1
|
Zuraski K, Grieman FJ, Hui AO, Cowen J, Winiberg FAF, Percival CJ, Okumura M, Sander SP. Acetonyl Peroxy and Hydroperoxy Self- and Cross-Reactions: Temperature-Dependent Kinetic Parameters, Branching Fractions, and Chaperone Effects. J Phys Chem A 2023; 127:7772-7792. [PMID: 37683115 PMCID: PMC10518823 DOI: 10.1021/acs.jpca.3c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 09/10/2023]
Abstract
The temperature-dependent kinetic parameters, branching fractions, and chaperone effects of the self- and cross-reactions between acetonyl peroxy (CH3C(O)CH2O2) and hydro peroxy (HO2) have been studied using pulsed laser photolysis coupled with infrared (IR) wavelength-modulation spectroscopy and ultraviolet absorption (UVA) spectroscopy. Two IR lasers simultaneously monitored HO2 and hydroxyl (OH), while UVA measurements monitored CH3C(O)CH2O2. For the CH3C(O)CH2O2 self-reaction (T = 270-330 K), the rate parameters were determined to be A = (1.5-0.3+0.4) × 10-13 and Ea/R = -996 ± 334 K and the branching fraction to the alkoxy channel, k2b/k2, showed an inverse temperature dependence following the expression, k2b/k2 = (2.27 ± 0.62) - [(6.35 ± 2.06) × 10-3] T(K). For the reaction between CH3C(O)CH2O2 and HO2 (T = 270-330 K), the rate parameters were determined to be A = (3.4-1.5+2.5) × 10-13 and Ea/R = -547 ± 415 K for the hydroperoxide product channel and A = (6.23-4.4+15.3) × 10-17 and Ea/R = -3100 ± 870 K for the OH product channel. The branching fraction for the OH channel, k1b /k1, follows the temperature-dependent expression, k1b/k1 = (3.27 ± 0.51) - [(9.6 ± 1.7) × 10-3] T(K). Determination of these parameters required an extensive reaction kinetics model which included a re-evaluation of the temperature dependence of the HO2 self-reaction chaperone enhancement parameters due to the methanol-hydroperoxy complex. The second-law thermodynamic parameters for KP,M for the formation of the complex were found to be ΔrH250K° = -38.6 ± 3.3 kJ mol-1 and ΔrS250K° = -110.5 ± 13.2 J mol-1 K-1, with the third-law analysis yielding ΔrH250K° = -37.5 ± 0.25 kJ mol-1. The HO2 self-reaction rate coefficient was determined to be k4 = (3.34-0.80+1.04) × 10-13 exp [(507 ± 76)/T]cm3 molecule-1 s-1 with the enhancement term k4,M″ = (2.7-1.7+4.7) × 10-36 exp [(4700 ± 255)/T]cm6 molecule-2 s-1, proportional to [CH3OH], over T = 220-280 K. The equivalent chaperone enhancement parameter for the acetone-hydroperoxy complex was also required and determined to be k4,A″ = (5.0 × 10-38 - 1.4 × 10-41) exp[(7396 ± 1172)/T] cm6 molecule-2 s-1, proportional to [CH3C(O)CH3], over T = 270-296 K. From these parameters, the rate coefficients for the reactions between HO2 and the respective complexes over the given temperature ranges can be estimated: for HO2·CH3OH, k12 = [(1.72 ± 0.050) × 10-11] exp [(314 ± 7.2)/T] cm3 molecule-1 s-1 and for HO2·CH3C(O)CH3, k15 = [(7.9 ± 0.72) × 10-17] exp [(3881 ± 25)/T] cm3 molecule-1 s-1. Lastly, an estimate of the rate coefficient for the HO2·CH3OH self-reaction was also determined to be k13 = (1.3 ± 0.45) × 10-10 cm3 molecule-1 s-1.
Collapse
Affiliation(s)
- Kristen Zuraski
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Fred J. Grieman
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
- Seaver
Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Aileen O. Hui
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Julia Cowen
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
- Seaver
Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Frank A. F. Winiberg
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Carl J. Percival
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Mitchio Okumura
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanley P. Sander
- NASA
Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
2
|
Assali M, Fittschen C. Self-Reaction of Acetonyl Peroxy Radicals and Their Reaction with Cl Atoms. J Phys Chem A 2022; 126:4585-4597. [PMID: 35793477 DOI: 10.1021/acs.jpca.2c02602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate constant for the self-reaction of the acetonyl peroxy radicals, CH3C(O)CH2O2, has been determined using laser photolysis/continuous wave cavity ring down spectroscopy (cw-CRDS). CH3C(O)CH2O2 radicals have been generated from the reaction of Cl atoms with CH3C(O)CH3, and the concentration time profiles of four radicals (HO2, CH3O2, CH3C(O)O2, and CH3C(O)CH2O2) have been determined by cw-CRDS in the near-infrared. The rate constant for the self-reaction was found to be k = (5.4 ± 1.4) × 10-12 cm3 s-1, in good agreement with a recently published value (Zuraski, K., et al. J. Phys. Chem. A 2020, 124, 8128); however, the branching ratio for the radical path was found to be ϕ1b = (0.6 ± 0.1), which is well above the recently published value (0.33 ± 0.13). The influence of a fast reaction of Cl atoms with the CH3C(O)CH2O2 radical became evident under some conditions; therefore, this reaction has been investigated in separate experiments. Through the simultaneous fitting of all four radical profiles to a complex mechanism, a very fast rate constant of k = (1.35 ± 0.8) × 10-10 cm3 s-1 was found, and experimental results could be reproduced only if Cl atoms would partially react through H-atom abstraction to form the Criegee intermediate with a branching fraction of ϕCriegee = (0.55 ± 0.1). Modeling the HO2 concentration-time profiles was possible only if a subsequent reaction of the Criegee intermediate with CH3C(O)CH3 was included in the mechanism leading to HO2 formation with a rate constant of k = (4.5 ± 2.0) × 10-14 cm3 s-1.
Collapse
Affiliation(s)
- Mohamed Assali
- Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| |
Collapse
|
3
|
Rate Constants and Branching Ratios for the Self-Reaction of Acetyl Peroxy (CH3C(O)O2•) and Its Reaction with CH3O2. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The self-reaction of acetylperoxy radicals (CH3C(O)O2•) (R1) as well as their reaction with methyl peroxy radicals (CH3O2•) (R2) have been studied using laser photolysis coupled to a selective time resolved detection of three different radicals by cw-CRDS in the near-infrared range: CH3C(O)O2• was detected in the Ã-X˜ electronic transition at 6497.94 cm−1, HO2• was detected in the 2ν1 vibrational overtone at 6638.2 cm−1, and CH3O2• radicals were detected in the Ã-X˜ electronic transition at 7489.16 cm−1. Pulsed photolysis of different precursors at different wavelengths, always in the presence of O2, was used to generate CH3C(O)O2• and CH3O2• radicals: acetaldehyde (CH3CHO/Cl2 mixture or biacetyle (CH3C(O)C(O)CH3) at 351 nm, and acetone (CH3C(O)CH3) or CH3C(O)C(O)CH3 at 248 nm. From photolysis experiments using CH3C(O)C(O)CH3 or CH3C(O)CH3 as precursor, the rate constant for the self-reaction was found with k1 = (1.3 ± 0.3) × 10−11 cm3s−1, in good agreement with current recommendations, while the rate constant for the cross reaction with CH3O2• was found to be k2 = (2.0 ± 0.4) × 10−11 cm3s−1, which is nearly two times faster than current recommendations. The branching ratio of (R2) towards the radical products was found at 0.67, compared with 0.9 for the currently recommended value. Using the reaction of Cl•-atoms with CH3CHO as precursor resulted in radical profiles that were not reproducible by the model: secondary chemistry possibly involving Cl• or Cl2 might occur, but could not be identified.
Collapse
|
4
|
Absolute Absorption Cross-Section of the Ã←X˜ Electronic Transition of the Ethyl Peroxy Radical and Rate Constant of Its Cross Reaction with HO2. PHOTONICS 2021. [DOI: 10.3390/photonics8080296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The absolute absorption cross-section of the ethyl peroxy radical C2H5O2 in the Ã←X˜ electronic transition with the peak wavelength at 7596 cm−1 has been determined by the method of dual wavelengths time resolved continuous wave cavity ring down spectroscopy. C2H5O2 radicals were generated from pulsed 351 nm photolysis of C2H6/Cl2 mixture in presence of 100 Torr O2 at T = 295 K. C2H5O2 radicals were detected on one of the CRDS paths. Two methods have been applied for the determination of the C2H5O2 absorption cross-section: (i) based on Cl-atoms being converted alternatively to either C2H5O2 by adding C2H6 or to hydro peroxy radicals, HO2, by adding CH3OH to the mixture, whereby HO2 was reliably quantified on the second CRDS path in the 2ν1 vibrational overtone at 6638.2 cm−1 (ii) based on the reaction of C2H5O2 with HO2, measured under either excess HO2 or under excess C2H5O2 concentration. Both methods lead to the same peak absorption cross-section for C2H5O2 at 7596 cm−1 of σ = (1.0 ± 0.2) × 10−20 cm2. The rate constant for the cross reaction between of C2H5O2 and HO2 has been measured to be (6.2 ± 1.5) × 10−12 cm3 molecule−1 s−1.
Collapse
|
5
|
Zuraski K, Hui AO, Grieman FJ, Darby E, Møller KH, Winiberg FAF, Percival CJ, Smarte MD, Okumura M, Kjaergaard HG, Sander SP. Acetonyl Peroxy and Hydro Peroxy Self- and Cross-Reactions: Kinetics, Mechanism, and Chaperone Enhancement from the Perspective of the Hydroxyl Radical Product. J Phys Chem A 2020; 124:8128-8143. [PMID: 32852951 DOI: 10.1021/acs.jpca.0c06220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsed laser photolysis coupled with infrared (IR) wavelength modulation spectroscopy and ultraviolet (UV) absorption spectroscopy was used to study the kinetics and branching fractions for the acetonyl peroxy (CH3C(O)CH2O2) self-reaction and its reaction with hydro peroxy (HO2) at a temperature of 298 K and pressure of 100 Torr. Near-IR and mid-IR lasers simultaneously monitored HO2 and hydroxyl, OH, respectively, while UV absorption measurements monitored the CH3C(O)CH2O2 concentrations. The overall rate constant for the reaction between CH3C(O)CH2O2 and HO2 was found to be (5.5 ± 0.5) × 10-12 cm3 molecule-1 s-1, and the branching fraction for OH yield from this reaction was directly measured as 0.30 ± 0.04. The CH3C(O)CH2O2 self-reaction rate constant was measured to be (4.8 ± 0.8) × 10-12 cm3 molecule-1 s-1, and the branching fraction for alkoxy formation was inferred from secondary chemistry as 0.33 ± 0.13. An increase in the rate of the HO2 self-reaction was also observed as a function of acetone (CH3C(O)CH3) concentration which is interpreted as a chaperone effect, resulting from hydrogen-bond complexation between HO2 and CH3C(O)CH3. The chaperone enhancement coefficient for CH3C(O)CH3 was determined to be kA″ = (4.0 ± 0.2) × 10-29 cm6 molecule-2 s-1, and the equilibrium constant for HO2·CH3C(O)CH3 complex formation was found to be Kc(R14) = (2.0 ± 0.89) × 10-18 cm3 molecule-1; from these values, the rate constant for the HO2 + HO2·CH3C(O)CH3 reaction was estimated to be (2 ± 1) × 10-11 cm3 molecule-1 s-1. Results from UV absorption cross-section measurements of CH3C(O)CH2O2 and prompt OH radical yields arising from possible oxidation of the CH3C(O)CH3-derived alkyl radical are also discussed. Using theoretical methods, no likely pathways for the observed prompt OH radical formation have been found and the prompt OH radical yields thus remain unexplained.
Collapse
Affiliation(s)
- Kristen Zuraski
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Aileen O Hui
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Fred J Grieman
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.,Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Emily Darby
- Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711, United States
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Frank A F Winiberg
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Carl J Percival
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Matthew D Smarte
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Mitchio Okumura
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Stanley P Sander
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
6
|
Luo PL, Horng EC. Simultaneous determination of transient free radicals and reaction kinetics by high-resolution time-resolved dual-comb spectroscopy. Commun Chem 2020; 3:95. [PMID: 36703338 PMCID: PMC9814257 DOI: 10.1038/s42004-020-00353-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/10/2020] [Indexed: 01/29/2023] Open
Abstract
Quantitative determination of multiple transient species is critical in investigating reaction mechanisms and kinetics under various conditions. Dual-comb spectroscopy, a comb-laser-based multi-heterodyne interferometric technique that enables simultaneous achievement of broadband, high-resolution, and rapid spectral acquisition, opens a new era of time-resolved spectroscopic measurements. Employing an electro-optic dual-comb spectrometer with central wavelength near 3 µm coupled with a Herriott multipass absorption cell, here we demonstrate simultaneous determination of multiple species, including methanol, formaldehyde, HO2 and OH radicals, and investigate the reaction kinetics. In addition to quantitative spectral analyses of high-resolution and tens of microsecond time-resolved spectra recorded upon flash photolysis of precursor mixtures, we determine a rate coefficient of the HO2 + NO reaction by directly detecting both HO2 and OH radicals. Our approach exhibits potential in discovering reactive intermediates and exploring complex reaction mechanisms, especially those of radical-radical reactions.
Collapse
Affiliation(s)
- Pei-Ling Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| | - Er-Chien Horng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| |
Collapse
|
7
|
Assali M, Rakovsky J, Votava O, Fittschen C. Experimental determination of the rate constants of the reactions of HO
2
+ DO
2
and DO
2
+ DO
2. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed Assali
- CNRS, UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l'AtmosphèreUniversité Lille Lille France
| | - Jozef Rakovsky
- J. Heyrovský Institute of Physical Chemistry v.v.i.Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Ondrej Votava
- J. Heyrovský Institute of Physical Chemistry v.v.i.Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Christa Fittschen
- CNRS, UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l'AtmosphèreUniversité Lille Lille France
| |
Collapse
|
8
|
Zhang T, Wen M, Zhang Y, Lan X, Long B, Wang R, Yu X, Zhao C, Wang W. Atmospheric chemistry of the self-reaction of HO 2 radicals: stepwise mechanism versus one-step process in the presence of (H 2O) n (n = 1-3) clusters. Phys Chem Chem Phys 2019; 21:24042-24053. [PMID: 31646308 DOI: 10.1039/c9cp03530c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of water on radical-radical reactions are of great importance for the elucidation of the atmospheric oxidation process of free radicals. In the present work, the HO2 + HO2 reactions with (H2O)n (n = 1-3) have been investigated using quantum chemical methods and canonical variational transition state theory with small curvature tunneling. We have explored both one-step and stepwise mechanisms, in particular the stepwise mechanism initiated by ring enlargement. The calculated results have revealed that the stepwise mechanism is the dominant one in the HO2 + HO2 reaction that is catalyzed by one water molecule. This is because its pseudo-first-order rate constant (kRWM1') is 3 orders of magnitude larger than that of the corresponding one-step mechanism. Additionally, the value of kRWM1' at 298 K has been found to be 4.3 times larger than that of the rate constant of the HO2 + HO2 reaction (kR1) without catalysts, which is in good agreement with the experimental findings. The calculated results also showed that the stepwise mechanism is still dominant in the (H2O)2 catalyzed reaction due to its higher pseudo-first-order rate constant, which is 3 orders of magnitude larger than that of the corresponding one-step mechanism. On the other hand, the one-step process is much faster than the stepwise mechanism by a factor of 105-106 in the (H2O)3 catalyzed reaction. However, the pseudo-first-order rate constants for the (H2O)2 and (H2O)3-catalyzed reactions are lower than that of the H2O-catalyzed reaction by 3-4 orders of magnitude, which indicates that the water monomer is the most efficient one among all the catalysts of (H2O)n (n = 1-3). The present results have provided a definitive example that water and water clusters have important influences on atmospheric reactions.
Collapse
Affiliation(s)
- Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang T, Zhang Y, Wen M, Tang Z, Long B, Yu X, Zhao C, Wang W. Effects of water, ammonia and formic acid on HO 2 + Cl reactions under atmospheric conditions: competition between a stepwise route and one elementary step. RSC Adv 2019; 9:21544-21556. [PMID: 35521297 PMCID: PMC9066192 DOI: 10.1039/c9ra03541a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/29/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022] Open
Abstract
Quantum chemical calculations at M06-2X and CCSD(T) levels of theory have been performed to investigate the effects of H2O, NH3, and HCOOH on the HO2 + Cl → HCl + O2 reaction. The results show that catalyzed reactions with three catalysts could proceed through two different mechanisms, namely a stepwise route and one elementary step, where the former reaction is more favorable than the latter. Meanwhile, for the stepwise route, a single hydrogen atom transfer pathway in the presence of all catalysts has more advantages than the respective double hydrogen atom transfer pathway. Then, the relative impacts of catalysts under tropospheric conditions were investigated by considering the temperature dependence of the rate constants and the altitude dependence of catalyst concentrations. The calculated results show that at 0 km altitude, the HO2 + Cl → HCl + O2 reaction with catalysts, such as H2O, NH3, or HCOOH, cannot compete with the reaction without a catalyst, as the effective rate constant with a catalyst is smaller by 2-6 orders of magnitude than the naked reaction within the temperature range 280-320 K. The calculated results also show that at altitudes of 5, 10 and 15 km, the effective rate constant of the HCOOH-catalyzed reaction increases obviously with an increase in altitude. At 15 km altitude, its value is up to 9.63 × 10-11 cm3 per molecule per s, which is close to the corresponding value of the reaction without a catalyst, showing that the contribution of HCOOH to the HO2 + Cl → HCl + O2 reaction cannot be neglected at high altitudes. The new findings in this investigation are not only of great necessity and importance for elucidating the gas-phase reaction of HO2 with Cl in the presence of acidic, neutral and basic catalysts, but are also of great interest for understanding the importance of other types of hydrogen abstraction in the atmosphere.
Collapse
Affiliation(s)
- Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 P. R. China +86-0916-2641083 +86-0916-2641083
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 P. R. China
| | - Yongqi Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 P. R. China +86-0916-2641083 +86-0916-2641083
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 P. R. China
| | - Mingjie Wen
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 P. R. China +86-0916-2641083 +86-0916-2641083
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 P. R. China
| | - Zhuo Tang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 P. R. China +86-0916-2641083 +86-0916-2641083
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University Guiyang 550025 P. R. China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 P. R. China +86-0916-2641083 +86-0916-2641083
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology Hanzhong Shaanxi 723001 P. R. China +86-0916-2641083 +86-0916-2641083
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 P. R. China
| |
Collapse
|
10
|
|
11
|
Wang R, Yao Q, Wen M, Tian S, Wang Y, Wang Z, Yu X, Shao X, Chen L. Catalytic effect of (H2O)n (n = 1–3) clusters on the HO2 + SO2 → HOSO + 3O2 reaction under tropospheric conditions. RSC Adv 2019; 9:16195-16207. [PMID: 35521394 PMCID: PMC9064368 DOI: 10.1039/c9ra00169g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 11/21/2022] Open
Abstract
The HO2 + SO2 → HOSO + 3O2 reaction without and with (H2O)n (n = 1–3) have been investigated using CCSD(T)/CBS//M06-2X/aug-cc-pVTZ methods, and canonical variational transition state theory with small curvature tunneling.
Collapse
Affiliation(s)
- Rui Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Qiuyue Yao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Mingjie Wen
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Shaobo Tian
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Yan Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Zhiyin Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Long Chen
- Key Lab of Aerosol Chemistry & Physics
- Institute of Earth Environment
- Chinese Academy of Sciences
- Xi'an
- P. R. China
| |
Collapse
|
12
|
Xing Y, Li H, Huang L, Wu H, Shen H, Chen Z. The production of formaldehyde and hydroxyacetone in methacrolein photooxidation: New insights into mechanism and effects of water vapor. J Environ Sci (China) 2018; 66:1-11. [PMID: 29628075 DOI: 10.1016/j.jes.2017.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 06/08/2023]
Abstract
Methacrolein (MACR) is an abundant multifunctional carbonyl compound with high reactivity in the atmosphere. In this study, we investigated the hydroxyl radical initiated oxidation of MACR at various NO/MACR ratios (0 to 4.04) and relative humidities (<3% to 80%) using a flow tube. Meanwhile, a box model based on the Master Chemical Mechanism was performed to test our current understanding of the mechanism. In contrast to the reasonable predictions for hydroxyacetone production, the modeled yields of formaldehyde (HCHO) were twice higher than the experimental results. The discrepancy was ascribed to the existence of unconsidered non-HCHO forming channels in the chemistry of CH3C(CH2)OO, which account for approx. 50%. In addition, the production of hydroxyacetone and HCHO were affected by water vapor as well as the initial NO/MACR ratio. The yields of HCHO were higher under humid conditions than that under dry condition. The yields of hydroxyacetone were higher under humid conditions at low-NOx level, while lower at high-NOx level. The reasonable explanation for the lower hydroxyacetone yield under humid conditions at high-NOx level is that water vapor promotes the production of methacrolein nitrate in the reaction of HOCH2C(CH3)(OO)CHO with NO due to the peroxy radical-water complex formation, which was evidenced by calculational results. And the minimum equilibrium constant of this water complex formation was estimated to be 1.89×10-18cm3/molecule. These results provide new insights into the MACR oxidation mechanism and the effects of water vapor.
Collapse
Affiliation(s)
- Yanan Xing
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huan Li
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Liubin Huang
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huihui Wu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hengqing Shen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Jara-Toro RA, Hernández FJ, Garavagno MDLA, Taccone RA, Pino GA. Water catalysis of the reaction between hydroxyl radicals and linear saturated alcohols (ethanol and n-propanol) at 294 K. Phys Chem Chem Phys 2018; 20:27885-27896. [DOI: 10.1039/c8cp05411h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water accelerates the title reaction by lowering the energy barrier and increasing the dipole moments of the reactants.
Collapse
Affiliation(s)
- Rafael A. Jara-Toro
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Federico J. Hernández
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - María de los A. Garavagno
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Raúl A. Taccone
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Gustavo A. Pino
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| |
Collapse
|
14
|
|
15
|
Assaf E, Tanaka S, Kajii Y, Schoemaecker C, Fittschen C. Rate constants of the reaction of C2–C4 peroxy radicals with OH radicals. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Catalytic effect of (H 2 O) n ( n = 1–2) on the hydrogen abstraction reaction of H 2 O 2 + HS → H 2 S + HO 2 under tropospheric conditions. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Assaf E, Sheps L, Whalley L, Heard D, Tomas A, Schoemaecker C, Fittschen C. The Reaction between CH 3O 2 and OH Radicals: Product Yields and Atmospheric Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2170-2177. [PMID: 28121426 DOI: 10.1021/acs.est.6b06265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕHO2 = (0.8 ± 0.2) and an upper limit for ϕCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.
Collapse
Affiliation(s)
- Emmanuel Assaf
- Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Leonid Sheps
- Combustion Research Facility, Sandia National Laboratories , 7011 East Ave., Livermore, California 94551 United States
| | - Lisa Whalley
- School of Chemistry, University of Leeds , Woodhouse Lane, Leeds, LS2 9JT, U.K
- National Centre for Atmospheric Chemistry, University of Leeds , Woodhouse Lane, Leeds, LS2 9JT, U.K
| | - Dwayne Heard
- School of Chemistry, University of Leeds , Woodhouse Lane, Leeds, LS2 9JT, U.K
- National Centre for Atmospheric Chemistry, University of Leeds , Woodhouse Lane, Leeds, LS2 9JT, U.K
| | - Alexandre Tomas
- IMT Lille Douai, Université Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - Coralie Schoemaecker
- Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| |
Collapse
|
18
|
Assaf E, Song B, Tomas A, Schoemaecker C, Fittschen C. Rate Constant of the Reaction between CH 3O 2 Radicals and OH Radicals Revisited. J Phys Chem A 2016; 120:8923-8932. [PMID: 27790905 DOI: 10.1021/acs.jpca.6b07704] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction between CH3O2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH4 and H2O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF2. An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH3O2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH3O2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm-1 using two different methods. A rate constant of k1 = (1.60 ± 0.4) × 10-10 cm3 s-1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10-10 cm3 s-1) using CH3I photolysis as a precursor. Quenching of electronically excited I atoms (from CH3I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.
Collapse
Affiliation(s)
- Emmanuel Assaf
- Université Lille , CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Bo Song
- Université Lille , CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Alexandre Tomas
- Mines Douai , Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), F-59508 Douai, France.,Université Lille Nord de France , F-59000 Lille, France
| | - Coralie Schoemaecker
- Université Lille , CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Christa Fittschen
- Université Lille , CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| |
Collapse
|
19
|
Assaf E, Fittschen C. Cross Section of OH Radical Overtone Transition near 7028 cm–1 and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals. J Phys Chem A 2016; 120:7051-9. [DOI: 10.1021/acs.jpca.6b06477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Assaf
- CNRS, UMR 8522 - PC2A - Physicochimie
des Processus de Combustion et de l’Atmosphère, Université Lille, F-59000 Lille, France
| | - Christa Fittschen
- CNRS, UMR 8522 - PC2A - Physicochimie
des Processus de Combustion et de l’Atmosphère, Université Lille, F-59000 Lille, France
| |
Collapse
|
20
|
Ward MKM, Rowley DM. Kinetics of the ClO + HO2 reaction over the temperature range T = 210–298 K. Phys Chem Chem Phys 2016; 18:6301-15. [DOI: 10.1039/c5cp07329d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temporal traces showing the effect of increasing added methanol (red → orange) to a Cl/Cl2O photolysis system, showing the progressive reduction of [ClO]0 with increased [CH3OH] but an increased rate of ClO loss at lower [ClO]0, indicative of the ClO + HO2 reaction.
Collapse
|
21
|
Zhang T, Yang C, Feng X, Kang J, Song L, Lu Y, Wang Z, Xu Q, Wang W, Wang Z. The catalytic effect of water, water dimers and water trimers on H2S +3O2formation by the HO2+ HS reaction under tropospheric conditions. Phys Chem Chem Phys 2016; 18:17414-27. [DOI: 10.1039/c6cp00654j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catalyst X (X = H2O, (H2O)2and (H2O)3) is incorporated into the channel of H2S +3O2formation and the catalytic effect of water, water dimers and water trimers is mainly taken from the contribution of a single water vapor molecule.
Collapse
|
22
|
Sprague MK, Irikura KK. Thermochemistry of HO2 + HO2 → H2O4: Does HO2 Dimerization Affect Laboratory Studies? J Phys Chem A 2015; 119:7052-62. [DOI: 10.1021/acs.jpca.5b04265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew K. Sprague
- Chemical
Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Karl K. Irikura
- Chemical
Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
23
|
Faragó EP, Schoemaecker C, Viskolcz B, Fittschen C. Experimental determination of the rate constant of the reaction between C 2 H 5 O 2 and OH radicals. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.11.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Djehiche M, Le Tan NL, Jain CD, Dayma G, Dagaut P, Chauveau C, Pillier L, Tomas A. Quantitative Measurements of HO2 and other products of n-butane oxidation (H2O2, H2O, CH2O, and C2H4) at elevated temperatures by direct coupling of a jet-stirred reactor with sampling nozzle and cavity ring-down spectroscopy (cw-CRDS). J Am Chem Soc 2014; 136:16689-94. [PMID: 25381864 DOI: 10.1021/ja510719k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.
Collapse
Affiliation(s)
- Mokhtar Djehiche
- ICARE, INSIS, CNRS , 1c Avenue de la recherche scientifique, 45071 Orléans cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang T, Wang R, Wang W, Min S, Xu Q, Wang Z, Zhao C, Wang Z. Water effect on the formation of 3O2 from the self-reaction of two HO2 radicals in tropospheric conditions. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Morajkar P, Bossolasco A, Schoemaecker C, Fittschen C. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms. J Chem Phys 2014; 140:214308. [DOI: 10.1063/1.4878668] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
|
28
|
Brumfield B, Sun W, Ju Y, Wysocki G. Direct In Situ Quantification of HO2 from a Flow Reactor. J Phys Chem Lett 2013; 4:872-876. [PMID: 26291349 DOI: 10.1021/jz400143c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The first direct in situ measurements of hydroperoxyl radical (HO2) at atmospheric pressure from the exit of a laminar flow reactor have been carried out using mid-infrared Faraday rotation spectroscopy. HO2 was generated by oxidation of dimethyl ether, a potential renewable biofuel with a simple molecular structure but rich low-temperature oxidation chemistry. On the basis of the results of nonlinear fitting of the experimental data to a theoretical spectroscopic model, the technique offers an estimated sensitivity of <1 ppmv over a reactor exit temperature range of 398-673 K. Accurate in situ measurement of this species will aid in quantitative modeling of low-temperature and high-pressure combustion kinetics.
Collapse
Affiliation(s)
- Brian Brumfield
- †Department of Electrical Engineering and ‡Department of Mechanical and Aerospace Engineering, Princeton University, Engineering Quadrangle, Princeton, New Jersey 08544, United States
| | - Wenting Sun
- †Department of Electrical Engineering and ‡Department of Mechanical and Aerospace Engineering, Princeton University, Engineering Quadrangle, Princeton, New Jersey 08544, United States
| | - Yiguang Ju
- †Department of Electrical Engineering and ‡Department of Mechanical and Aerospace Engineering, Princeton University, Engineering Quadrangle, Princeton, New Jersey 08544, United States
| | - Gerard Wysocki
- †Department of Electrical Engineering and ‡Department of Mechanical and Aerospace Engineering, Princeton University, Engineering Quadrangle, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Jain C, Morajkar P, Schoemaecker C, Fittschen C. Formation of HO2 radicals from the 248 nm two-photon excitation of different aromatic hydrocarbons in the presence of O2. J Phys Chem A 2012; 116:6231-9. [PMID: 22500669 DOI: 10.1021/jp211520g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excitation energy dependence of HO(2) radical formation from the 248 nm irradiation of four different aromatic hydrocarbons (benzene, toluene, o-xylene, and mesitylene) in the presence of O(2) has been studied. HO(2) has been monitored at 6638.20 cm(-1) by cw-CRDS, and the formation of a short-lived, unidentified species, showing broad-band absorption around the HO(2) absorption line, has been observed. For all four hydrocarbons, the same HO(2) formation pattern has been observed: HO(2) is formed immediately on our time scale after the excitation pulse, followed by a formation of more HO(2) on a much longer time scale. Taking into account the absorption of the short-lived species, the yields of both types of HO(2) radicals are in agreement with a formation following 2-photon absorption by the aromatic hydrocarbons. The yields do not much depend on the nature of the aromatic hydrocarbon. For practical use in past and future experiments on aromatic hydrocarbons, an empirical value is given, allowing the estimation of the total concentration of HO(2) radicals formed at 40 Torr He in the presence of around [O(2)] = 1 × 10(17)cm(-3) as a function of the 248 nm excitation energy: [HO(2)]/[aromatic hydrocarbon] ≈ 2 × 10(-6) × E(2) (with E in mJ cm(-2)).
Collapse
Affiliation(s)
- Chaithanya Jain
- Université Lille Nord de France PhysicoChimie des Processus de Combustion et de l'Atmosphère, PC2A CNRS Université Lille 1, UMR 8522, F-59650 Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
30
|
Bell CL, van Helden JPH, Blaikie TPJ, Hancock G, van Leeuwen NJ, Peverall R, Ritchie GAD. Noise-Immune Cavity-Enhanced Optical Heterodyne Detection of HO2 in the Near-Infrared Range. J Phys Chem A 2012; 116:5090-9. [DOI: 10.1021/jp301038r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Claire L Bell
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Buszek RJ, Barker JR, Francisco JS. Water Effect on the OH + HCl Reaction. J Phys Chem A 2012; 116:4712-9. [DOI: 10.1021/jp3025107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert J. Buszek
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - John R. Barker
- Department
of Atmospheric, Oceanic
and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, United States
| | - Joseph S. Francisco
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| |
Collapse
|
32
|
Zhou DDY, Han K, Zhang P, Harding LB, Davis MJ, Skodje RT. Theoretical Determination of the Rate Coefficient for the HO2 + HO2 → H2O2+O2 Reaction: Adiabatic Treatment of Anharmonic Torsional Effects. J Phys Chem A 2012; 116:2089-100. [DOI: 10.1021/jp209684s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dingyu D. Y. Zhou
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder,
Colorado 80309-0215, United States
- Chemical
Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| | - Keli Han
- Key State Laboratory for Reaction
Dynamics, Dalian Institute for Chemical Physics, Dalian, China
| | - Peiyu Zhang
- Key State Laboratory for Reaction
Dynamics, Dalian Institute for Chemical Physics, Dalian, China
| | - Lawrence B. Harding
- Chemical
Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| | - Michael J. Davis
- Chemical
Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| | - Rex T. Skodje
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder,
Colorado 80309-0215, United States
- Key State Laboratory for Reaction
Dynamics, Dalian Institute for Chemical Physics, Dalian, China
- Chemical
Sciences and Engineering
Division, Argonne National Laboratory,
Argonne, Illinois 60439, United States
| |
Collapse
|
33
|
Blitz MA, Seakins PW. Laboratory studies of photochemistry and gas phase radical reaction kinetics relevant to planetary atmospheres. Chem Soc Rev 2012; 41:6318-47. [DOI: 10.1039/c2cs35204d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Sakamoto Y, Tonokura K. Measurements of the Absorption Line Strength of Hydroperoxyl Radical in the ν3 Band using a Continuous Wave Quantum Cascade Laser. J Phys Chem A 2011; 116:215-22. [DOI: 10.1021/jp207477n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yosuke Sakamoto
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan,
| | - Kenichi Tonokura
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8563, Japan
| |
Collapse
|
35
|
Abstract
Abstract
The HO2 radical is one of the most important intermediate species in atmospheric chemistry. We report on the development of a new photoreactor with first in-situ measurement of HO2 radical photostationary concentrations using continuous wave cavity ring-down spectrometry (cw-CRDS). Characterization of the actinic photon flux was carried out by NO2 actinometry. Photolysis of Cl2/methanol mixtures in air under UV light allowed the measurement of HO2 photostationary concentrations of a few 1010 molecules cm-3 with an HO2 detection limit of 1.5 × 1010 molecules cm-3 at 6638.207 cm-1. The feasibility of HO2 direct measurement in a reaction chamber is demonstrated through the measurement of the HO2 overall loss at different pressures showing the importance of HO2 diffusion and wall loss in such low pressure quartz reactor. The rate coefficient for the HO2+HO2 reaction has been measured at 6.6, 24 and 118 mbar and found to be in good agreement with the recommended value.
Collapse
|
36
|
Jain C, Schoemaecker C, Fittschen C. Yield of HO2 Radicals in the OH-Initiated Oxidation of SO2. ACTA ACUST UNITED AC 2011. [DOI: 10.1524/zpch.2011.0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The HO2 radical yield in the OH initiated oxidation of SO2 has been determined by direct observation of HO2 concentration time profiles following the 248 nm photolysis of H2O2/SO2/O2 mixtures. Initial OH radical concentrations have been deduced from a fit of the absolute HO2 concentration time profiles after 248 nm photolysis of H2O2 in the absence of SO2, an increase in the HO2 concentration upon addition of SO2 to this reaction mixture is observed and can be explained by a decrease of HO
x
-radical losses due to a faster decay of OH radicals in the presence of SO2. Simulations of theses profiles using recommended rate constants in a simple model are in agreement with an HO2-yield of 1.0 ± 0.1 from the OH initiated oxidation of SO2.
Collapse
Affiliation(s)
- Chaithanya Jain
- Université Lille Nord de France, Physico-Chimie des Processus de Combustion, Villeneuve d'Ascq Cedex, Frankreich
| | - Coralie Schoemaecker
- Université Lille Nord de France, Physico-Chimie des Processus de Combustion, Villeneuve d'Ascq Cedex, Frankreich
| | | |
Collapse
|
37
|
Jain C, Morajkar P, Schoemaecker C, Viskolcz B, Fittschen C. Measurement of Absolute Absorption Cross Sections for Nitrous Acid (HONO) in the Near-Infrared Region by the Continuous Wave Cavity Ring-Down Spectroscopy (cw-CRDS) Technique Coupled to Laser Photolysis. J Phys Chem A 2011; 115:10720-8. [DOI: 10.1021/jp203001y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chaithanya Jain
- PhysicoChimie des Processus de Combustion et de l′Atmosphère, Université Lille Nord de France, PC2A CNRS Université Lille 1, UMR 8522, F-59650 Villeneuve d′Ascq, France
| | - Pranay Morajkar
- PhysicoChimie des Processus de Combustion et de l′Atmosphère, Université Lille Nord de France, PC2A CNRS Université Lille 1, UMR 8522, F-59650 Villeneuve d′Ascq, France
| | - Coralie Schoemaecker
- PhysicoChimie des Processus de Combustion et de l′Atmosphère, Université Lille Nord de France, PC2A CNRS Université Lille 1, UMR 8522, F-59650 Villeneuve d′Ascq, France
| | - Bela Viskolcz
- Department of Chemistry and Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Boldogasszony sgt. 6, Hungary 6725
| | - Christa Fittschen
- PhysicoChimie des Processus de Combustion et de l′Atmosphère, Université Lille Nord de France, PC2A CNRS Université Lille 1, UMR 8522, F-59650 Villeneuve d′Ascq, France
| |
Collapse
|
38
|
Sjöström J, Mattsson J, Bergman R, Swenson J. Hydrogen Bond Induced Nonmonotonic Composition Behavior of the Glass Transition in Aqueous Binary Mixtures. J Phys Chem B 2011; 115:10013-7. [DOI: 10.1021/jp2024186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johan Sjöström
- Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - Johan Mattsson
- Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
- School of Physics & Astronomy, University of Leeds, Leeds, LS2 9JT, U.K
| | - Rikard Bergman
- Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - Jan Swenson
- Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| |
Collapse
|
39
|
Affiliation(s)
- Veronica Vaida
- Department of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
40
|
|
41
|
Seakins PW, Blitz MA. Developments in Laboratory Studies of Gas-Phase Reactions for Atmospheric Chemistry with Applications to Isoprene Oxidation and Carbonyl Chemistry. Annu Rev Phys Chem 2011; 62:351-73. [PMID: 21219141 DOI: 10.1146/annurev-physchem-032210-102538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Laboratory studies of gas-phase chemical processes are a key tool in understanding the chemistry of our atmosphere and hence tackling issues such as climate change and air quality. Laboratory techniques have improved considerably with greater emphasis on product detection, allowing the measurement of site-specific rate coefficients. Radical chemistry lies at the heart of atmospheric chemistry. In this review we consider issues around radical generation and recycling from the oxidation of isoprene and from the chemical reactions and photolysis of carbonyl species. Isoprene is the most globally significant hydrocarbon, but uncertainties exist about its oxidation in unpolluted environments. Recent experiments and calculations that cast light on radical generation are reviewed. Carbonyl compounds are the dominant first-generation products from hydrocarbon oxidation. Chemical oxidation can recycle radicals, or photolysis can be a net radical source. Studies have demonstrated that high-resolution and temperature-dependent studies are important for some significant species.
Collapse
Affiliation(s)
| | - Mark A. Blitz
- School of Chemistry, University of Leeds, Leeds, LS2 9JT United Kingdom;
| |
Collapse
|
42
|
Noell AC, Alconcel LS, Robichaud DJ, Okumura M, Sander SP. Near-infrared kinetic spectroscopy of the HO2 and C2H5O2 self-reactions and cross reactions. J Phys Chem A 2010; 114:6983-95. [PMID: 20524693 DOI: 10.1021/jp912129j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The self-reactions and cross reactions of the peroxy radicals C2H5O2 and HO2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO2, and UV absorption monitored C2H5O2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221-296 K. The Arrhenius expression determined for the cross reaction, k2(T) = (6.01(-1.47)(+1.95)) x 10(-13) exp((638 +/- 73)/T) cm3 molecules(-1) s(-1) is in agreement with other work from the literature. The measurements of the HO2 self-reaction agreed with previous work from this lab and were not further refined. The C2H5O2 self-reaction is complicated by secondary production of HO2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO2. The Arrhenius expression for the self-reaction rate constant is k3(T) = (1.29(-0.27)(+0.34)) x 10(-13)exp((-23 +/- 61)/T) cm3 molecules(-1) s(-1), and the branching fraction value is alpha = 0.28 +/- 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO2 self-reactions are required.
Collapse
Affiliation(s)
- A C Noell
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, M/S 183-901, Pasadena, California 91109, USA
| | | | | | | | | |
Collapse
|