422 DOI: 10.1099/vir.0.047126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glycoprotein (E2) of two GBV-Ccpz isolates obtained from the sera of captive chimpanzees. The deduced GBV-Ccpz E2 protein differed from human GBV-C by 31 % at the amino acid level. Similar to human GBV-C E2, expression of GBV-Ccpz E2 in a tet-off human CD4(+) Jurkat T-cell line significantly inhibited the replication of diverse HIV-1 isolates. This anti-HIV-replication effect of GBV-Ccpz E2 protein was reversed by maintaining cells in doxycycline to reduce E2 expression. Previously, we found a 17 aa region within human GBV-C E2 that was sufficient to inhibit HIV-1. Although GBV-Ccpz E2 differed by 3 aa differences in this region, the chimpanzee GBV-C 17mer E2 peptide inhibited HIV-1 replication. Similarly, the GBV-A peptide that aligns with this GBV-C E2 region inhibited HIV-1 replication despite sharing only 5 aa with the human GBV-C E2 sequence. Thus, despite amino acid differences, the peptide region on both the GBV-Ccpz and the GBV-A E2 protein inhibit HIV-1 replication similar to human GBV-C. Consequently, GBV-Ccpz or GBV-A infection of non-human primates may provide an animal model to study GB virus-HIV interactions.
Collapse
Affiliation(s)
- James H McLinden
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Jack T Stapleton
- Interdisciplinary Program on Molecular and Cellular Biology, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Donna Klinzman
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Krishna K Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Qing Chang
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Thomas M Kaufman
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Nirjal Bhattarai
- Interdisciplinary Program on Molecular and Cellular Biology, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Jinhua Xiang
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Schwarze-Zander C, Blackard JT, Rockstroh JK. Role of GB virus C in modulating HIV disease. Expert Rev Anti Infect Ther 2012; 10:563-72. [PMID: 22702320 DOI: 10.1586/eri.12.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
GB virus C (GBV-C) is a member of the Flaviviridae family and the most closely related human virus to HCV. However, GBV-C does not replicate in hepatocytes, but rather in lymphocytes. GBV-C has a worldwide distribution and is transmitted sexually, parenterally and through mother-to-child transmission. Thus, co-infection with HCV and HIV is common. Until now, no human disease has been associated with GBV-C infection. However, there are several reports of a beneficial effect of GBV-C on HIV disease progression in vivo. Different mechanisms to explain these observations have been proposed, including modification of antiviral cytokine production, HIV co-receptor expression, direct inhibition of HIV-1 entry, T-cell activation and Fas-mediated apoptosis. Further understanding of these mechanisms may open new strategies for the treatment of HIV/AIDS.
Collapse
|
11
|
Bagasra O, Bagasra AU, Sheraz M, Pace DG. Potential utility of GB virus type C as a preventive vaccine for HIV-1. Expert Rev Vaccines 2012; 11:335-347. [PMID: 22380825 DOI: 10.1586/erv.11.191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent flurries of literature on the beneficial effects of GB virus type C (GBV-C), a hepatitis C-related virus, in HIV-1 coinfected individuals have raised the possibility of its potential use as a preventive vaccine in people with a high risk for HIV-1. However, these findings are still controversial, and the mechanisms contributing to the apparent beneficial effects of GBV-C are still unresolved. Researchers debate whether the beneficial effects of coinfection of GBV-C in HIV-1-infected individuals are due to GBV-C viremia or rather the presence of GBV-C anti-E2 antibodies. We review the strengths and weaknesses of various aspects of the GBV-C debate and propose a new perspective involving intracellular molecular events that attempts to synthesize numerous contrasting perspectives and ideas, while suggesting new directions for future research in this area.
Collapse
Affiliation(s)
- Omar Bagasra
- South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Bagasra O, Sheraz M, Pace DG. Hepatitis G Virus or GBV-C: A Natural Anti-HIV Interfering Virus. VIRUSES: ESSENTIAL AGENTS OF LIFE 2012:363-388. [DOI: 10.1007/978-94-007-4899-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Feng Y, Zhao W, Feng Y, Dai J, Li Z, Zhang X, Liu L, Bai J, Zhang H, Lu L, Xia X. A novel genotype of GB virus C: its identification and predominance among injecting drug users in Yunnan, China. PLoS One 2011; 6:e21151. [PMID: 21998624 PMCID: PMC3188531 DOI: 10.1371/journal.pone.0021151] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/20/2011] [Indexed: 02/05/2023] Open
Abstract
GB virus C (GBV-C) is prevalent globally and particularly among individuals at risk of parental exposures. Based on genetic diversity, this virus is now classified into six genotypes and many subtypes with distinct geographical distribution. In this study, 120 Injecting Drug Users (IDUs) were recruited from Yunnan province, China. Among them, 43 (35.8%) were positive for GBV-C RNA, 70 (58.3%) and 103 (85.8%) sero-positive for HIV-1 and HCV respectively. This revealed 18.3% of IDUs having GBV-C/HIV/HCV triple infection, which is significantly higher than 7.5% of GBV-C/HIV-1 and 10% of GBV-C/HCV dual infection rates (P<0.05). Based on 5′UTR sequences, the identified 43 viral isolates can be classified into three phylogenetic groups: one (2.3%) and two (4.7%) belonged to genotype 3 and 4, respectively, and the remaining 40 (93%) formed a new group with 97% of bootstrap support. This new GBV-C group was further confirmed by characterizing the E2 region and full-length genome sequences. Analysis of 187 nt 5′UTR sequence showed three previous reported isolates from Southeast Asia were re-classified into this new group. It implies they have the same origin with strains from Yunnan. Although we provisionally assigned this new group as GBV-C genotype 7, a simpler five groups of GBV-C nomenclature is recommended. Genotype 4, 6 and the newly designated genotype 7 could be reclassified as one group, which may represent a single GBV-C genotype. The classification of the other four groups was corresponding to that of previous reported genotype 1, 2, 3 and 5. Furthermore, the diversity of amino acid sequence in the E2 region was analyzed. The inhibitory effect of GBV-C genotype 7 on HIV-1 cell entry could be deduced. Since GBV-C may have a beneficial effect on AIDS disease progression and interact with HCV during co-infection, this finding may raise interests in future studies on this virus that was previously thought to be a “non-pathogenic virus”.
Collapse
Affiliation(s)
- Yue Feng
- Faculty of Environmental Science and Engineering and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenhua Zhao
- The Key Laboratory of Tropical and Subtropical Animal Viral Diseases in Yunnan province, Kunming, Yunnan, China
| | - Yuemei Feng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan, China
| | - Zheng Li
- The Clinical Laboratory Center of Yunnan Province, Affiliated Kunhua Hospital of Kunming Medical College, Kunming, China
| | - Xiaoyan Zhang
- Research Center of Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | - Li Liu
- Faculty of Environmental Science and Engineering and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Bai
- Faculty of Environmental Science and Engineering and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huatang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Ling Lu
- The Viral Oncology Center, Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Laboratory of Hepatology, 3rd Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueshan Xia
- Faculty of Environmental Science and Engineering and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
15
|
Abstract
Protein-protein interactions (PPIs) govern all aspects of cell function and, as such, are a major target for research and therapeutic intervention. A major rate-limiting step in PPI research is the expression and purification of full-length proteins. The use of peptides to study PPIs significantly facilitates the structural and biophysical characterization of PPIs as well as the effort to develop drugs to control PPIs. Here we describe examples for the use of peptides to study PPI and some of the important experimental methods that are used in the field. Peptides have proved to be excellent tools to study PPIs and have been contributing both for understanding mechanisms of PPIs as well as for drug design for PPI modulation.
Collapse
|
16
|
Study of the inhibition capacity of an 18-mer peptide domain of GBV-C virus on gp41-FP HIV-1 activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1567-73. [DOI: 10.1016/j.bbamem.2011.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/20/2022]
|
17
|
Peptides derived from a distinct region of GB virus C glycoprotein E2 mediate strain-specific HIV-1 entry inhibition. J Virol 2011; 85:7037-47. [PMID: 21543477 DOI: 10.1128/jvi.02366-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonpathogenic human GB virus C (GBV-C), a member of the Flaviviridae, is highly prevalent in individuals with HIV-1 infections or with parenteral and sexual risk factors. Long-term GBV-C viremia has been associated with better survival or improved diagnosis in several epidemiological studies. In a previous study we reported that the E2 glycoprotein of GBV-C interferes with HIV-1 entry in vitro. To address the question what region of the E2 protein is involved in suppression of HIV-1 replication, we performed an E2-derived peptide scanning and determined the HIV-inhibitory activity of each peptide in HIV replication assays. We demonstrate here that peptides representing the N-terminal part of the E2 protein from amino acids (aa) 29 to 72 are able to inhibit efficiently HIV-1 replication in vitro. In particular, the peptides P6-2 (representing the E2-region from aa 45 to 64) and P4762 (aa 37 to 64) showed the highest potency in HIV replication assays performed on TZM-bl cells with 50% inhibitory concentrations between 0.1 and 2 μM. However, primary HIV-1 isolates representing clades A to H showed a high variability in their sensitivity to E2 peptides. Pseudovirus inhibition assays revealed that the sensitivity is determined by the gp120/gp41 envelope proteins. Using HIV-1 BlaM-Vpr-based fusion assays, we demonstrate that the E2-derived peptides prevent HIV-1 binding or fusion, presumably via interaction with the HIV-1 particle. Together, these findings reveal a new mechanism of viral interference, suggesting that the envelope protein E2 of GBV-C target directly HIV-1 particles to avoid entry of these virions.
Collapse
|
18
|
Mohr EL, Xiang J, McLinden JH, Kaufman TM, Chang Q, Montefiori DC, Klinzman D, Stapleton JT. GB virus type C envelope protein E2 elicits antibodies that react with a cellular antigen on HIV-1 particles and neutralize diverse HIV-1 isolates. THE JOURNAL OF IMMUNOLOGY 2010; 185:4496-505. [PMID: 20826757 DOI: 10.4049/jimmunol.1001980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Broadly neutralizing Abs to HIV-1 are well described; however, identification of Ags that elicit these Abs has proven difficult. Persistent infection with GB virus type C (GBV-C) is associated with prolonged survival in HIV-1-infected individuals, and among those without HIV-1 viremia, the presence of Ab to GBV-C glycoprotein E2 is also associated with survival. GBV-C E2 protein inhibits HIV-1 entry, and an antigenic peptide within E2 interferes with gp41-induced membrane perturbations in vitro, suggesting the possibility of structural mimicry between GBV-C E2 protein and HIV-1 particles. Naturally occurring human and experimentally induced GBV-C E2 Abs were examined for their ability to neutralize infectious HIV-1 particles and HIV-1-enveloped pseudovirus particles. All GBV-C E2 Abs neutralized diverse isolates of HIV-1 with the exception of rabbit anti-peptide Abs raised against a synthetic GBV-C E2 peptide. Rabbit anti-GBV-C E2 Abs neutralized HIV-1-pseudotyped retrovirus particles but not HIV-1-pseudotyped vesicular stomatitis virus particles, and E2 Abs immune-precipitated HIV-1 gag particles containing the vesicular stomatitis virus type G envelope, HIV-1 envelope, GBV-C envelope, or no viral envelope. The Abs did not neutralize or immune-precipitate mumps or yellow fever viruses. Rabbit GBV-C E2 Abs inhibited HIV attachment to cells but did not inhibit entry following attachment. Taken together, these data indicate that the GBV-C E2 protein has a structural motif that elicits Abs that cross-react with a cellular Ag present on retrovirus particles, independent of HIV-1 envelope glycoproteins. The data provide evidence that a heterologous viral protein can induce HIV-1-neutralizing Abs.
Collapse
Affiliation(s)
- Emma L Mohr
- Division of Infectious Diseases, Department of Internal Medicine, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Herrera E, Tenckhoff S, Gómara MJ, Galatola R, Bleda MJ, Gil C, Ercilla G, Gatell JM, Tillmann HL, Haro I. Effect of Synthetic Peptides Belonging to E2 Envelope Protein of GB Virus C on Human Immunodeficiency Virus Type 1 Infection. J Med Chem 2010; 53:6054-63. [DOI: 10.1021/jm100452c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Herrera
- Unit of Synthesis and Biomedical Applications of Peptides (IQAC-CSIC), Barcelona, Spain
| | | | - María J. Gómara
- Unit of Synthesis and Biomedical Applications of Peptides (IQAC-CSIC), Barcelona, Spain
| | - Ramona Galatola
- Unit of Synthesis and Biomedical Applications of Peptides (IQAC-CSIC), Barcelona, Spain
| | - María J. Bleda
- Unit of Synthesis and Biomedical Applications of Peptides (IQAC-CSIC), Barcelona, Spain
| | | | - Guadalupe Ercilla
- Services of Infectious Diseases and Immunology, Hospital Clinic Barcelona, University of Barcelona, Spain
| | - José M. Gatell
- AIDS-Research Group, IDIBAPS, Barcelona, Spain
- Services of Infectious Diseases and Immunology, Hospital Clinic Barcelona, University of Barcelona, Spain
| | - Hans L. Tillmann
- Faculty of Medicine, University of Leipzig, Leipzig, Germany
- GI/Hepatology Research Program, Division of Gastroenterology, Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides (IQAC-CSIC), Barcelona, Spain
| |
Collapse
|
20
|
Abstract
GB virus C/hepatitis G virus (GBV-C/HGV) is the most closely related human virus to hepatitis C virus (HCV). GBV-C is lymphotropic and not associated with any known disease, although it is associated with improved survival in HIV-infected individuals. In peripheral blood mononuclear cells, GBV-C induces the release of soluble ligands for HIV entry receptors (RANTES, MIP-1a, MIP-1b and SDF-1), suggesting that GBV-C may interact with lymphocytes to induce a chemokine and/or cytokine milieu that is inhibitory to HIV infection. Expression of GBV-C envelope glycoprotein E2 in CD4+ T cells or addition of recombinant E2 to CD4 cells recapitulates the HIV inhibition seen with GBV-C infection. Like HCV E2, GBV-C E2 is predicted to be post-translationally processed in the endoplasmic reticulum and is involved with cell binding. The C-termini of GBV-C E1 and E2 proteins contain predicted transmembrane domains sharing features with HCV TM domains. To date, cellular receptor(s) for GBV-C E2 have not been identified. GBV-C E2-mediated HIV inhibition is dose-dependent and HIV replication is blocked at the binding and/or entry step. In addition, a putative GBV-C E2 fusion peptide interferes with HIV gp41 peptide oligomerization required for HIV-1 fusion, further suggesting that GBV-C E2 may inhibit HIV entry. Additional work is needed to identify the GBV-C E2 cellular receptor, characterize GBV-C E2 domains responsible for HIV inhibition, and to examine GBV-C E2-mediated fusion in the context of the entire envelope protein or viral-particles. Understanding the mechanisms of action may identify novel approaches to HIV therapy.
Collapse
Affiliation(s)
- Emma L. Mohr
- Department of Internal Medicine and the Interdisciplinary Program on Molecular and Cellular Biology, The University of Iowa
| | - Jack T. Stapleton
- Department of Internal Medicine and the Interdisciplinary Program on Molecular and Cellular Biology, The University of Iowa,The Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
21
|
Cao MM, Li G, Ren H, Pan W, Zhao P, Qi ZT. RNA interference effectively degrades mRNA and inhibits protein expression of GBV-C E2 gene in Huh7 cells. Virus Genes 2009; 39:324-9. [PMID: 19809871 DOI: 10.1007/s11262-009-0405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/21/2009] [Indexed: 11/30/2022]
Abstract
The GB virus C/hepatitis G virus (GBV-C/HGV) is a Flaviviridae member that despite its nonpathogenicity, has become of great interest given that it could inhibit the replication of the human immunodeficiency virus (HIV). Therefore, a better knowledge of the viral protein E2 has become our aim. In this study, a GBV-C model cell system (HuhEG) which expressing a fusion protein of the GBV-C E2 protein and enhanced green fluorescent protein (EGFP) stably was established. And the expression of these proteins was silenced effectively by the two E2 gene-specific siRNAs and an EGFP gene-specific siRNA. This inhibition is sequence-specific and extensive (90%). This HuhEG/specific siRNAs system can provide an approach for investigating the association between GBV-C E2 and HIV replication, which may be of potential value in the development of novel prophylactic or therapeutic agents for HIV infection.
Collapse
Affiliation(s)
- Ming-Mei Cao
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|