1
|
Okita K, Ito N, Morishita-Watanabe N, Umakoshi H, Kasahara K, Matubayasi N. Solvation dynamics on the diffusion timescale elucidated using energy-represented dynamics theory. Phys Chem Chem Phys 2024; 26:12852-12861. [PMID: 38623745 DOI: 10.1039/d4cp00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Photoexcitation of a solute alters the solute-solvent interaction, resulting in the nonequilibrium relaxation of the solvation structure, often called a dynamic Stokes shift or solvation dynamics. Thanks to the local nature of the solute-solvent interaction, the characteristics of the local solvent environment dissolving the solute can be captured by the observation of this process. Recently, we derived the energy-represented Smoluchowski-Vlasov (ERSV) equation, a diffusion equation for molecular liquids, which can be used to analyze the solvation dynamics on the diffusion timescale. This equation expresses the time development for the solvent distribution on the solute-solvent pair interaction energy (energy coordinate). Since the energy coordinate can effectively treat the solvent flexibility in addition to the position and orientation, the ERSV equation can be utilized in various solvent systems. Here, we apply the ERSV equation to the solvation dynamics of 6-propionyl-2-dimethylamino naphthalene (Prodan) in water and different alcohol solvents (methanol, ethanol, and 1-propanol) for clarifying the differences of the relaxation processes among these solvents. Prodan is a solvent-sensitive fluorescent probe and is thus widely utilized for investigating heterogeneous environments. On the long timescale, the ERSV equation satisfactorily reproduces the relaxation time correlation functions obtained from the molecular dynamics (MD) simulations for these solvents. We reveal that the relaxation time coefficient on the diffusion timescale linearly correlates with the inverse of the translational diffusion coefficients for the alcohol solvents because of the Prodan-solvent energy distributions among the alcohols. In the case of water, the time coefficient deviates from the linear relationship for the alcohols due to the difference in the extent of importance of the collective motion between the water and alcohol solvents.
Collapse
Affiliation(s)
- Kazuya Okita
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Natsuumi Ito
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita-Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Kento Kasahara
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Das S, Das S, Singh AK, Datta A. 3-aminoquinoline: a turn-on fluorescent probe for preferential solvation in binary solvent mixtures. Methods Appl Fluoresc 2022; 10. [PMID: 35697038 DOI: 10.1088/2050-6120/ac784d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
3-Aminoquinoline (3AQ) has been used as a fluorescent probe for preferential solvation in hexane-ethanol solvent mixtures. Results of the present experiment have been put into context by comparison with prior observations with 5-aminoquinoline (5AQ) as the probe. 3AQ exhibits a relatively small change of dipole moment (Δμ= 2.2 D) upon photoexcitation, compared to 5AQ (Δμ= 6.1D), which might appear to be a hindrance in the way of its use as a solvation probe. Indeed, the values of parameters like spectral shifts are smaller for the present experiment with 3AQ. At the smallest concentration of alcohol used, its local mole fraction around the probe is significantly lower than in the previous experiments with 5AQ. However, these apparent disadvantages are outweighed by the significant increase in fluorescence intensity and lifetime observed with increasing concentration of ethanol in the solvent mixture, as opposed to the drastic fluorescence quenching that occurs for 5AQ. This is a marked advantage in the use of 3AQ in studies like the present one. The local mole fraction of ethanol and preferential solvation index experienced by 3AQ are in line with those reported for 5AQ. The disadvantage of the smaller magnitude of Δμpersists in the time resolved fluorescence experiments, for solvent mixtures with very low ethanol content. Negligible wavelength dependence of fluorescence transients of 3AQ is observed forxp= 0.002,. However, this effect is outweighed at higher alcohol concentrations, for which nanosecond dynamics of preferential solvation is observed.
Collapse
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shirsendu Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avinash Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Facile fluorescent glucose detection based on the Maillard reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Pang Z, Sokolov M, Kubař T, Elstner M. Unravelling the mechanism of glucose binding in a protein-based fluorescence probe: molecular dynamics simulation with a tailor-made charge model. Phys Chem Chem Phys 2022; 24:2441-2453. [PMID: 35019922 DOI: 10.1039/d1cp03733a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorophores linked to the glucose/galactose-binding protein (GGBP) are a promising class of glucose sensors with potential application in medical devices for diabetes patients. Several different fluorophores at different positions in the protein were tested experimentally so far, but a deeper molecular understanding of their function is still missing. In this work, we use molecular dynamics simulations to investigate the mechanism of glucose binding in the GGBP-Badan triple mutant and make a comparison to the GGBP wild-type protein. The aim is to achieve a detailed molecular understanding of changes in the glucose binding site due to the mutations and their effect on glucose binding. Free simulations give an insight into the changes of the hydrogen-bonding network in the active site and into the mechanisms of glucose binding. Additionally, metadynamics simulations for wild type and mutant unravel the energetics of binding/unbinding in these proteins. Computed free energies for the opening of the binding pocket for the wild-type and the mutant agree well with the experimental data. Further, the simulations also give an insight into the changes of the chromophore conformations upon glucose binding, which can help to understand fluorescence changes. Therefore, the molecular details unravelled in this work may support effective optimisation strategies for the construction of more efficient glucose sensors.
Collapse
Affiliation(s)
- Ziwei Pang
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | - Monja Sokolov
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany. .,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
|
6
|
Pospíšil P, Cwiklik L, Sýkora J, Hof M, Greetham GM, Towrie M, Vlček A. Solvent-Dependent Excited-State Evolution of Prodan Dyes. J Phys Chem B 2021; 125:13858-13867. [PMID: 34914398 DOI: 10.1021/acs.jpcb.1c09030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excited-state character and dynamics of two 6-(dimethylamino)-2-acylnaphthalene dyes (Prodan and Badan-SCH2CH2OH) were studied by picosecond time-resolved IR spectroscopy (TRIR) in solvents of different polarity and relaxation times: hexane, CD3OD, and glycerol-d8. In all these solvents, near-UV excitation initially produced the same S1(ππ*) excited state characterized by a broad TRIR signal. A very fast decay (3, ∼100 ps) followed in hexane, whereas conversion to a distinct IR spectrum with a ν(C═O) band downshifted by 76 cm-1 occurred in polar/H-bonding solvents, slowing down on going from CD3OD (1, 23 ps) to glycerol-d8 (5.5, 51, 330 ps). The final relaxed excited state was assigned as planar Me2N → C═O intramolecular charge transfer S1(ICT) by comparing experimental and TDDFT-calculated spectra. TRIR conversion kinetics are comparable to those of early stages of multiexponential fluorescence decay and dynamic fluorescence red-shift. This work presents a strong evidence that Prodan-type dyes undergo solvation-driven charge separation in their S1 state, which is responsible for the dynamic fluorescence Stokes shift observed in polar/H-bonding solvents. The time evolution of the optically prepared S1(ππ*) state to the S1(ICT) final state reflects environment relaxation and solvation dynamics. This finding rationalizes the widespread use of Prodan-type dyes as probes of environment dynamics and polarity.
Collapse
Affiliation(s)
- Petr Pospíšil
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Jan Sýkora
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic.,Department of Chemistry, Queen Mary University of London, E1 4NS London, United Kingdom
| |
Collapse
|
7
|
Das S, Singha PK, Singh AK, Datta A. The Role of Hydrogen Bonding in the Preferential Solvation of 5-Aminoquinoline in Binary Solvent Mixtures. J Phys Chem B 2021; 125:12763-12773. [PMID: 34709811 DOI: 10.1021/acs.jpcb.1c06208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
5-Aminoquinoline (5AQ) has been used as a fluorescent probe of preferential solvation (PS) in binary solvent mixtures in which the nonpolar component is diethyl ether and the polar component is protic (methanol) or aprotic (acetonitrile). Hence, the roles of solvent polarity and solute-solvent hydrogen bonding have been delineated. Positive deviations of spectral shifts from a linear dependence on the concentration of the polar component, signifying PS, are markedly more pronounced in case of the protic solvent. Solvation dynamics on a nanosecond time scale mark the formation of the solvation shell around the fluorescent probe. Time-resolved area-normalized emission spectra indicate the occurrence of the continuous solvation of the excited state when the polar component is acetonitrile. In contrast, two distinct states were observed when the polar component was methanol, the second state being the hydrogen bonded one. Translational diffusion is the rate-determining step for formation of the solvation shell. The time constant associated with it has been estimated from rise times observed in fluorescence transients monitored at the red end of the fluorescence spectra and also from the time evolution of the spectral width of time-resolved emission spectra.
Collapse
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avinash Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Capistran BA, Yuwono SH, Moemeni M, Maity S, Vahdani A, Borhan B, Jackson JE, Piecuch P, Dantus M, Blanchard GJ. Intramolecular Relaxation Dynamics Mediated by Solvent-Solute Interactions of Substituted Fluorene Derivatives. Solute Structural Dependence. J Phys Chem B 2021; 125:12486-12499. [PMID: 34752096 DOI: 10.1021/acs.jpcb.1c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several fluorene derivatives exhibit excited-state reactivity and relaxation dynamics that remain to be understood fully. We report here the spectral relaxation dynamics of two fluorene derivatives to evaluate the role of structural modification in the intramolecular relaxation dynamics and intermolecular interactions that characterize this family of chromophores. We have examined the time-resolved spectral relaxation dynamics of two compounds, NCy-FR0 and MK-FR0, in protic and aprotic solvents using steady-state and time-resolved emission spectroscopy and quantum chemical computations. Both compounds exhibit spectral relaxation characteristics similar to those seen in FR0, indicating that hydrogen bonding interactions between the chromophore and solvent protons play a significant role in determining the relaxation pathways available to three excited electronic states.
Collapse
Affiliation(s)
- Briana A Capistran
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stephen H Yuwono
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Soham Maity
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aria Vahdani
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Capistran BA, Yuwono SH, Moemeni M, Maity S, Vahdani A, Borhan B, Jackson JE, Piecuch P, Dantus M, Blanchard GJ. Excited-State Dynamics of a Substituted Fluorene Derivative. The Central Role of Hydrogen Bonding Interactions with the Solvent. J Phys Chem B 2021; 125:12242-12253. [PMID: 34726920 PMCID: PMC9254887 DOI: 10.1021/acs.jpcb.1c06474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Substituted fluorene structures have demonstrated unusual photochemical properties. Previous reports on the substituted fluorene Schiff base FR0-SB demonstrated super photobase behavior with a ΔpKb of ∼14 upon photoexcitation. In an effort to understand the basis for this unusual behavior, we have examined the electronic structure and relaxation dynamics of the structural precursor of FR0-SB, the aldehyde FR0, in protic and aprotic solvents using time-resolved fluorescence spectroscopy and quantum chemical calculations. The calculations show three excited singlet states in relatively close energetic proximity. The spectroscopic data are consistent with relaxation dynamics from these electronic states that depend on the presence and concentration of solvent hydroxyl functionality. These results underscore the central role of solvent hydrogen bonding to the FR0 aldehyde oxygen in mediating the relaxation dynamics within this molecule.
Collapse
Affiliation(s)
- Briana A Capistran
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stephen H Yuwono
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Soham Maity
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aria Vahdani
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Photophysical Properties of BADAN Revealed in the Study of GGBP Structural Transitions. Int J Mol Sci 2021; 22:ijms222011113. [PMID: 34681772 PMCID: PMC8540541 DOI: 10.3390/ijms222011113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The fluorescent dye BADAN (6-bromoacetyl-2-dimetylaminonaphtalene) is widely used in various fields of life sciences, however, the photophysical properties of BADAN are not fully understood. The study of the spectral properties of BADAN attached to a number of mutant forms of GGBP, as well as changes in its spectral characteristics during structural changes in proteins, allowed to shed light on the photophysical properties of BADAN. It was shown that spectral properties of BADAN are determined by at least one non-fluorescent and two fluorescent isomers with overlapping absorbing bands. It was found that BADAN fluorescence is determined by the unsolvated "PICT" (planar intramolecular charge transfer state) and solvated "TICT" (twisted intramolecular charge transfer state) excited states. While "TICT" state can be formed both as a result of the "PICT" state solvation and as a result of light absorption by the solvated ground state of the dye. BADAN fluorescence linked to GGBP/H152C apoform is quenched by Trp 183, but this effect is inhibited by glucose intercalation. New details of the changes in the spectral characteristics of BADAN during the unfolding of the protein apo and holoforms have been obtained.
Collapse
|
11
|
Vequi-Suplicy CC, Orozco-Gonzalez Y, Lamy MT, Canuto S, Coutinho K. A new interpretation of the absorption and the dual fluorescence of Prodan in solution. J Chem Phys 2020; 153:244104. [PMID: 33380080 DOI: 10.1063/5.0025013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Remarkable interest is associated with the interpretation of the Prodan fluorescent spectrum. A sequential hybrid Quantum Mechanics/Molecular Mechanics method was used to establish that the fluorescent emission occurs from two different excited states, resulting in a broad asymmetric emission spectrum. The absorption spectra in several solvents were measured and calculated using different theoretical models presenting excellent agreement. All theoretical models [semiempirical, time dependent density functional theory and and second-order multiconfigurational perturbation theory] agree that the first observed band at the absorption spectrum in solution is composed of three electronic excitations very close in energy. Then, the electronic excitation around 340 nm-360 nm may populate the first three excited states (π-π*Lb, n-π*, and π-π*La). The ground state S0 and the first three excited states were analyzed using multi-configurational calculations. The corresponding equilibrium geometries are all planar in vacuum. Considering the solvent effects in the electronic structure of the solute and in the solvent relaxation around the solute, it was identified that these three excited states can change the relative order depending on the solvent polarity, and following the minimum path energy, internal conversions may occur. A consistent explanation of the experimental data is obtained with the conclusive interpretation that the two bands observed in the fluorescent spectrum of Prodan, in several solvents, are due to the emission from two independent states. Our results indicate that these are the n-π* S2 state with a small dipole moment at a lower emission energy and the π-π*Lb S1 state with large dipole moment at a higher emission energy.
Collapse
Affiliation(s)
- Cíntia C Vequi-Suplicy
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - Yoelvis Orozco-Gonzalez
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - Sylvio Canuto
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
12
|
Johnson LE, Kingsbury JS, Elder DL, Cattolico RA, Latimer LN, Hardin W, De Meulenaere E, Deodato C, Depotter G, Madabushi S, Bigelow NW, Smolarski BA, Hougen TK, Kaminsky W, Clays K, Robinson BH. DANPY (dimethylaminonaphthylpyridinium): an economical and biocompatible fluorophore. Org Biomol Chem 2020; 17:3765-3780. [PMID: 30887974 DOI: 10.1039/c8ob02536c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dyes with nonlinear optical (NLO) properties enable new imaging techniques and photonic systems. We have developed a dye (DANPY-1) for photonics applications in biological substrates such as nucleic acids; however, the design specification also enables it to be used for visualizing biomolecules. It is a prototype dye demonstrating a water-soluble, NLO-active fluorophore with high photostability, a large Stokes shift, and a favorable toxicity profile. A practical and scalable synthetic route to DANPY salts has been optimized featuring: (1) convergent Pd-catalyzed Suzuki coupling with pyridine 4-boronic acid, (2) site-selective pyridyl N-methylation, and (3) direct recovery of crystalline intermediates without chromatography. We characterize the optical properties, biocompatibility, and biological staining behavior of DANPY-1. In addition to stability and solubility across a range of polar media, the DANPY-1 chromophore shows a first hyperpolarizability similar to common NLO dyes such as Disperse Red 1 and DAST, a large two-photon absorption cross section for its size, substantial affinity to nucleic acids in vitro, an ability to stain a variety of cellular components, and strong sensitivity of its fluorescence properties to its dielectric environment.
Collapse
Affiliation(s)
- Lewis E Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Son J, Joo T. Ultrafast time-resolved fluorescence at cryogenic temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:083115. [PMID: 30184696 DOI: 10.1063/1.5028367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Time resolved fluorescence at low temperature can be a powerful tool for the study of dynamics and spectroscopy. We have developed a time resolved fluorescence apparatus that provides a time resolution of 45 fs at cryogenic temperature, which is comparable to the best time resolution at ambient temperature. A continuous flow cryostat with a customized vacuum shroud and fluorescence upconversion gating by sum frequency generation were employed. A reflective Cassegrain type microscope objective lens was used to collect and to image the fluorescence to achieve high time resolution. It was demonstrated that time-resolved fluorescence spectra can also be measured directly without the spectra reconstruction at the same time resolution by in situ adjustment of the time delay to compensate the group velocity dispersion. Heat dissipation of the sample holder and the actual temperature of the irradiated volume were estimated by measuring the steady-state emission spectra of prodan solution in two different sample thicknesses, which provides a design consideration for the sample cell. The time-resolved fluorescence spectra of prodan, which undergoes charge transfer in the excited state, were measured at low temperature to demonstrate the capability of the apparatus.
Collapse
Affiliation(s)
- Jiwon Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
14
|
Chen T, Lee SW, Abelt CJ. 1,5-Prodan Emits from a Planar Intramolecular Charge-Transfer Excited State. ACS OMEGA 2018; 3:4816-4823. [PMID: 31458698 PMCID: PMC6641964 DOI: 10.1021/acsomega.8b00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/20/2018] [Indexed: 06/10/2023]
Abstract
1-Propionyl-5-dimethylaminonaphthalene (8, 1,5-Prodan) and two derivatives where the amino group is constrained in a seven-membered (9) and five-membered (10) ring are prepared. All three exhibit strong fluorescence and similar degrees of solvatochromism. Their fluorescence is strongly quenched in alcohol solvents. Because the amino group in 9 and especially 10 is forced to be coplanar with the naphthalene ring, the similar photophysical behavior of all three suggests that emission arises from a planar excited state (planar intramolecular charge transfer).
Collapse
|
15
|
Tres F, Posada MM, Hall SD, Mohutsky MA, Taylor LS. Mechanistic understanding of the phase behavior of supersaturated solutions of poorly water-soluble drugs. Int J Pharm 2018; 543:29-37. [PMID: 29572154 DOI: 10.1016/j.ijpharm.2018.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Abstract
Amorphous solid dispersions (ASDs) are a promising formulation strategy to increase both the apparent aqueous solubility and bioavailability of poorly water-soluble drugs. Upon dissolution under nonsink conditions, ASDs can generate highly supersaturated drug solutions which can undergo liquid-liquid phase separation (LLPS) and/or crystallization. In this study, the phase behavior of supersaturated solutions generated by antisolvent addition and upon the dissolution of ASDs was evaluated using fluorescence lifetime measurements and several other orthogonal techniques, including steady-state fluorescence spectroscopy, ultraviolet (UV) extinction and concentration profiles, ultracentrifuge measurements and nanoparticle tracking analysis. Ritonavir and lopinavir were chosen as poorly water-soluble model drugs, and the polymer, Kollidon VA64, was selected to form the dispersions. The fluorescence lifetime of the environment-sensitive fluoroprobe, PRODAN, was monitored to determine the occurrence of LLPS and crystallization. It was found that only the 10% w/w drug loading ASDs dissolved to a concentration in solution higher than the LLPS concentration and this led to an increase in the lifetime of PRODAN due to partitioning of the fluoroprobe into the drug-rich phase. In contrast, the 50% w/w drug loading ASDs did not reach the amorphous solubility, pointing to a dissolution behavior controlled by the low water solubility and high hydrophobicity of the drug. Fluorescence lifetime measurements were demonstrated to be extremely useful for the characterization of the phase behavior of supersaturated solutions of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Francesco Tres
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Maria M Posada
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46225, United States
| | - Stephen D Hall
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46225, United States
| | - Michael A Mohutsky
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46225, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
16
|
Singh AK, Das S, Karmakar A, Kumar A, Datta A. Solvation and hydrogen bonding aided efficient non-radiative deactivation of polar excited state of 5-aminoquinoline. Phys Chem Chem Phys 2018; 20:22320-22330. [PMID: 30124696 DOI: 10.1039/c8cp03590c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of efficient fluorescence quenching of 5-aminoquinoline in alcoholic solvents.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Sharmistha Das
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Abhoy Karmakar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Anuj Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Anindya Datta
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
17
|
Tres F, Hall SD, Mohutsky MA, Taylor LS. Monitoring the Phase Behavior of Supersaturated Solutions of Poorly Water-Soluble Drugs Using Fluorescence Techniques. J Pharm Sci 2018; 107:94-102. [DOI: 10.1016/j.xphs.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 01/11/2023]
|
18
|
Kanti De S, Kanwa N, Ahamed M, Chakraborty A. Spectroscopic evidence for hydration and dehydration of lipid bilayers upon interaction with metal ions: a new physical insight. Phys Chem Chem Phys 2018; 20:14796-14807. [DOI: 10.1039/c8cp01774c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this manuscript, we investigate the interactions of different metal ions with zwitterionic phospholipid bilayers of different chain lengths using the well-known membrane probe PRODAN and steady state and time resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Nishu Kanwa
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Mirajuddin Ahamed
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Anjan Chakraborty
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| |
Collapse
|
19
|
Yang Y, Li D, Li C, Liu Y, Jiang K. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:68-74. [PMID: 28654834 DOI: 10.1016/j.saa.2017.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54nm compared to PD. This red-shift increases to 66nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.
Collapse
Affiliation(s)
- Yonggang Yang
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - Donglin Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - Chaozheng Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - YuFang Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China.
| | - Kai Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
20
|
Michalicová P, Mravec F, Pekař M. Fluorescence study of freeze-drying as a method for support the interactions between hyaluronan and hydrophobic species. PLoS One 2017; 12:e0184558. [PMID: 28886150 PMCID: PMC5590968 DOI: 10.1371/journal.pone.0184558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022] Open
Abstract
A freeze-drying method enabling solubilization of hydrophobic species in aqueous solutions of native hyaluronan is described. The method is based on opening the access to supposed hydrophobic patches on hyaluronan by disturbing its massive hydration shell. Hydrophobic and/or polarity-sensitive fluorescence probes were used as hydrophobic models or indicators of interactions with hydrophobic patches. Fluorescence parameters specific to individual probes confirmed the efficiency of the freeze-drying method. This work is the first step in developing biocompatible and biodegradable carriers for hydrophobic drugs with targeted distribution of the active compound from native, chemically non-modified hyaluronan.
Collapse
Affiliation(s)
- Petra Michalicová
- Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied Chemistry and Materials Research Centre, Brno, Czech Republic
| | - Filip Mravec
- Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied Chemistry and Materials Research Centre, Brno, Czech Republic
| | - Miloslav Pekař
- Brno University of Technology, Faculty of Chemistry, Institute of Physical and Applied Chemistry and Materials Research Centre, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
21
|
Chandra F, Pal K, Koner AL. Tailoring Emission Properties Using Macrocyclic NanocavitiesviaGuest Interplay in Aqueous Solution. ChemistrySelect 2016. [DOI: 10.1002/slct.201601533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Falguni Chandra
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal ByPass Road, Bhauri Bhopal, Madhya Pradesh 462066 INDIA
| | - Kaushik Pal
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal ByPass Road, Bhauri Bhopal, Madhya Pradesh 462066 INDIA
| | - Apurba L. Koner
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal ByPass Road, Bhauri Bhopal, Madhya Pradesh 462066 INDIA
| |
Collapse
|
22
|
Nemkovich NA, Detert H, Roeder N. Electrooptical Absorption Measurements (EOAM) Testify Existence of two Conformers of Prodan and Laurdan with Different Dipole Moments in Equilibrium Ground and Franck-Condon Excited State. J Fluoresc 2016; 26:1563-72. [PMID: 27396483 DOI: 10.1007/s10895-016-1809-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/26/2016] [Indexed: 11/24/2022]
Affiliation(s)
- N A Nemkovich
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany.
| | - H Detert
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany.
| | - N Roeder
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| |
Collapse
|
23
|
Alty IG, Cheek DW, Chen T, Smith DB, Walhout EQ, Abelt CJ. Intramolecular Hydrogen-Bonding Effects on the Fluorescence of PRODAN Derivatives. J Phys Chem A 2016; 120:3518-23. [DOI: 10.1021/acs.jpca.6b02398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isaac G. Alty
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Douglas W. Cheek
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Tao Chen
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - David B. Smith
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Emma Q. Walhout
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Christopher J. Abelt
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
24
|
Luna MA, Correa NM, Silber JJ, Falcone RD, Moyano F. Properties of AOT reverse micelle interfaces with different polar solvents. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- M. Alejandra Luna
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3. C.P. X5804BYA Río Cuarto Argentina
| | - N. Mariano Correa
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3. C.P. X5804BYA Río Cuarto Argentina
| | - Juana J. Silber
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3. C.P. X5804BYA Río Cuarto Argentina
| | - R. Dario Falcone
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3. C.P. X5804BYA Río Cuarto Argentina
| | - Fernando Moyano
- Departamento de Química; Universidad Nacional de Río Cuarto; Agencia Postal # 3. C.P. X5804BYA Río Cuarto Argentina
| |
Collapse
|
25
|
Chandra F, Pal K, Lathwal S, Koner AL. Supramolecular guest relay using host-protein nanocavities: an application of host-induced guest protonation. MOLECULAR BIOSYSTEMS 2016; 12:2859-66. [DOI: 10.1039/c6mb00423g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Small drug molecules and other important metabolites are delivered via a suitable carrier protein-mediated transport through a specific receptor.
Collapse
Affiliation(s)
- Falguni Chandra
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Kaushik Pal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Sushil Lathwal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Apurba L. Koner
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| |
Collapse
|
26
|
Daneri M, Abelt CJ. A higher-order preferential solvation model for the fluorescence of two PRODAN derivatives in toluene-alcohol mixtures. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS NANO 2015; 9:2390-404. [PMID: 25661192 PMCID: PMC4395463 DOI: 10.1021/nn507170s] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free farnesol had no effect. Nanoparticle carriers have great potential to enhance the efficacy of antibiofilm agents through multitargeted binding and pH-responsive drug release due to microenvironmental triggers.
Collapse
Affiliation(s)
- Benjamin Horev
- Department of Biomedical Engineering, University of Rochester, NY 14627, United States
| | - Marlise I. Klein
- Center for Oral Biology, University of Rochester, NY 14627, United States
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Yong Li
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Dongyeop Kim
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Hyun Koo
- Center for Oral Biology, University of Rochester, NY 14627, United States
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA 19104, United States
- Address correspondence to: ;
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, NY 14627, United States
- Department of Chemical Engineering, University of Rochester, NY 14627, United States
- Center of Musculoskeletal Research, University of Rochester, NY 14627, United States
| |
Collapse
|
28
|
Green AM, Abelt CJ. Dual-sensor fluorescent probes of surfactant-induced unfolding of human serum albumin. J Phys Chem B 2015; 119:3912-9. [PMID: 25710498 PMCID: PMC5597305 DOI: 10.1021/jp511252y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two extrinsic fluorescent probes, 3-(dimethylamino)-8,9,10,11-tetrahydro-7H-cyclohepta[a]naphthalen-7-one (1) and 7-(dimethylamino)-2,3-dihydrophenanthren-4(1H)-one (2), are used to probe the unfolding of human serum albumin by sodium dodecyl sulfate (SDS). These probes respond separately to the polarity and H-bond-donating ability of their surroundings. Competitive binding experiments show that fluorophore 1 binds to site I (domain IIA) and 2 binds to site II (domain IIIA). The local acidity of 1 in site I is out of the sensing range of 1, whereas the local acidity of 2 in site II is calculated to be nearly zero on Catalan's solvent acidity index. Both probes show that the first two equivalents of bound SDS result in a decrease in the local polarity of the binding sites. Each subsequent equivalent of SDS gives rise to a dramatic increase in polarity until HSA is saturated with seven molecules of SDS at the end of the specific binding domain. Compound 2 experiences an increase of acidity of 0.10 on Catalan's solvent acidity index through seven equivalents of SDS, but the local acidity for 1 is still out of range. The increase in acidity experienced by 2 is greater than the increase in polarity. This result is consistent with greater exposure of the carbonyl group in 2, but not the bulk of 2, to the aqueous solvent in site II of the SDS-saturated HSA complex.
Collapse
Affiliation(s)
- Amy M Green
- Department of Chemistry, College of William and Mary , Williamsburg, Virginia 23185, United States
| | | |
Collapse
|
29
|
Vequi-Suplicy CC, Coutinho K, Lamy MT. New insights on the fluorescent emission spectra of Prodan and Laurdan. J Fluoresc 2015; 25:621-9. [PMID: 25753230 DOI: 10.1007/s10895-015-1545-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/23/2015] [Indexed: 11/24/2022]
Abstract
Prodan and Laurdan are fluorescent probes largely used in biological systems. They were synthetized to be sensitive to the environment polarity, and their fluorescent emission spectrum shifts around 120 nm, from cyclohexane to water. Although accepted that their emission spectrum is composed by two emission bands, the origin of these two bands is still a matter of discussion. Here we analyze the fluorescent spectra of Prodan and Laurdan in solvents of different polarities, both by decomposing the spectrum into two Gaussian bands and by computing the Decay Associated Spectra (DAS), the latter with time resolved fluorescence. Our data show that the intensity of the lower energy emission band of Prodan and Laurdan (attributed, in the literature, to the decay of a solvent relaxed state) is higher in cyclohexane than in water, showing a decrease as the polarity of the medium increases. Moreover, in all solvents studied here, the balance between the two emission bands is not dependent on the temperature, strongly suggesting two independent excited states. Both bands were found to display a red shift as the medium polarity increases. We propose here a new interpretation for the two emission bands of Prodan and Laurdan in homogeneous solvents: they would be related to the emission of two independent states, and not to a pair of non-relaxed and solvent relaxed states.
Collapse
Affiliation(s)
- Cíntia C Vequi-Suplicy
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970, São Paulo, SP, Brazil,
| | | | | |
Collapse
|
30
|
Villa CC, Correa NM, Silber JJ, Moyano F, Falcone RD. Singularities in the physicochemical properties of spontaneous AOT-BHD unilamellar vesicles in comparison with DOPC vesicles. Phys Chem Chem Phys 2015; 17:17112-21. [DOI: 10.1039/c5cp02387d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AOT-BHD vesicles present a bilayer completely different to the traditional DOPC vesicles, with low polarity, high viscosity and more electron donor capacity.
Collapse
Affiliation(s)
- Cristian C. Villa
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - N. Mariano Correa
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - Juana J. Silber
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - Fernando Moyano
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| | - R. Darío Falcone
- Departamento de Química
- Universidad Nacional de Río Cuarto
- C.P. X5804BYA Río Cuarto
- Argentina
| |
Collapse
|
31
|
Ab initio study of solvent-dependent one-, two- and three-photon absorption properties of PRODAN-based chemo-sensors. J CHEM SCI 2014. [DOI: 10.1007/s12039-014-0647-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Mandal S, Kuchlyan J, Ghosh S, Banerjee C, Kundu N, Banik D, Sarkar N. Vesicles Formed in Aqueous Mixtures of Cholesterol and Imidazolium Surface Active Ionic Liquid: A Comparison with Common Cationic Surfactant by Water Dynamics. J Phys Chem B 2014; 118:5913-23. [DOI: 10.1021/jp501033n] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Jagannath Kuchlyan
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Niloy Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Debasis Banik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
33
|
Yoon AH, Whitworth LC, Wagner JD, Abelt CJ. 2,5-PRODAN derivatives as highly sensitive sensors of low solvent acidity. Molecules 2014; 19:6415-27. [PMID: 24853615 PMCID: PMC6270797 DOI: 10.3390/molecules19056415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/02/2022] Open
Abstract
Two 5-acyl-2-dimethylaminonaphthalene derivatives, one with a propionyl group and the other with a fused cyclohexanone ring, are investigated as sensors of H-bond-donating ability in protic solvents of low solvent acidity. Their fluorescence is highly quenched in protic solvents, and the quenching order of magnitude is linearly related to the H-bond-donating ability of the solvent as quantified by the solvent acidity (SA) scale. As the solvent acidity increases from 0.15 to 0.40, the fluorescence for both is quenched by more than a factor of ten; thus, they are extremely sensitive sensors of the hydrogen-bond-donating ability in this weakly acidic range. Preferential solvation studies suggest that quenching occurs from a doubly H-bonded excited state.
Collapse
Affiliation(s)
- Alexandra H Yoon
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Laura C Whitworth
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Joel D Wagner
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Christopher J Abelt
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795, USA.
| |
Collapse
|
34
|
Biesso A, Xu J, Muíño PL, Callis PR, Knutson JR. Charge invariant protein-water relaxation in GB1 via ultrafast tryptophan fluorescence. J Am Chem Soc 2014; 136:2739-47. [PMID: 24456037 PMCID: PMC4004251 DOI: 10.1021/ja406126a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
protein–water interface is a critical determinant of
protein structure and function, yet the precise nature of dynamics
in this complex system remains elusive. Tryptophan fluorescence has
become the probe of choice for such dynamics on the picosecond time
scale (especially via fluorescence “upconversion”).
In the absence of ultrafast (“quasi-static”) quenching
from nearby groups, the TDFSS (time-dependent fluorescence Stokes
shift) for exposed Trp directly reports on dipolar relaxation near
the interface (both water and polypeptide). The small protein GB1
contains a single Trp (W43) of this type, and its structure is refractory
to pH above 3. Thus, it can be used to examine the dependence of dipolar
relaxation upon charge reconfiguration with titration. Somewhat surprisingly,
the dipolar dynamics in the 100 fs to 100 ps range were unchanged
with pH, although nanosecond yield, rates, and access all changed.
These results were rationalized with the help of molecular dynamics
(including QM-MM) simulations that reveal a balancing, sometimes even
countervailing influence of protein and water dipoles. Interestingly,
these simulations also showed the dominant influence of water molecules
which are associated with the protein interface for up to 30 ps yet
free to rotate at approximately “bulk” water rates.
Collapse
Affiliation(s)
- Arianna Biesso
- Optical Spectroscopy Section, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
35
|
Vequi-Suplicy CC, Coutinho K, Lamy MT. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations. Biophys Rev 2014; 6:63-74. [PMID: 28509963 DOI: 10.1007/s12551-013-0129-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
Abstract
Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.
Collapse
Affiliation(s)
- Cíntia C Vequi-Suplicy
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970, São Paulo, SP, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970, São Paulo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970, São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Thakur R, Das A, Chakraborty A. Interaction of human serum albumin with liposomes of saturated and unsaturated lipids with different phase transition temperatures: a spectroscopic investigation by membrane probe PRODAN. RSC Adv 2014. [DOI: 10.1039/c4ra01214c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaction of human serum albumin (HSA) with liposomes made of saturated and unsaturated phosphocholines has been studied using circular dichroism (CD), steady state and time resolved fluorescence spectroscopic techniques.
Collapse
Affiliation(s)
- Raina Thakur
- Department of Chemistry
- Indian Institute of Technology Indore
- , India
| | - Anupam Das
- Department of Chemistry
- Indian Institute of Technology Indore
- , India
| | | |
Collapse
|
37
|
Nikitina YY, Iqbal ES, Yoon HJ, Abelt CJ. Preferential Solvation in Carbonyl-Twisted PRODAN Derivatives. J Phys Chem A 2013; 117:9189-95. [DOI: 10.1021/jp4076433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yuliia Y. Nikitina
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia, 23185, United States
| | - Emil S. Iqbal
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia, 23185, United States
| | - Hye Joo Yoon
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia, 23185, United States
| | - Christopher J. Abelt
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia, 23185, United States
| |
Collapse
|
38
|
Ghosh S, Ghatak C, Banerjee C, Mandal S, Kuchlyan J, Sarkar N. Spontaneous transition of micelle-vesicle-micelle in a mixture of cationic surfactant and anionic surfactant-like ionic liquid: a pure nonlipid small unilamellar vesicular template used for solvent and rotational relaxation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10066-10076. [PMID: 23859437 DOI: 10.1021/la402053a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The micelle-vesicle-micelle transition in aqueous mixtures of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the anionic surfactant-like ionic liquid 1-butyl-3-methylimidazolium octyl sulfate, [C4mim][C8SO4] has been investigated by using dynamic light scattering (DLS), transmission electron microscopy (TEM), surface tension, conductivity, and fluorescence anisotropy at different volume fractions of surfactant. The surface tension value decreases sharply with increasing CTAB concentration up to ∼0.38 volume fraction and again increases up to ∼0.75 volume fraction of CTAB. Depending upon their relative amount, these surfactants either mixed together to form vesicles and/or micelles, or both of these structures were in equilibrium. Fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), incorporated in this system at different composition of surfactant indicates the formation of micelle and vesicle structures. The apparent hydrodynamic diameter of these large multilamellar vesicles is about ∼200 nm-300 nm obtained by DLS measurement and finally confirmed by TEM micrographs. The large multilamellar vesicles are transformed into small unilamellar ones by sonication using a Lab-line instruments probe sonicator with a diameter of ∼90-125 nm. To investigate the heterogeneity, solvent, and rotational relaxation of coumarin-153 (C-153) have been investigated in these unilamellar vesicles by using picosecond time-resolved fluorescence spectroscopic technique. The solvation dynamics of C-153 in these vesicles is found to be biexponential with average time constant ∼580 ps. This indicates the slow relaxation of water molecules in the surfactant bilayer. In accordance with solvation dynamics, fluorescence anisotropy analysis of C-153 in unilamellar vesicles also indicates hindered rotation compared to bulk water.
Collapse
Affiliation(s)
- Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | | | | | | | | | | |
Collapse
|
39
|
Naughton HR, Abelt CJ. Local solvent acidities in β-cyclodextrin complexes with PRODAN derivatives. J Phys Chem B 2013; 117:3323-7. [PMID: 23473052 DOI: 10.1021/jp400765x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The local solvent acidities (SA scale) of six 6-carbonyl-2-aminonaphthalene derivatives as β-cyclodextrin complexes in water are determined through fluorescence quenching. The local polarities (E(T)(N) scale) are determined through the shift of the emission center-of-mass. The apparent SA values reflect the solvent structure surrounding the guest’s carbonyl group, whereas the apparent E(T)(N) values reveal the net polarity of the entire guest molecule. Comparison of these values affords greater insight into the structures of the host–guest complexes. Derivatives 1 and 5 show unusually large acidities, indicative of highly exposed carbonyl groups. The remaining compounds give emission intensities pointing to shielded carbonyl groups. In this study, PRODAN and its derivatives are functioning as dual channel sensors of their local environment.
Collapse
Affiliation(s)
- Hannah R Naughton
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, USA
| | | |
Collapse
|
40
|
Agazzi FM, Rodriguez J, Falcone RD, Silber JJ, Correa NM. PRODAN dual emission feature to monitor BHDC interfacial properties changes with the external organic solvent composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3556-3566. [PMID: 23441973 DOI: 10.1021/la304951f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have investigated the water/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/n-heptane:benzene reverse micelles (RMs) interfaces properties using 6-propionyl-2-(N,N-dimethyl)aminonaphthalene, PRODAN, as molecular probe. We have used absorption and emission (steady-state and time-resolved) spectroscopy of PRODAN to monitor the changes in the RMs interface functionalities upon changing the external organic solvent blend. We demonstrate that PRODAN is a useful probe to investigate how the external solvent composition affects the micelle interface properties. Our results show that changes in the organic solvent composition in water/BHDC/n-heptane:benzene RMs have a dramatic effect on the photophysics of PRODAN. Thus, increasing the aliphatic solvent content over the aromatic one produces PRODAN partition and PRODAN intramolecular electron transfer (ICT) processes. Additionally, the water presence in these RMs makes the PRODAN ICT process favored with the consequent decreases in the LE emission intensity and a better definition of the charge transfer (CT) band. All this evidence suggests that the benzene molecules are expelled out of the interface, and the water-BHDC interactions are stronger with more presence of water molecules in the polar part of the interface. Thus, we demonstrate that a simple change in the composition of the external phase promotes remarkable changes in the RMs interface. Finally, the results obtained with PRODAN together with those reported in a previous work in our lab reveal that the external phase is important when trying to control the properties of RMs interface. It should be noted that the external phase itself, besides the surfactant and the polar solvent sequestrated, is a very important control variable that can play a key role if we consider smart application of these RMs systems.
Collapse
Affiliation(s)
- Federico M Agazzi
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P X5804BYA Río Cuarto, Argentina
| | | | | | | | | |
Collapse
|
41
|
Vequi-Suplicy CC, Coutinho K, Teresa Lamy M. Optical characterization of Prodan aggregates in water medium. Phys Chem Chem Phys 2013; 15:11800-7. [DOI: 10.1039/c3cp51776d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Optical absorption and fluorescence of PRODAN in solution: Quantum chemical study based on the symmetry-adapted cluster-configuration interaction method. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.09.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Franchino H, Stevens E, Nelson J, Bell TA, Bell JD. Wavelength dependence of patman equilibration dynamics in phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:877-86. [PMID: 22954647 DOI: 10.1016/j.bbamem.2012.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Assessment of the equilibration kinetics of Patman at the edges of its emission spectra provided additional insights about membrane properties beyond those obtained from end-point fluorescence measurements. Upon introduction of the probe to aqueous suspensions of liposomes, the emission intensity slowly increased about 10-fold (t(½)=~100 s). The rate of equilibration depended on emission wavelength, and was usually faster at 500 than at 435 nm. However, this trend was reversed for equilibration with lipids at their phase transition temperature. The apparent rotational motion of the dye also differed between the long and short emission wavelengths but did not display the slow equilibration time dependence observed with intensity measurements. These results suggested that slow equilibration reflects relaxation of the immediate membrane microenvironment around the probe rather than slow insertion into the membrane. The data were rationalized with a model that allows two membrane/probe configurations with distinct microenvironments. The analysis suggests that by monitoring the equilibration pattern of Patman, inferences can be made regarding the polarity of two microenvironments occupied by the probe, the distribution of the probe among those microenvironments, and the kinetics with which they relax to equilibrium.
Collapse
Affiliation(s)
- Hannabeth Franchino
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|
44
|
Green AM, Naughton HR, Nealy ZB, Pike RD, Abelt CJ. Carbonyl-twisted 6-acyl-2-dialkylaminonaphthalenes as solvent acidity sensors. J Org Chem 2012; 78:1784-9. [PMID: 22894649 DOI: 10.1021/jo301263g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Derivatives of 2-propionyl-6-dimethylaminonaphthalene (PRODAN) with twisted carbonyl groups were investigated as highly responsive sensors of H-bond donating ability. The PRODAN derivative bearing a pivaloyl group (4) was prepared. The torsion angle between the carbonyl and naphthalene is 26° in the crystal. It shows solvatochromism that is similar to five other PRODAN derivatives (1-3, 5, 6). Twisted-carbonyl derivatives 3, 4, and 6 show strong fluorescence quenching in protic solvents. The order of magnitude of the quenching is linearly related to the H-bond donating ability of the solvent (SA) but not to other solvent properties. Binary mixtures of protic solvents show specific interaction effects with respect to quenching and solvatochromism. Aggregation in water is an issue with the pivaloyl derivatives.
Collapse
Affiliation(s)
- Amy M Green
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | | | | | | | | |
Collapse
|
45
|
Correa NM, Silber JJ, Riter RE, Levinger NE. Nonaqueous Polar Solvents in Reverse Micelle Systems. Chem Rev 2012; 112:4569-602. [DOI: 10.1021/cr200254q] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia
Postal #3, C.P. X5804BYA Río Cuarto, Argentina
| | - Juana J. Silber
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia
Postal #3, C.P. X5804BYA Río Cuarto, Argentina
| | - Ruth E. Riter
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030-3770, United
States
| | - Nancy E. Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| |
Collapse
|
46
|
Nitschke WK, Vequi-Suplicy CC, Coutinho K, Stassen H. Molecular Dynamics Investigations of PRODAN in a DLPC Bilayer. J Phys Chem B 2012; 116:2713-21. [DOI: 10.1021/jp2085582] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- William K. Nitschke
- Grupo de Química Teórica, Instituto de Química, UFRGS Av. Bento Gonçalves
9500, 91540-000 Porto Alegre, Brazil
| | | | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970
São Paulo, Brazil
| | - Hubert Stassen
- Grupo de Química Teórica, Instituto de Química, UFRGS Av. Bento Gonçalves
9500, 91540-000 Porto Alegre, Brazil
| |
Collapse
|
47
|
Quintana SS, Falcone RD, Silber JJ, Correa NM. Comparison between Two Anionic Reverse Micelle Interfaces: The Role of Water-Surfactant Interactions in Interfacial Properties. Chemphyschem 2011; 13:115-23. [DOI: 10.1002/cphc.201100638] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/21/2011] [Indexed: 11/12/2022]
|
48
|
Ghatak C, Rao VG, Ghosh S, Mandal S, Sarkar N. Solvation Dynamics and Rotational Relaxation Study Inside Niosome, A Nonionic Innocuous Poly(ethylene Glycol)-Based Surfactant Assembly: An Excitation Wavelength Dependent Experiment. J Phys Chem B 2011; 115:12514-20. [DOI: 10.1021/jp204473d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chiranjib Ghatak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Shirsendu Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
49
|
Rao VG, Ghatak C, Pramanik R, Sarkar S, Sarkar N. Solvation and Rotational Dynamics of Coumarin-153 in Ethylammonium Nitrate Containing γ-Cyclodextrin. J Phys Chem B 2011; 115:10500-8. [DOI: 10.1021/jp2040532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Chiranjib Ghatak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Rajib Pramanik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Souravi Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
50
|
Zhu R, Lu R, Yu A. Photophysics and locations of IR125 and C152 in AOT reverse micelles. Phys Chem Chem Phys 2011; 13:20844-54. [DOI: 10.1039/c1cp21946d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|