1
|
Alrata L, Abdulsattar D, Madrigal S, Pyeatte SR, Zaghloul M, Abu-Amer W, Arif B, Alhamad T, Remedi M, Lin Y, Zayed MA. Alginate Formulation for Wound Healing Applications. Adv Wound Care (New Rochelle) 2024. [PMID: 39531216 DOI: 10.1089/wound.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Significance: Alginate, sourced from seaweed, holds significant importance in industrial and biomedical domains due to its versatile properties. Its chemical composition, primarily comprising β-D-mannuronic acid and α-L-guluronic acid, governs its physical and biological attributes. This polysaccharide, extracted from brown algae and bacteria, offers diverse compositions impacting key factors such as molecular weight, flexibility, solubility, and stability. Recent Advances: Commercial extraction methods yield soluble sodium alginate essential for various biomedical applications. Extraction processes involve chemical treatments converting insoluble alginic acid salts into soluble forms. While biosynthesis pathways in bacteria and algae share similarities, differences in enzyme utilization and product characteristics are noted. Critical Issues: Despite its widespread applicability, challenges persist regarding alginate's stability, biodegradability, and bioactivity. Further understanding of its interactions in complex biological environments and the optimization of extraction and synthesis processes are imperative. Additionally, concerns regarding immune responses to alginate-based implants necessitate thorough investigation. Future Directions: Future research endeavors aim to enhance alginate's stability and bioactivity, facilitating its broader utilization in regenerative medicine and therapeutic interventions. Novel approaches focusing on tailored hydrogel formations, advanced drug delivery systems, and optimized cellular encapsulation techniques hold promise. Continued exploration of alginate's potential in tissue engineering and wound healing, alongside efforts to address critical issues, will drive advancements in biomedical applications.
Collapse
Affiliation(s)
- Louai Alrata
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dahlia Abdulsattar
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabrina Madrigal
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sophia R Pyeatte
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed Zaghloul
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wahid Abu-Amer
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Batool Arif
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tarek Alhamad
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Remedi
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiing Lin
- Department of Surgery, Section of Transplant Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Surgical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Della Rosa G, Gostynska N, Ephraim JW, Marras S, Moroni M, Tirelli N, Panuccio G, Palazzolo G. Magnesium vs. sodium alginate as precursors of calcium alginate: Mechanical differences and advantages in the development of functional neuronal networks. Carbohydr Polym 2024; 342:122375. [PMID: 39048194 DOI: 10.1016/j.carbpol.2024.122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
Calcium alginate is one of the most widely employed matrices in regenerative medicine. A downside is its heterogeneity, due to the poorly controllable character of the gelation of sodium alginate (NaAlg), i.e. the commonly used alginate salt, with calcium. Here, we have used magnesium alginate (MgAlg) as an alternative precursor of calcium alginate. MgAlg coils, more compact and thus less entangled than those of NaAlg, allow for an easier diffusion of calcium ions, whereas Mg is exchanged with calcium more slowly than Na; this allows for the formation of a material (Ca(Mg)Alg) with a more reversible creep behaviour than Ca(Na)Alg, due to a more homogeneous - albeit lower - density of elastically active cross-links. We also show that Ca(Mg)Alg supports better than Ca(Na)Alg the network development and function of embedded (rat cortical) neurons: they show greater neurite extension and branching at 7 and 21 days (Tubb3 and Map2 immunofluorescence) and better neuronal network functional maturation / more robust and longer-lasting activity, probed by calcium imaging and microelectrode array electrophysiology. Overall, our results unveil the potential of MgAlg as bioactive biomaterial for enabling the formation of functional neuron-based tissue analogues.
Collapse
Affiliation(s)
- Giulia Della Rosa
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy; University of Pavia, Department of Molecular Medicine, Pavia, Italy.
| | - Natalia Gostynska
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| | - John W Ephraim
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| | - Sergio Marras
- Istituto Italiano di Tecnologia, Materials Characterization Facility, Genova, Italy.
| | | | - Nicola Tirelli
- Istituto Italiano di Tecnologia, Laboratory for Polymers and Biomaterials, Genova, Italy.
| | - Gabriella Panuccio
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| | - Gemma Palazzolo
- Istituto Italiano di Tecnologia, Laboratory for Enhanced Regenerative Medicine, Genova, Italy.
| |
Collapse
|
3
|
Della Rosa G, Gostynska NE, Ephraim JW, Sganga S, Panuccio G, Palazzolo G, Tirelli N. Magnesium alginate as a low-viscosity (intramolecularly cross-linked) system for the sustained and neuroprotective release of magnesium. Carbohydr Polym 2024; 331:121871. [PMID: 38388038 DOI: 10.1016/j.carbpol.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The administration of Mg ions is advantageous in pathological scenarios such as pre-enclampsia and forms of neuroinflammation (e.g. stroke or injury); yet, few systems exist for their sustained delivery. Here, we present the (static light scattering and diffusing-wave spectroscopy) characterization of magnesium alginate (MgAlg) as a potentially injectable vehicle ifor the delivery of Mg. Differently from other divalent cations, Mg does not readily induce gelation: it acts within MgAlg coils, making them more rigid and less prone to entangle. As a result, below a threshold concentration (notionally below 0.5 % wt.) MgAlg are inherently less viscous than those of sodium alginate (NaAlg), which is a major advantage for injectables; at higher concentrations, however, (stable, Mg-based) aggregation starts occurring. Importantly, Mg can then be released e.g. in artificial cerebrospinal fluid, via a slow (hours) process of ion exchange. Finally, we here show that MgAlg protects rat neural stem cells from the consequence of an oxidative insult (100 μM H2O2), an effect that we can only ascribe to the sustained liberation of Mg ions, since it was not shown by NaAlg, MgSO4 or the NaAlg/MgSO4 combination. Our results therefore indicate that MgAlg is a promising vehicle for Mg delivery under pathological (inflammatory) conditions.
Collapse
Affiliation(s)
- Giulia Della Rosa
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Natalia Ewa Gostynska
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - John Wesley Ephraim
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefania Sganga
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| |
Collapse
|
4
|
Donati I, Christensen BE. Alginate-metal cation interactions: Macromolecular approach. Carbohydr Polym 2023; 321:121280. [PMID: 37739522 DOI: 10.1016/j.carbpol.2023.121280] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Alginates are a broad family of linear (unbranched) polysaccharides derived from brown seaweeds and some bacteria. Despite having only two monomers, i.e. β-d-mannuronate (M) and its C5 epimer α-l-guluronate (G), their blockwise arrangement in oligomannuronate (..MMM..), oligoguluronate (..GGG..), and polyalternating (..MGMG..) blocks endows it with a rather complex interaction pattern with specific counterions and salts. Classic polyelectrolyte theories well apply to alginate as polyanion in the interaction with monovalent and non-gelling divalent cations. The use of divalent gelling ions, such as Ca2+, Ba2+ or Sr2+, provides thermostable homogeneous or heterogeneous hydrogels where the block composition affects both macroscopic and microscopic properties. The mechanism of alginate gelation is still explained in terms of the original egg-box model, although over the years some novel insights have been proposed. In this review we summarize several decades of research related to structure-functionships in alginates in the presence of non-gelling and gelling cations and present some novel applications in the field of self-assembling nanoparticles and use of radionuclides.
Collapse
Affiliation(s)
- Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Bjørn E Christensen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| |
Collapse
|
5
|
Tang Y, Sun P, Khiing AHR, Sha K, Qi X, Wu Z. Liquid-like Oral Sustained-Release System Based on Acid-Sensitive in situ Hydrogel for Alleviate Gastrointestinal Side Effects of Indobufen. J Pharm Sci 2023; 112:3141-3153. [PMID: 37473917 DOI: 10.1016/j.xphs.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Commonly, most oral non-steroidal anti-inflammatory drugs (NSAIDs) have known gastric adverse reactions due to their long-term and high dose administration. In this study, a novel liquid sustained-release system based on multiple-unit in situ hydrogel beads was designed to address this issue. The system is composed of sodium alginate (SA), gellan gum (GG), zinc oxide (ZnO), and magnesium oxide (MgO). Furthermore, indobufen was loaded into the system to evaluate its gastric mucosal protection effect. This effect can be attributed to the topical antacid, pepsin inhibition, and sustained drug release properties of the system. It was proven that the stored solid gel system could undergo a "solid to liquid" transition after shaking. Once swallowed, the liquid gel could disperse well in the stomach as hydrogel beads. Then, the "liquid to solid" gelation occurred from the exterior to interior of each multiple-unit gel bead, triggered by the release of Zn2+ and Mg2+ from neutralization reactions. The formed gel demonstrated mild antacid effect that lasted for 3 hours and 66.3% pepsin inhibition in vivo. Moreover, the rats treated with the indobufen gel system showed a drug plasma concentration versus time curve with less fluctuation compared to the rats treated with the marketed preparation (YinDuo®) group. The gel system also exhibited an extended Tmax (6.50 hours) and reduced Cmax (52.87 μg/mL). Additionally, the gastric mucosal protection of the gel system was verified using three types of peptic gastric ulcer models. These findings suggested that this multiple-unit in situ gel could be a potential oral liquid sustained release delivery system for NSAIDs.
Collapse
Affiliation(s)
- Ya Tang
- The Second Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, PR China
| | - Peng Sun
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Adric Hii Ru Khiing
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kang Sha
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou 310018, China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Malhotra D, Fattahi E, Germann N, Flisikowska T, Schnieke A, Becker T. Skin substitutes based on gellan gum with mechanical and penetration compatibility to native human skin. J Biomed Mater Res A 2023; 111:1588-1599. [PMID: 37191205 DOI: 10.1002/jbm.a.37557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The study reports on a simple system to fabricate skin substitutes consisting of a naturally occurring bacterial polysaccharide gellan gum. Gelation was driven by the addition of a culture medium whose cations induced gellan gum crosslinking at physiological temperature, resulting in hydrogels. Human dermal fibroblasts were incorporated in these hydrogels and their mechanical, morphological, and penetration characteristics were studied. The mechanical properties were determined by means of oscillatory shear rheology, and a short linear viscoelastic regime was noted up to less than 1% of strain amplitude. The storage modulus increased with an increasing polymer concentration. The moduli were in the range noted for native human skin. After 2 weeks of fibroblast cultivation, the storage moduli showed signs of deterioration, so that a culture time of 2 weeks was proposed for further studies. Microscopic and fluorescent staining observations were documented. These depicted a crosslinked network structure in the hydrogels with a homogeneous distribution of cells and an assured cell viability of 2 weeks. H&E staining was also performed, which showed some traces of ECM formation in a few sections. Finally, caffeine penetration experiments were carried out with Franz diffusion cells. The hydrogels with a higher concentration of polymer containing cells showed an improved barrier function against caffeine compared to previously studied multicomponent hydrogels as well as commercially available 3D skin models. Therefore, these hydrogels displayed both mechanical and penetration compatibility with the ex vivo native human skin.
Collapse
Affiliation(s)
- Deepika Malhotra
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| | - Ehsan Fattahi
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| | - Natalie Germann
- Faculty 4 - Energy-, Process- and Bioengineering, Chair of Process Systems Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tatiana Flisikowska
- TUM School of Life Sciences Weihenstephan, Chair of Livestock Biotechnology, Technical University of Munich (TUM), Freising, Germany
| | - Angelika Schnieke
- TUM School of Life Sciences Weihenstephan, Chair of Livestock Biotechnology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
7
|
Scognamiglio F, Cok M, Piazza F, Marsich E, Pacor S, Aarstad OA, Aachmann FL, Donati I. Hydrogels based on methylated-alginates as a platform to investigate the effect of material properties on cell activity. The role of material compliance. Carbohydr Polym 2023; 311:120745. [PMID: 37028873 DOI: 10.1016/j.carbpol.2023.120745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Alginate-based hydrogels with tunable mechanical properties are developed by chemical methylation of the polysaccharide backbone, which was performed either in homogeneous phase (in solution) or in heterogeneous phase (on hydrogels). Nuclear Magnetic Resonance (NMR) and Size Exclusion Chromatography (SEC-MALS) analyses of methylated alginates allow to identify the presence and location of methyl groups on the polysaccharide, and to investigate the influence of methylation on the stiffness of the polymer chains. The methylated polysaccharides are employed for the manufacturing of calcium-reticulated hydrogels for cell growth in 3D. The rheological characterization shows that the shear modulus of hydrogels is dependent on the amount of cross-linker used. Methylated alginates represent a platform to explore the effect of mechanical properties on cell activity. As an example, the effect of compliance is investigated using hydrogels displaying similar shear modulus. An osteosarcoma cell line (MG-63) was encapsulated in the alginate hydrogels and the effect of material compliance on cell proliferation and localization of YAP/TAZ protein complex is investigated by flow cytometry and immunohistochemistry, respectively. The results point out that an increase of material compliance leads to an increase of the proliferative rate of cells and correlates with the translocation of YAP/TAZ inside the cell nucleus.
Collapse
Affiliation(s)
- Francesca Scognamiglio
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Michela Cok
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Francesco Piazza
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Olav A Aarstad
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| |
Collapse
|
8
|
Zou H, Chen S, Zhang M, Lin H, Teng J, Zhang H, Shen L, Hong H. Molecular-level insights into the mitigation of magnesium-natural organic matter induced ultrafiltration membrane fouling by high-dose calcium based on DFT calculation. CHEMOSPHERE 2022; 309:136734. [PMID: 36209866 DOI: 10.1016/j.chemosphere.2022.136734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While magnesium cation (Mg2+) universally coexists with natural organic matter (NOM) in the water environment, influence of Mg2+ on NOM fouling in membrane filtration process is still unclear. This work was therefore performed to investigate effects of Mg2+ on NOM (sodium alginate (SA) as a model substance) fouling and role of Ca2+ in mitigating fouling from Mg2+ in the ultrafiltration (UF) water treatment process. Filtration tests showed two interesting fouling phenomena: (1) membrane fouling caused by combination of Mg2+ and SA maintained at a high value with the increased Mg2+ concentration; (2) the high fouling property of Mg2+ can be significantly improved by the prominent addition of calcium cation (Ca2+). It was found that changes of foulant morphology played essential roles through thermodynamic mechanisms represented by the Flory-Huggins lattice theory. Density functional theory (DFT) calculation showed that the combination of SA and Mg2+ tends to coordinate two terminal carboxyl groups in SA, beneficial to stretching alginate chains and forming a stable gel network at low doses. In addition, intramolecular coordination is difficult to occur between SA and Mg2+ due to the high hydration repulsion radius of Mg2+. Therefore, a dense and thick gel network remained even under high Mg2+concentration. Furthermore, due to the higher binding affinity of Ca2+ over Mg2+, high doses of Ca2+ trigger a transition of the stable SA-Mg2+ gel network to other configurations where flocculation and aggregation occur, thereby reducing the specific filtration resistance. The proposed thermodynamic mechanism satisfactorily explained the above interesting fouling behaviors, facilitating to development of new solutions to control membrane fouling.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shilei Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
9
|
Chen J, Zhai Z, Edgar KJ. Recent advances in polysaccharide-based in situ forming hydrogels. Curr Opin Chem Biol 2022; 70:102200. [PMID: 35998387 DOI: 10.1016/j.cbpa.2022.102200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Polysaccharides comprise an important class of natural polymers; they are abundant, diverse, polyfunctional, typically benign, and are biodegradable. Using polysaccharides to design in situ forming hydrogels is an attractive and important field of study since many polysaccharide-based hydrogels exhibit desirable characteristics including self-healing, responsiveness to environmental stimuli, and injectability. These characteristics are particularly useful for biomedical applications. This review will discuss recent discoveries in polysaccharide-based in situ forming hydrogels, including network architecture designs, curing mechanisms, physical and chemical properties, and potential applications.
Collapse
Affiliation(s)
- Junyi Chen
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
10
|
Wallace M, Holroyd J, Kuraite A, Hussain H. Does It Bind? A Method to Determine the Affinity of Calcium and Magnesium Ions for Polymers Using 1H NMR Spectroscopy. Anal Chem 2022; 94:10976-10983. [PMID: 35877111 PMCID: PMC9366736 DOI: 10.1021/acs.analchem.2c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of calcium and magnesium ions (M2+) by polymers and other macromolecules in aqueous solution is ubiquitous across chemistry and biology. At present, it is difficult to assess the binding affinity of macromolecules for M2+ without recourse to potentiometric titrations and/or isothermal titration calorimetry. Both of these techniques require specialized equipment, and the measurements can be difficult to perform and interpret. Here, we present a new method based on 1H NMR chemical shift imaging (CSI) that enables the binding affinity of polymers to be assessed in a single experiment on standard high-field NMR equipment. In our method, M2+ acetate salt is weighed into a standard 5 mm NMR tube and a solution of polymer layered on top. Dissolution and diffusion of the salt carry the M2+ and acetate ions up through the solution. The concentrations of acetate, [Ac], and free (unbound) M2+, [M2+]f, are measured at different positions along the sample by CSI. Binding of M2+ to the polymer reduces [M2+]f and hinders the upward diffusion of M2+. A discrepancy is thus observed between [Ac] and [M2+]f from which the binding affinity of the polymer can be assessed. For systems which form insoluble complexes with M2+, such as sodium polyacrylate or carboxylate-functionalized nanocellulose (CNC), we can determine the concentration of M2+ at which the polymer will precipitate. We can also predict [M2+]f when a solution of polymer is mixed homogeneously with M2+ salt. We assess the binding properties of sodium polyacrylate, alginate, polystyrene sulfonate, CNC, polyethyleneimine, ethylenediamenetetraacetic acid, and maleate.
Collapse
Affiliation(s)
- Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Joshua Holroyd
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Agne Kuraite
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Haider Hussain
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
11
|
Hassani A, Avci ÇB, Kerdar SN, Amini H, Amini M, Ahmadi M, Sakai S, Bagca BG, Ozates NP, Rahbarghazi R, Khoshfetrat AB. Interaction of alginate with nano-hydroxyapatite-collagen using strontium provides suitable osteogenic platform. J Nanobiotechnology 2022; 20:310. [PMID: 35765003 PMCID: PMC9238039 DOI: 10.1186/s12951-022-01511-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogels based on organic/inorganic composites have been at the center of attention for the fabrication of engineered bone constructs. The establishment of a straightforward 3D microenvironment is critical to maintaining cell-to-cell interaction and cellular function, leading to appropriate regeneration. Ionic cross-linkers, Ca2+, Ba2+, and Sr2+, were used for the fabrication of Alginate-Nanohydroxyapatite-Collagen (Alg-nHA-Col) microspheres, and osteogenic properties of human osteoblasts were examined in in vitro and in vivo conditions after 21 days. Results Physicochemical properties of hydrogels illustrated that microspheres cross-linked with Sr2+ had reduced swelling, enhanced stability, and mechanical strength, as compared to the other groups. Human MG-63 osteoblasts inside Sr2+ cross-linked microspheres exhibited enhanced viability and osteogenic capacity indicated by mineralization and the increase of relevant proteins related to bone formation. PCR (Polymerase Chain Reaction) array analysis of the Wnt (Wingless-related integration site) signaling pathway revealed that Sr2+ cross-linked microspheres appropriately induced various signaling transduction pathways in human osteoblasts leading to osteogenic activity and dynamic growth. Transplantation of Sr2+ cross-linked microspheres with rat osteoblasts into cranium with critical size defect in the rat model accelerated bone formation analyzed with micro-CT and histological examination. Conclusion Sr2+ cross-linked Alg-nHA-Col hydrogel can promote functionality and dynamic growth of osteoblasts. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01511-9.
Collapse
Affiliation(s)
- Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sajed Nazif Kerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meisam Amini
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran. .,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran.
| |
Collapse
|
12
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Injectable hydrogels for bone and cartilage tissue engineering: a review. Prog Biomater 2022; 11:113-135. [PMID: 35420394 PMCID: PMC9156638 DOI: 10.1007/s40204-022-00185-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
Abstract
Tissue engineering, using a combination of living cells, bioactive molecules, and three-dimensional porous scaffolds, is a promising alternative to traditional treatments such as the use of autografts and allografts for bone and cartilage tissue regeneration. Scaffolds, in this combination, can be applied either through surgery by implantation of cell-seeded pre-fabricated scaffolds, or through injection of a solidifying precursor and cell mixture, or as an injectable cell-seeded pre-fabricated scaffold. In situ forming and pre-fabricated injectable scaffolds can be injected directly into the defect site with complex shape and critical size in a minimally invasive manner. Proper and homogeneous distribution of cells, biological factors, and molecular signals in these injectable scaffolds is another advantage over pre-fabricated scaffolds. Due to the importance of injectable scaffolds in tissue engineering, here different types of injectable scaffolds, their design challenges, and applications in bone and cartilage tissue regeneration are reviewed.
Collapse
Affiliation(s)
- Nafiseh Olov
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| | - Hamid Mirzadeh
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| |
Collapse
|
13
|
Meng S, Wang R, Meng X, Wang Y, Fan W, Liang D, Zhang M, Liao Y, Tang C. Reaction heterogeneity in the bridging effect of divalent cations on polysaccharide fouling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Carter-Fenk KA, Dommer AC, Fiamingo ME, Kim J, Amaro RE, Allen HC. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer. Phys Chem Chem Phys 2021; 23:16401-16416. [PMID: 34318808 DOI: 10.1039/d1cp01407b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ∼30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML.
Collapse
Affiliation(s)
- Kimberly A Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Hassan RM. Novel synthesis of natural cation exchange resin by crosslinking the sodium alginate as a natural polymer with 1,6-hexamethylene diisocyanate in inert solvents: Characteristics and applications. Int J Biol Macromol 2021; 184:926-935. [PMID: 34186125 DOI: 10.1016/j.ijbiomac.2021.06.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
Novel synthesis of natural polymeric cation exchanger from sodium alginate reagent as natural polymer (CAlg-Na)n has been developed. This procedure takes place by crosslinking the solid sodium alginate with 1,6-hexamethylene diisocyanate (HDI) in dryness benzene as inert solvent (DB). The experimental results for crosslinking the alginate using different degrees of crosslinking of HDI/DB (w/w) showed that the capacity of the synthesized resin for binding the polyvalent metal ions reached its maximum at 30% of (HDI/D) ratio. This work aims to present a novel synthesis of cation exchange resin from natural polymers as an alternative promising competitor of low-cost, high performance and non-toxicity for removal of the toxic heavy metal ions in wastewater remediation and radionuclide pollutants from environmental contaminated media. The results obtained from various applied techniques for determining the bounded metal ion concentrations with (CAlg-Na)n indicated that the resin capacity was followed the order U(VI) > Cu(II) > Sr(II) > Ca(II) at 25 °C, respectively. The factors influenced the alginate affinity for chelating the metal ions were explained in some correlation terms between the alginate capacity and some physicochemical properties of chelated metal ions and its respective formed complexes. Speculated geometrical configurations for chelation were suggested and discussed.
Collapse
Affiliation(s)
- Refat M Hassan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
16
|
Stojkovska J, Zvicer J, Andrejevic M, Janackovic D, Obradovic B, Veljovic DN. Novel composite scaffolds based on alginate and Mg-doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions. J Biomed Mater Res B Appl Biomater 2021; 109:2079-2090. [PMID: 33955159 DOI: 10.1002/jbm.b.34856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 11/07/2022]
Abstract
In the present study, we synthesized hydroxyapatite (HAP) powders followed by the production of alginate based macroporous scaffolds with the aim to imitate the natural bone structure. HAP powders were synthesized by using a hydrothermal method, and after calcination, dominant phases in the powders, undoped and doped with Mg2+ were HAP and β-tricalcium phosphate, respectively. Upon mixing with Na-alginate, followed by gelation and freeze-dying, highly macroporous composite scaffolds were obtained with open and connected pores and uniformly dispersed mineral phase as determined by scanning electron microscopy. Mechanical properties of the scaffolds were influenced by the composition of calcium phosphate fillers being improved as Ca2+ concentration increased while Mg2+ concentration decreased. HAP formation within all scaffolds was investigated in simulated body fluid (SBF) during 28 days under static conditions while the best candidate (Mg substituted HAP filler, precursor solution with [Ca + Mg]/P molar ratio of 1.52) was investigated under more physiological conditions in a biomimetic perfusion bioreactor. The continuous SBF flow (superficial velocity of 400 μm/s) induced the formation of abundant HAP crystals throughout the scaffolds leading to improved mechanical properties to some extent as compared to the initial scaffolds. These findings indicated potentials of novel biomimetic scaffolds for use in bone tissue engineering.
Collapse
Affiliation(s)
- Jasmina Stojkovska
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia.,Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Jovana Zvicer
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | - Milica Andrejevic
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | | | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | | |
Collapse
|
17
|
Smith AM, Senior JJ. Alginate Hydrogels with Tuneable Properties. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:37-61. [PMID: 33547500 DOI: 10.1007/10_2020_161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alginate is a material that has many biomedical applications due to its low toxicity and a variety of favourable physical properties. In particular, the ease in which hydrogels are formed from alginate and the variety of mechanical behaviours that can be imparted on the hydrogels, by understanding alginate chemistry and intuitive design, has made alginate the most widely investigated polysaccharide used for tissue engineering. This chapter provides an overview of alginate, from how the source and natural variations in composition can influence mechanical properties of alginate hydrogels, through to some innovative techniques used to modify and functionalise the hydrogels designed specifically for cell-based therapies. The main focus is on how these strategies of understanding and controlling the chemistry of alginates have resulted in the development of hydrogels that can be tuned to deliver the physical behaviours required for successful application. This will also highlight how research on the physicochemical properties has helped alginate evolve from a structural polysaccharide in brown seaweed into a highly tuneable, multifunctional, smart biomaterial, which is likely to find further biomedical applications in the future.
Collapse
Affiliation(s)
- Alan M Smith
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| | - Jessica J Senior
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
18
|
The effect of alginate composition on adsorption to calcium carbonate surfaces. J Colloid Interface Sci 2021; 581:682-689. [DOI: 10.1016/j.jcis.2020.07.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/19/2022]
|
19
|
Curvello R, Garnier G. Cationic Cross-Linked Nanocellulose-Based Matrices for the Growth and Recovery of Intestinal Organoids. Biomacromolecules 2020; 22:701-709. [PMID: 33332099 DOI: 10.1021/acs.biomac.0c01510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly carboxylated nanocellulose fibers can be functionalized with cell adhesive peptides and cationic cross-linked to form matrices for a three-dimensional (3D) cell culture. It is hypothesized that nanocellulose hydrogels cross-linked with divalent cations can provide the required biochemical and mechanical properties for intestinal organoid growth and recovery. Nanocellulose hydrogels are produced by TEMPO- and TEMPO-periodate-mediated oxidation and functionalized with RGD peptides. Mechanical properties are measured by rheology and optical properties quantified by UV-vis spectroscopy. Cellulosic matrices are cross-linked with Ca2+ and Mg2+ and intestinal organoids cultured for 4 days. The organoids are recovered for passaging and RNA extraction. TEMPO-periodate-oxidized nanocellulose fibers form functionalized hydrogels and support the growth of intestinal organoids. The highly transparent cellulosic matrix requires 4 times more Mg2+ than Ca2+ ions to reach the targeted stiffness. Organoids cultured in nanocellulose maintained a major living area for up to 4 days. Cell clusters recovered from magnesium-cross-linked hydrogels can be passaged, and their extracted RNA is intact. Cationic cross-linked nanocellulose hydrogels are promising alternative plant-based matrices for a 3D cell culture systems.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Melbourne, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Hassan RM. Prospective and comparative Novel technique for evaluation the affinity of alginate for binding the alkaline-earth metal ions during formation the coordination biopolymer hydrogel complexes. Int J Biol Macromol 2020; 165:1022-1028. [DOI: 10.1016/j.ijbiomac.2020.09.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
|
21
|
Cao D, Jin J, Wang Q, Song X, Hao X, Iritani E, Katagiri N. Ultrafiltration recovery of alginate: Membrane fouling mitigation by multivalent metal ions and properties of recycled materials. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Sanchez-Ballester NM, Soulairol I, Bataille B, Sharkawi T. Flexible heteroionic calcium-magnesium alginate beads for controlled drug release. Carbohydr Polym 2018; 207:224-229. [PMID: 30600003 DOI: 10.1016/j.carbpol.2018.11.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023]
Abstract
In the present work heteroionic calcium-magnesium alginate beads have been prepared by ionotropic gelation using different Ca:Mg ratios. This simple and straightforward approach allowed the obtention of CaMg-alginate beads presenting different mechanical performance depending on the Mg:Ca ratio. The dynamic swelling behavior of the beads was investigated. Increase in the quantity of Mg2+ incorporated in the beads increased the rate of swelling at pH 1.2 and pH 7.2. Finally, the release of ibuprofen was investigated. It was found that increasing the Mg2+ present in the beads raised the drug release rate.
Collapse
Affiliation(s)
- Noelia M Sanchez-Ballester
- Institut Charles Gerhardt UMR5253 Equipe MACS, UFR Science Pharmaceutique - Université Montpellier, Montpellier, France.
| | - Ian Soulairol
- Institut Charles Gerhardt UMR5253 Equipe MACS, UFR Science Pharmaceutique - Université Montpellier, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Bernard Bataille
- Institut Charles Gerhardt UMR5253 Equipe MACS, UFR Science Pharmaceutique - Université Montpellier, Montpellier, France
| | - Tahmer Sharkawi
- Institut Charles Gerhardt UMR5253 Equipe MACS, UFR Science Pharmaceutique - Université Montpellier, Montpellier, France
| |
Collapse
|
23
|
Mazur LP, Cechinel MAP, de Souza SMAGU, Boaventura RAR, Vilar VJP. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:215-253. [PMID: 29933140 DOI: 10.1016/j.jenvman.2018.05.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 05/22/2023]
Abstract
The discharge of inadequately treated or untreated industrial wastewaters has greatly contributed to the release of contaminants into the environment, including toxic metals. Toxic metals are persistent and bioaccumulative, being their removal from wastewaters prior to release into water bodies of great concern. Literature reports the use of brown marine macroalgae for toxic metals removal from aqueous solutions as an economic and eco-friendly technique, even when applied to diluted solutions. Minor attention has been given to the application of this technique in the treatment of real wastewaters, which present a complex composition that can compromise the biosorption performance. Therefore, the main goal of this comprehensive review is to critically outline studies that: (i) applied brown marine macroalgae as natural cation exchanger for toxic metals removal from real and complex matrices; (ii) optimised the biosorption process in a fixed-bed column, which was further scaled-up to pilot plants. An overview of toxic metals sources, chemistry and toxicity, which are relevant aspects to understand and develop treatment techniques, is initially presented. The problem of water resources pollution by toxic metals and more specifically the participation of metal finishing industries in the environmental contamination are issues also covered. The current and potential decontamination methods are presented including a discussion of their advantages and drawbacks. The literature on biosorption was reviewed in detail, considering especially the ion exchange properties of cell wall constituents, such as alginate and fucoidan, and their role in metal sequestration. Besides that, a detailed description of biosorption process design, especially in continuous mode, and the application of mechanistic models is addressed.
Collapse
Affiliation(s)
- Luciana P Mazur
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratório de Transferência de Massa e Simulação Numérica de Sistemas Químicos (LABSIN-LABMASSA), Federal University of Santa Catarina, PO Box 476, CEP 88040-900 Florianópolis, SC, Brazil.
| | - Maria A P Cechinel
- Laboratório de Transferência de Massa e Simulação Numérica de Sistemas Químicos (LABSIN-LABMASSA), Federal University of Santa Catarina, PO Box 476, CEP 88040-900 Florianópolis, SC, Brazil; Laboratory of Reactors and Industrial Process, University of Extremo Sul Catarinense, CEP 88806-000, Criciúma, SC, Brazil
| | - Selene M A Guelli U de Souza
- Laboratório de Transferência de Massa e Simulação Numérica de Sistemas Químicos (LABSIN-LABMASSA), Federal University of Santa Catarina, PO Box 476, CEP 88040-900 Florianópolis, SC, Brazil
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
24
|
Bonifacio MA, Cometa S, Cochis A, Gentile P, Ferreira AM, Azzimonti B, Procino G, Ceci E, Rimondini L, De Giglio E. Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydr Polym 2018; 198:462-472. [DOI: 10.1016/j.carbpol.2018.06.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
|
25
|
Lin Z, Wu J, Qiao W, Zhao Y, Wong KH, Chu PK, Bian L, Wu S, Zheng Y, Cheung KM, Leung F, Yeung KW. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018; 174:1-16. [DOI: 10.1016/j.biomaterials.2018.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
|
26
|
Abdelraouf RM. Chemical analysis and microstructure examination of extended-pour alginate impression versus conventional one (characterization of dental extended-pour alginate). INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1362636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Huynh UTD, Chambin O, du Poset AM, Assifaoui A. Insights into gelation kinetics and gel front migration in cation-induced polysaccharide hydrogels by viscoelastic and turbidity measurements: Effect of the nature of divalent cations. Carbohydr Polym 2018; 190:121-128. [PMID: 29628229 DOI: 10.1016/j.carbpol.2018.02.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 11/28/2022]
Abstract
Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X2+) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg2+, Ca2+, Zn2+ and Ba2+) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (Dapp) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X2+]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front.
Collapse
Affiliation(s)
- Uyen T D Huynh
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; University of Technology and Education, University of Danang, 48 Cao Thang, Da Nang, Viet Nam
| | - Odile Chambin
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Department of Pharmaceutical Technology, School of Pharmacy, Univ. Bourgogne Franche-Comté, 7 Bd. Jeanne d'Arc, 21079 Dijon, France
| | - Aline Maire du Poset
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Ali Assifaoui
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Department of Pharmaceutical Technology, School of Pharmacy, Univ. Bourgogne Franche-Comté, 7 Bd. Jeanne d'Arc, 21079 Dijon, France.
| |
Collapse
|
28
|
He X, Abdoli L, Li H. Participation of copper ions in formation of alginate conditioning layer: Evolved structure and regulated microbial adhesion. Colloids Surf B Biointerfaces 2018; 162:220-227. [DOI: 10.1016/j.colsurfb.2017.11.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/21/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|
29
|
Sacco P, Furlani F, Cok M, Travan A, Borgogna M, Marsich E, Paoletti S, Donati I. Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac). Biomacromolecules 2017; 18:4206-4213. [PMID: 29039653 DOI: 10.1021/acs.biomac.7b01237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present paper explores the effect of boric acid on Chitlac, a lactose-modified chitosan which had previously shown interesting biological and physical-chemical features. The herewith-reported experimental evidences demonstrated that boric acid binds to Chitlac, producing conformational and association effects on the chitosan derivative. The thermodynamics of boric acid binding to Chitlac was explored by means of 11B NMR, circular dichroism (CD), and UV-vis spectroscopy, while macromolecular effects were investigated by means of viscometry and dynamic light scattering (DLS). The experimental results revealed a chain-chain association when limited amounts of boric acid were added to Chitlac. However, upon exceeding a critical boric acid limit dependent on the polysaccharide concentration, the soluble aggregates disentangle. The rheological behavior of Chitlac upon treatment with boric acid was explored showing a dilatant behavior in conditions of steady flow. An uncommonly high dependence in the scaling law between the zero-shear viscosity and the concentration of Chitlac was found, i.e., η0 ∝ CCTL5.8, pointing to interesting potential implications of the present system in biomaterials development.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Franco Furlani
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Michela Cok
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Massimiliano Borgogna
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical, and Health Sciences, University of Trieste , Piazza dell'Ospitale 1, I-34127 Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste, Italy
| |
Collapse
|
30
|
Vicini S, Mauri M, Wichert J, Castellano M. Alginate gelling process: Use of bivalent ions rich microspheres. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Silvia Vicini
- Department of Chemistry and Industrial Chemistry; University of Genova; Genova 16146 Italy
| | - Marco Mauri
- Department of Chemistry and Industrial Chemistry; University of Genova; Genova 16146 Italy
| | | | - Maila Castellano
- Department of Chemistry and Industrial Chemistry; University of Genova; Genova 16146 Italy
| |
Collapse
|
31
|
Sequence-dependent association of alginate with sodium and calcium counterions. Carbohydr Polym 2017; 157:1144-1152. [DOI: 10.1016/j.carbpol.2016.10.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/09/2016] [Accepted: 10/15/2016] [Indexed: 11/18/2022]
|
32
|
Single molecule investigation of the onset and minimum size of the calcium-mediated junction zone in alginate. Carbohydr Polym 2016; 148:52-60. [DOI: 10.1016/j.carbpol.2016.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
|
33
|
Huynh UTD, Lerbret A, Neiers F, Chambin O, Assifaoui A. Binding of Divalent Cations to Polygalacturonate: A Mechanism Driven by the Hydration Water. J Phys Chem B 2016; 120:1021-32. [DOI: 10.1021/acs.jpcb.5b11010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uyen T. D. Huynh
- Danang
College of Technology, University of Danang, Danang, Viet Nam
| | | | | | | | | |
Collapse
|
34
|
Ionita G, Ariciu AM, Smith DK, Chechik V. Ion exchange in alginate gels--dynamic behaviour revealed by electron paramagnetic resonance. SOFT MATTER 2015; 11:8968-8974. [PMID: 26399427 DOI: 10.1039/c5sm02062j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The formation of alginate gel from low molecular weight alginate and very low molecular weight alginate in the presence of divalent cations was investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. The transition from sol to gel in the presence of divalent cations was monitored by the changes in the dynamics of spin labelled alginate. The immobilisation of the spin labelled alginate in the gel reflects the strength of interaction between the cation and alginate chain. Diffusion experiments showed that both the cation and alginate polyanion in the gel fibres can exchange with molecules in solution. In particular, we showed that dissolved alginate polyanions can replace alginates in the gel fibres, which can hence diffuse through the bulk of the gel. This illustrates the surprisingly highly dynamic nature of these gels and opens up the possibility of preparing multicomponent alginate gels via polyanion exchange process.
Collapse
Affiliation(s)
- Gabriela Ionita
- Romanian Academy, Institute of Physical Chemistry "Ilie Murgulescu", 202 Splaiul Independentei, Bucharest, 060021, Romania.
| | | | | | | |
Collapse
|
35
|
Raman S, Gurikov P, Smirnova I. Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. J Mech Behav Biomed Mater 2014; 36:135-42. [PMID: 24841676 DOI: 10.1016/j.jmbbm.2014.04.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/29/2023]
Abstract
Alginate hydrogels are commonly used in biomedical applications such as scaffolds for tissue engineering, drug delivery, and as a medium for cell immobilisation. Multivalent cations are often employed to create physical crosslinks between carboxyl and hydroxyl moieties on neighbouring polysaccharide chains, creating hydrogels with a range of mechanical properties. This work describes the manufacture and characterisation of sodium alginate hydrogels using the divalent cations Mg(2+), Ca(2+) and Sr(2+) to promote gelation via non-covalent crosslinks. Gelation time and Young׳s modulus are characterised as a function of cation and alginate concentrations. The implications of this work towards the use of environmental elasticity to control stem cell differentiation are discussed.
Collapse
Affiliation(s)
- Georgia Kaklamani
- School of Chemical Engineering, The University of Birmingham, Edgbaston B15 2TT, UK; CNRS, LAAS, N2IS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; Universite de Toulouse, LAAS, F-31400 Toulouse, France
| | - David Cheneler
- School of Mechanical Engineering, The University of Birmingham, Edgbaston B15 2TT, UK; Engineering Department, Lancaster University, Bailrigg, Lancaster LA1 4YR, UK
| | - Liam M Grover
- School of Chemical Engineering, The University of Birmingham, Edgbaston B15 2TT, UK
| | - Michael J Adams
- School of Chemical Engineering, The University of Birmingham, Edgbaston B15 2TT, UK
| | - James Bowen
- School of Chemical Engineering, The University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
38
|
Geremia I, Borgogna M, Travan A, Marsich E, Paoletti S, Donati I. Determination of the Composition for Binary Mixtures of Polyanions: The Case of Mixed Solutions of Alginate and Hyaluronan. Biomacromolecules 2014; 15:1069-73. [DOI: 10.1021/bm401821s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ilaria Geremia
- Department
of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Massimiliano Borgogna
- Department
of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Andrea Travan
- Department
of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department
of Medical, Surgical, and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy
| | - Sergio Paoletti
- Department
of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Ivan Donati
- Department
of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| |
Collapse
|
39
|
Borgogna M, Skjåk-Bræk G, Paoletti S, Donati I. On the Initial Binding of Alginate by Calcium Ions. The Tilted Egg-Box Hypothesis. J Phys Chem B 2013; 117:7277-82. [DOI: 10.1021/jp4030766] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Massimiliano Borgogna
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 5, I-34127
Trieste, Italy
| | - Gudmund Skjåk-Bræk
- Department
of Biotechnology, Norwegian University of Science and Technology, NTNU
Sem Sælands vei 6-8, N-7491, Trondheim, Norway
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 5, I-34127
Trieste, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, via L. Giorgieri, 5, I-34127
Trieste, Italy
| |
Collapse
|
40
|
Mørch YA, Sandvig I, Olsen O, Donati I, Thuen M, Skjåk-Braek G, Haraldseth O, Brekken C. Mn-alginate gels as a novel system for controlled release of Mn2+ in manganese-enhanced MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:265-75. [PMID: 22434640 DOI: 10.1002/cmmi.493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to test alginate gels of different compositions as a system for controlled release of manganese ions (Mn(2+)) for application in manganese-enhanced MRI (MEMRI), in order to circumvent the challenge of achieving optimal MRI resolution without resorting to high, potentially cytotoxic doses of Mn(2+). Elemental analysis and stability studies of Mn-alginate revealed marked differences in ion binding capacity, rendering Mn/Ba-alginate gels with high guluronic acid content most stable. The findings were corroborated by corresponding differences in the release rate of Mn(2+) from alginate beads in vitro using T(1)-weighted MRI. Furthermore, intravitreal (ivit) injection of Mn-alginate beads yielded significant enhancement of the rat retina and retinal ganglion cell (RGC) axons 24 h post-injection. Subsequent compartmental modelling and simulation of ivit Mn(2+) transport and concentration revealed that application of slow release contrast agents can achieve a significant reduction of ivit Mn(2+) concentration compared with bolus injection. This is followed by a concomitant increase in the availability of ivit Mn(2+) for uptake by RGC, corresponding to significantly increased time constants. Our results provide proof-of-concept for the applicability of Mn-alginate gels as a system for controlled release of Mn(2+) for optimized MEMRI application.
Collapse
Affiliation(s)
- Yrr A Mørch
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jahromi SH, Grover LM, Paxton JZ, Smith AM. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells. J Mech Behav Biomed Mater 2011; 4:1157-66. [DOI: 10.1016/j.jmbbm.2011.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
|
42
|
Petrone L, McQuillan AJ. Alginate ion adsorption on a TiO2 particle film and interactions of adsorbed alginate with calcium ions investigated by attenuated total reflection infrared (ATR-IR) spectroscopy. APPLIED SPECTROSCOPY 2011; 65:1162-1169. [PMID: 21986076 DOI: 10.1366/11-06236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The adsorption of alginic acid on a TiO(2) particle film from aqueous solution was investigated by attenuated total reflection infrared (ATR-IR) spectroscopy. ATR-IR spectra recorded at different pHs confirmed that alginate adsorption to TiO(2) is favored at pH 3.0 and no significant adsorption occurs above pH 5.0. Upon adsorption the carboxylic acid groups of alginic acid are converted to the carboxylate form and bind to surface Ti(IV) ions via bridging bidentate structures. Spectral analyses of the carboxylic acid and carboxylate stretching vibrations indicated that about three in four -COOH groups are converted to -COO(-) groups as they bind coordinately to TiO(2). Additionally, the spectral data at pH 8.0 showed specific interactions of Ca(2+) ions with the free COO(-) groups of the polysaccharide backbone of adsorbed alginic acid.
Collapse
Affiliation(s)
- Luigi Petrone
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | |
Collapse
|
43
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
|
45
|
Hunt N, Smith A, Gbureck U, Shelton R, Grover L. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater 2010; 6:3649-56. [PMID: 20307693 DOI: 10.1016/j.actbio.2010.03.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/19/2010] [Accepted: 03/17/2010] [Indexed: 12/21/2022]
Abstract
Calcium-alginate hydrogel has been widely studied as a material for cell encapsulation for tissue engineering. At present, the effect that cells have on the degradation of alginate hydrogel is largely unknown. We have shown that fibroblasts encapsulated at a density of 7.5 x 10(5) cells ml(-1) in both 2% and 5% w/v alginate remain viable for at least 60 days. Rheological analysis was used to study how the mechanical properties exhibited by alginate hydrogel changed during 28 days in vitro culture. Alginate degradation was shown to occur throughout the study but was greatest within the first 7 days of culture for all samples, which correlated with a sharp release of calcium ions from the construct. Fibroblasts were shown to increase the rate of degradation during the first 7 days when compared with acellular samples in both 2% and 5% w/v gels, but after 28 days both acellular and cell-encapsulating samples retained disc-shaped morphologies and gel-like spectra. The results demonstrate that although at an early stage cells influence the mechanical properties of encapsulating alginate, over a longer period of culture, the hydrogels retain sufficient mechanical integrity to exhibit gel-like properties. This allows sustained immobilization of the cells at the desired location in vivo where they can produce extracellular matrix and growth factors to expedite the healing process.
Collapse
|