1
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
2
|
Potkule JB, Kahar SP, Kumar M, Annapure US. Impact of non-thermal techniques on enzyme modifications for their applications in food. Int J Biol Macromol 2024; 275:133566. [PMID: 38960264 DOI: 10.1016/j.ijbiomac.2024.133566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The present review elaborates on the details of the enzyme, its structure, specificity, and the mechanism of action of selected enzymes as well as structural changes and loss or gain of activity after non-thermal treatments for food-based applications. Enzymes are biological catalysts found in various systems such as plants, animals, and microorganisms. Most of the enzymes have their optimum pH, temperature, and substrate or group of substrates. The conformational modification of enzymes either increases or decreases the rate of reaction at different pH, and temperature conditions. Enzymes are modified by different techniques to enhance the activity of enzymes for their commercial applications mainly due to the high cost of enzymes, stability, and difficulties that occur during the use of enzymes in different conditions. On the opposite, enzyme inactivation provides its application to extend the shelf life of fruits and vegetables by denaturation and partial inactivation of enzymes. Hence, the activation and inactivation of enzymes are studied by non-thermal techniques in both the model and the food system. The highly reactive species generated during non-thermal techniques cause chemical and structural modification. The enzyme modifications depend on the type and source of the enzyme, type of technique, and the parameters used.
Collapse
Affiliation(s)
- Jayashree B Potkule
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Suraj P Kahar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
3
|
Wen Y, Sun J, Jia H, Qi X, Mao X. Inactivation of polyphenol oxidase by low intensity DC field: Experiment and mechanism analysis via molecular dynamics simulation and molecular docking. Food Res Int 2024; 188:114325. [PMID: 38823824 DOI: 10.1016/j.foodres.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.
Collapse
Affiliation(s)
- Yanbing Wen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jing Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hongxin Jia
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangming Qi
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
4
|
Brito IPC, Silva EK. Pulsed electric field technology in vegetable and fruit juice processing: A review. Food Res Int 2024; 184:114207. [PMID: 38609209 DOI: 10.1016/j.foodres.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
The worldwide market for vegetable and fruit juices stands as a thriving sector with projected revenues reaching to $81.4 billion by 2024 and an anticipated annual growth rate of 5.27% until 2028. Juices offer a convenient means of consuming bioactive compounds and essential nutrients crucial for human health. However, conventional thermal treatments employed in the juice and beverage industry to inactivate spoilage and pathogenic microorganisms, as well as endogenous enzymes, can lead to the degradation of bioactive compounds and vitamins. In response, non-thermal technologies have emerged as promising alternatives to traditional heat processing, with pulsed electric field (PEF) technology standing out as an innovative and sustainable choice. In this context, this comprehensive review investigated the impact of PEF on the microbiological, physicochemical, functional, nutritional, and sensory qualities of vegetable and fruit juices. PEF induces electroporation phenomena in cell membranes, resulting in reversible or irreversible changes. Consequently, a detailed examination of the effects of PEF process variables on juice properties is essential. Monitoring factors such as electric field strength, frequency, pulse width, total treatment time, and specific energy is important to ensure the production of a safe and chemically/kinetically stable product. PEF technology proves effective in microbial and enzymatic inactivation within vegetable and fruit juices, mitigating factors contributing to deterioration while maintaining the physicochemical characteristics of these products. Furthermore, PEF treatment does not compromise the content of substances with functional, nutritional, and sensory properties, such as phenolic compounds and vitamins. When compared to alternative processing methods, such as mild thermal treatments and other non-thermal technologies, PEF treatment consistently demonstrates comparable outcomes in terms of physicochemical attributes, functional properties, nutritional quality, and overall safety.
Collapse
Affiliation(s)
- Iuri Procopio Castro Brito
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil
| | - Eric Keven Silva
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil.
| |
Collapse
|
5
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
6
|
Průša J, Cifra M. Electro-detachment of kinesin motor domain from microtubule in silico. Comput Struct Biotechnol J 2023; 21:1349-1361. [PMID: 36814722 PMCID: PMC9939557 DOI: 10.1016/j.csbj.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the β-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
Collapse
|
7
|
Zhang Z, Lee WJ, Sun X, Wang Y. Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
10
|
Molina-Peña R, Haji Mansor M, Najberg M, Thomassin JM, Gueza B, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Nanoparticle-containing electrospun nanofibrous scaffolds for sustained release of SDF-1α. Int J Pharm 2021; 610:121205. [PMID: 34670119 DOI: 10.1016/j.ijpharm.2021.121205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Chemokines such as stromal cell-derived factor-1α (SDF-1α) regulate the migration of cancer cells that can spread from their primary tumor site by migrating up an SDF-1α concentration gradient, facilitating their local invasion and metastasis. Therefore, the implantation of SDF-1α-releasing scaffolds can be a useful strategy to trap cancer cells expressing the CXCR4 receptor. In this work, SDF-1α was encapsulated into poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles and subsequently electrospun with chitosan to produce nanofibrous scaffolds of average fiber diameter of 261 ± 45 nm, intended for trapping glioblastoma (GBM) cells. The encapsulated SDF-1α maintained its biological activity after the electrospinning process as assessed by its capacity to induce the migration of cancer cells. The scaffolds could also provide sustained release of SDF-1α for at least 5 weeks. Using NIH3T3 mouse fibroblasts, human Thp-1 macrophages, and rat primary astrocytes we showed that the scaffolds possessed high cytocompatibility in vitro. Furthermore, a 7-day follow-up of Fischer rats bearing implanted scaffolds demonstrated the absence of adverse effects in vivo. In addition, the nanofibrous structure of the scaffolds provided excellent anchoring sites to support the adhesion of human GBM cells by extension of their pseudopodia. The scaffolds also demonstrated slow degradation kinetics, which may be useful in maximizing the time window for trapping GBM cells. As surgical resection does not permit a complete removal of GBM tumors, our results support the future implantation of these scaffolds into the walls of the resection cavity to evaluate their capacity to attract and trap the residual GBM cells in the brain.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Muhammad Haji Mansor
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Mathie Najberg
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Baya Gueza
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emmanuel Garcion
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Frank Boury
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
11
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02554-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAimThe effect of moderate-intensity pulsed electric fields (MIPEF) was evaluated on vegetable protein concentrates from pea, rice, and gluten.MethodsFive percent (w/w) suspensions of protein concentrates (pH 5 and 6) were exposed to up to 60,000 MIPEF pulses at 1.65 kV/cm. Both structural modifications (absorbance at 280 nm, free sulfhydryl groups, FT-IR-spectra) and functional properties (solubility, water and oil holding capacity, foamability) were analyzed.ResultsMIPEF was able to modify protein structure by inducing unfolding, intramolecular rearrangement, and formation of aggregates. However, these effects were strongly dependent on protein nature and pH. In the case of rice and pea samples, structural changes were associated with negligible modifications in functional properties. By contrast, noticeable changes in these properties were observed for gluten samples, especially after exposure to 20,000 pulses. In particular, at pH 6, an increase in water and oil holding capacity of gluten was detected, while at pH 5, its solubility almost doubled.ConclusionThese results suggest the potential of MIPEF to steer structure of proteins and enhance their technological functionality.
Collapse
|
13
|
Pandey G, Ramakrishnan V. Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophys Rev 2020; 12:1175-1186. [PMID: 32930962 PMCID: PMC7575678 DOI: 10.1007/s12551-020-00752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Advancements in medical science have facilitated in extending human lives. The increased life expectancy, though, has come at a cost. The cases of an aging population suffering from degenerative diseases like Alzheimer's disease (AD) are presently at its all-time high. Amyloidosis disorders such as AD are triggered by an abnormal transition of soluble proteins into their highly ordered aggregated forms. The landscape of amyloidosis treatment remains unchanged, and there is no cure for such disorders. However, an increased understanding of the mechanism of amyloid self-assembly has given hope for a possible therapeutic solution. In this review, we will discuss the current state of molecular and non-molecular options for therapeutic intervention of amyloidosis. We highlight the efficacy of non-invasive physical therapies as possible alternatives to their molecular counterparts. Graphical abstract.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
14
|
Wibowo S, Essel EA, De Man S, Bernaert N, Van Droogenbroeck B, Grauwet T, Van Loey A, Hendrickx M. Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Pandey G, Morla S, Nemade HB, Kumar S, Ramakrishnan V. Modulation of aggregation with an electric field; scientific roadmap for a potential non-invasive therapy against tauopathies. RSC Adv 2019; 9:4744-4750. [PMID: 35514655 PMCID: PMC9060620 DOI: 10.1039/c8ra09993f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
Toxic aggregation of tau protein to neurofibrillary tangles (NFTS) is a central pathological event involved in tauopathies. Inhibition of tau protein aggregation can serve as a straightforward therapeutic strategy. However, tau-based therapeutic solutions are not very common. Phenothiazine methylene blue (tau protein inhibitor) is currently the only drug under phase III clinical trials. In this work, a non-invasive strategy is presented for modulating the aggregation of core peptide segments of tau protein (VQIVYK and VQIINK) by using electric fields of varying strengths. We use thioflavin T staining, tyrosine fluorescence assay, electron microscopy, IR, dynamic and static light scattering, and neuronal toxicity estimation, for verifying the effect of electric field on the aggregation kinetics, morphology, conformational state and cellular toxicity of peptide systems. Our observations suggest that electric field arrests the self-assembly of VQIVYK and VQIINK fibrils thereby reducing the neurotoxicity instigated by them. Based on our observations, we propose a prospective scheme for a futuristic non-invasive therapeutic device.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| | - Harshal B Nemade
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati Guwahati-781039 India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| |
Collapse
|
16
|
Yang PK. Effect of external electric field on the solvent forces in hydrophilic solutes. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Ilieva S, Cheshmedzhieva D, Dudev T. Electric field influence on the helical structure of peptides: insights from DFT/PCM computations. Phys Chem Chem Phys 2019; 21:16198-16206. [DOI: 10.1039/c9cp01542f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The switching of the electric field with a particular directionality could be used for the healing of misfolded proteins.
Collapse
Affiliation(s)
- Sonia Ilieva
- Faculty of Chemistry and Pharmacy
- Sofia University
- Sofia 1164
- Bulgaria
| | | | - Todor Dudev
- Faculty of Chemistry and Pharmacy
- Sofia University
- Sofia 1164
- Bulgaria
| |
Collapse
|
18
|
Zhang S, Zhang M, Xing J, Lin S. A possible mechanism for enhancing the antioxidant activity by pulsed electric field on pine nut peptide Glutamine-Tryptophan-Phenylalanine-Histidine. J Food Biochem 2018; 43:e12714. [PMID: 31353541 DOI: 10.1111/jfbc.12714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the possible mechanism for increasing the antioxidant activity on peptide Glutamine-Tryptophan-Phenylalanine-Histidine (QWFH) from pine nut (Pinus koraiensis) protein by a pulsed electric field (PEF). The antioxidant capacity of PEF-treated QWFH increased significantly (p < 0.05) through 1,1-diphenyl-2-pycryl-hydrazyl radical scavenging and oxygen radical absorbance capacity assays. A series of mechanism exploration methods, including reversed-phase high-performance liquid chromatography, ultraviolet absorption spectroscopy, intrinsic fluorescence spectra, circular dichroism spectroscopy, and 1D and 2D nuclear magnetic resonance spectroscopies, were applied. QWFH chain was not cleaved by the PEF treatment, while more aromatic amino acids (Trp and Phe) were exposed to the polar solvent. In addition, the content of random coil of QWFH in solution was increased and its active hydrogen was changed after the PEF treatment. Moreover, the long-range connectivity between OH (14.234 ppm) on 4-H His, Nα H (7.295 ppm) on 3-H Phe, and Nα H2 (6.801 ppm) on 1-H Gln disappeared due to the PEF. PRACTICAL APPLICATIONS: Antioxidants have been extensively explored as a potential drug to decrease the risk of certain chronic diseases. Food-derived bioactive compounds are safer than synthetic antioxidants for human health and well-being. And the PEF technology is one of the promising processes for improving the biological activity of food components. Currently, the activity of the antioxidant peptide QWFH increased after a PEF treatment. The basic structure of QWFH did not change, but the unfolding of the secondary structure on the peptide chain and the displacement of the active hydrogen increased the antioxidant activity of the peptide. Thus, the range of application of a PEF has been expanded and it also benefited the development of more functional factors in the functional food industry.
Collapse
Affiliation(s)
- Sitian Zhang
- College of Food Science and Technology, Jilin University, Changchun, P. R. China
| | - Mingdi Zhang
- College of Food Science and Technology, Jilin University, Changchun, P. R. China
| | - Jie Xing
- College of Food Science and Technology, Jilin University, Changchun, P. R. China
| | - Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, P. R. China.,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
19
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
20
|
Pulsed electric fields treatment at different pH enhances the antioxidant and anti-inflammatory activity of ovomucin-depleted egg white. Food Chem 2018; 276:164-173. [PMID: 30409580 DOI: 10.1016/j.foodchem.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/30/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
This research investigated the effects of pulsed electric fields (PEF) (1.4-1.7 kV/cm, 653-695 kJ/kg) and heating (60 and 80 °C for 10 min) at different pH (4, 5, 7, and 9) on the antioxidant and anti-inflammatory activity of ovomucin-depleted egg white (OdEW) after in vitro gastrointestinal hydrolysis. PEF and heating (80 °C for 10 min) at pH 4 enhanced the antioxidant activity of the whole hydrolysates, chemically determined using DPPH and ORAC assays. Furthermore, the anti-inflammatory activity of protein hydrolysates was assessed in lipopolysaccharide-stimulated HT-29 cells using ELISA assay. PEF and heating at pH 4 enhanced the anti-inflammatory activity of the whole hydrolysates dose-dependently. Hydrolysates at 1 mg/ml showed similar inhibition (35.5% and 35.9%) of interleukin-8 production, due to PEF treatment and heating (80 °C for 10 min), respectively. Results indicated that prior PEF treatment can analogously enhance both antioxidant and anti-inflammatory activity of OdEW hydrolysates to heating, with potentially reduced thermal input.
Collapse
|
21
|
Han X, Xie Y, Wu Q, Wu S. A novel protein digestion method with the assistance of alternating current denaturation for high efficient protein digestion and mass spectrometry analysis. Talanta 2018; 184:382-387. [PMID: 29674058 DOI: 10.1016/j.talanta.2018.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
Protein denaturation has always displayed a huge necessity for mass spectrometry (MS)-based protein identification methods in proteomics. In this research, a novel protein digestion method with the assistance of alternating current (AC) denaturation has been proposed and evaluated. In this method, merely, 200 mM ammonium bicarbonate buffer solution (pH, 8.2) was used to dissolve proteins and act as the electrolyte, and protein denaturation could be achieved in several seconds. For apo-transferrin, ovalbumin and bovine serum albumin that are resistant to digestion in their native states, confident amino acid sequence coverage by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis were obtained after 200 v AC denaturation. The applicability of this method was further investigated via analyzing a rat liver proteome sample using nano reversed phase liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoRPLC-ESI-MS/MS). As a result, 458 proteins were identified which is comparable to the in-solution digestion via 8 M urea denaturation (375 proteins). All these results demonstrated that AC denaturation could offer an efficient assistance for a clean and high-throughput digestion in the individual level and proteome level.
Collapse
Affiliation(s)
- Xiaoxun Han
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Yiming Xie
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Qin Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China
| | - Shuaibin Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road No. 11, Huangshi 435002, China.
| |
Collapse
|
22
|
Sen S, Chakraborty M, Goley S, Dasgupta S, DasGupta S. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin. Biophys Chem 2017; 226:23-33. [DOI: 10.1016/j.bpc.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022]
|
23
|
Liu YF, Oey I, Bremer P, Carne A, Silcock P. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white. Food Res Int 2017; 91:161-170. [DOI: 10.1016/j.foodres.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/01/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
|
24
|
Sun X, Li K, Chen S, Yao B, Zhou Y, Cui S, Hu J, Liu Y. Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers. Int J Pharm 2016; 512:204-212. [DOI: 10.1016/j.ijpharm.2016.08.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
|
25
|
Yang PK. Effect of external electrostatic field on the stability of β sheet structures. Biopolymers 2016; 101:861-70. [PMID: 24459117 DOI: 10.1002/bip.22464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 11/10/2022]
Abstract
To explore the effect of an external electrostatic field (EEF) on the stability of protein conformations, the molecular dynamic modeling approach was applied to evaluate the effect of an EEF along the x or y direction on a water cluster containing a parallel or antiparallel β sheet structure. The β sheet structure contained two strands with a (Gly)3 sequence separated by a distance d along the x direction. The mean forces between the two strands along the x direction were computed from the trajectories of molecular dynamics simulations. In the absence of the EEF, the forces between the two strands in vacuum were repulsive and attractive in the parallel and antiparallel β sheet structures, respectively. In contrast, the mean forces between the two strands in water were attractive in both the parallel and antiparallel β sheet structures. This is because the electric interactions between the two strands were shielded by water, and the hydrophobic effect dominated the interaction between the two strands. When an EEF >50 MV/cm was applied to the water cluster, the attractive force between the two strands in the parallel and antiparallel β sheet structures decreased and increased, respectively. Further, the binding affinity between the two strands in the parallel and antiparallel β sheet structures also decreased and increased, respectively. This is because the large EEF leads to dielectric saturation, and consequently reduces the effects of the dielectric shielding and hydrophobic interactions.
Collapse
Affiliation(s)
- Pei-Kun Yang
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung 840, Taiwan, Republic of China
| |
Collapse
|
26
|
Terefe NS, Buckow R, Versteeg C. Quality-related enzymes in plant-based products: effects of novel food processing technologies part 2: pulsed electric field processing. Crit Rev Food Sci Nutr 2015; 55:1-15. [PMID: 24915412 DOI: 10.1080/10408398.2012.701253] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pulsed electric field (PEF) processing is an effective technique for the preservation of pumpable food products as it inactivates vegetative microbial cells at ambient to moderate temperature without significantly affecting the nutritional and sensorial quality of the product. However, conflicting views are expressed about the effect of PEF on enzymes. In this review, which is part 2 of a series of reviews dealing with the effectiveness of novel food preservation technologies for controlling enzymes, the scientific literature over the last decade on the effect of PEF on plant enzymes is critically reviewed to shed more light on the issue. The existing evidence indicates that PEF can result in substantial inactivation of most enzymes, although a much more intense process is required compared to microbial inactivation. Depending on the processing condition and the origin of the enzyme, up to 97% inactivation of pectin methylesterase, polyphenol oxidase, and peroxidase as well as no inactivation have been reported following PEF treatment. Both electrochemical effects and Ohmic heating appear to contribute to the observed inactivation, although the relative contribution depends on a number of factors including the origin of the enzyme, the design of the PEF treatment chamber, the processing condition, and the composition of the medium.
Collapse
|
27
|
Wang X, Li Y, He X, Chen S, Zhang JZH. Effect of strong electric field on the conformational integrity of insulin. J Phys Chem A 2014; 118:8942-52. [PMID: 24796962 DOI: 10.1021/jp501051r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.
Collapse
Affiliation(s)
- Xianwei Wang
- State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University , Shanghai 200062, China
| | | | | | | | | |
Collapse
|
28
|
Effects of pulsed electric fields on cytomembrane lipids and intracellular nucleic acids of Saccharomyces cerevisiae. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Bekard I, Dunstan DE. Electric field induced changes in protein conformation. SOFT MATTER 2014; 10:431-7. [PMID: 24652412 DOI: 10.1039/c3sm52653d] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effect of a low strength oscillating electric field on the conformation of Bovine Serum Albumin (BSA) and Lysozyme in solution has been measured. A purpose built cell has been used to measure the real time autofluorescence and Circular Dichroism of the protein solutions exposed to electric fields of differing strength and frequency. Exposure to the electric fields results in protein unfolding for both Lysozyme and BSA. The applied field strengths are extremely small compared to the protein inter-chain intra-molecular forces. We propose a model whereby the electrophoretic motion of the proteins leads to a frictional force that results in protein unfolding. For BSA and Lysozyme in the electric fields used in this study, the shear rates at the protein surface under electrophoretic motion are of order 10(3) and 10(4) s(-1) respectively. Prolonged electric field exposure results in significant frictional energy dissipation in the proteins. The energy dissipated in the proteins results in protein unfolding, which is a critical initial step for protein aggregation and potentially amyloid fibril formation.
Collapse
Affiliation(s)
- Innocent Bekard
- CSL Behring, 189-209 Camp Road, Broadmeadows, Victoria, 3047, Australia
| | | |
Collapse
|
30
|
Elsheshiny AAA, Ashcroft AE, Harris SA. A comparison of the electromechanical properties of structurally diverse proteins by molecular dynamics simulation. J Biomol Struct Dyn 2013; 32:1734-41. [PMID: 24028659 DOI: 10.1080/07391102.2013.833864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteins are subjected to electric fields both within the cell and during routine biochemical analysis. We have used atomistic molecular dynamics simulations to study conformational changes within three structurally diverse proteins subjected to high electric fields. At electric fields in excess of .5 V/nm, major structural changes were observed in all three proteins due to charge redistribution within the biomolecule. However, the electromechanical resilience was found to be highly dependent on the protein secondary structure, with α-helices showing a particularly high susceptibility to deformation by the applied electric field.
Collapse
|
31
|
Kocherbitov V, Latynis J, Misiu̅nas A, Barauskas J, Niaura G. Hydration of Lysozyme Studied by Raman Spectroscopy. J Phys Chem B 2013; 117:4981-92. [DOI: 10.1021/jp4017954] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vitaly Kocherbitov
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Jekaterina Latynis
- Institute of Biochemistry, Vilnius University, Mokslininkų 12, LT-08662
Vilnius, Lithuania
| | - Audrius Misiu̅nas
- Institute of Biochemistry, Vilnius University, Mokslininkų 12, LT-08662
Vilnius, Lithuania
- Institute
of Chemistry, Center
for Physical Sciences and Technology, Goštauto 9, LT-01108
Vilnius, Lithuania
| | - Justas Barauskas
- Biomedical Science, Faculty
of Health and Society, Malmö University, SE-20506 Malmö, Sweden
- Institute of Biochemistry, Vilnius University, Mokslininkų 12, LT-08662
Vilnius, Lithuania
| | - Gediminas Niaura
- Institute of Biochemistry, Vilnius University, Mokslininkų 12, LT-08662
Vilnius, Lithuania
| |
Collapse
|
32
|
|
33
|
Zhao W, Yang R, Zhang HQ. Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2012.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification. Appl Biochem Biotechnol 2012; 166:1454-62. [PMID: 22262019 DOI: 10.1007/s12010-012-9539-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Microwave has nonthermal effects on enzymatic reactions, mainly caused by the polarities of the solvents and substrates. In this experiment, a model reaction with caprylic acid and butanol that was catalyzed by lipase from Mucor miehei in alkanes or arenes was employed to investigate the nonthermal effect in nonaqueous enzymatic esterification. With the comparison of the esterification carried by conventional heating and consecutive microwave irradiation, the positive nonthermal effect on the initial reaction rates was found substrate concentration-dependent and could be vanished ostensibly when the substrate concentration was over 2.0 mol L(-1). The polar parameter log P well correlates the solvent polarity with the microwave effect, comparing to dielectric constant and assayed solvatochromic solvent polarity parameters. The log P rule presented in conventional heating-enzymatic esterification still fits in the microwaved enzymatic esterification. Alkanes or arenes with higher log P provided positive nonthermal effect in the range of 2 ≤ log P ≤ 4, but yielded a dramatic decrement after log P = 4. Isomers of same log P with higher dielectric constant received stronger positive nonthermal effect. With lower substrate concentration, the total log P of the reaction mixture has no obvious functional relation with the microwave effect.
Collapse
|
35
|
Mangialardo S, Gontrani L, Leonelli F, Caminiti R, Postorino P. Role of ionic liquids in protein refolding: native/fibrillar versus treated lysozyme. RSC Adv 2012. [DOI: 10.1039/c2ra21593d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
36
|
Zeng G, Shou JJ, Li KK, Zhang YH. In-situ confocal Raman observation of structural changes of insulin crystals in sequential dehydration process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1631-40. [DOI: 10.1016/j.bbapap.2011.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
|
37
|
Huang H, Xie J, Liu X, Yuan L, Wang S, Guo S, Yu H, Chen H, Zhang Y, Wu X. Conformational Changes of Protein Adsorbed on Tailored Flat Substrates with Different Chemistries. Chemphyschem 2011; 12:3642-6. [DOI: 10.1002/cphc.201100398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/22/2011] [Indexed: 11/07/2022]
|
38
|
Design and characterization of protein-quercetin bioactive nanoparticles. J Nanobiotechnology 2011; 9:19. [PMID: 21586116 PMCID: PMC3116464 DOI: 10.1186/1477-3155-9-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.
Collapse
|
39
|
Hédoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation. J Phys Chem B 2011; 115:6740-8. [PMID: 21542584 DOI: 10.1021/jp2014836] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pressure denaturation of lysozyme dissolved in H(2)O and D(2)O was analyzed using Raman investigations in a wide frequency range. The simultaneous analysis of regions corresponding to the molecular fingerprint of the protein (500-1800 cm(-1)), and the low- (50-450 cm(-1)) and high- (2600-3800 cm(-1)) frequency spectra, allow us to probe protein denaturation and the organization of water molecules. The pressure- and heat-induced transformations are compared. Both pressure- and heat-denatured states are obtained through an intermediate state characterized by intact secondary structure and enhanced water penetration in the tertiary structure. As a consequence of a weaker penetration upon pressurizing, it was found that the pressure-denatured state was partially unfolded compared with the heat-denatured state. The mechanism of pressure denaturation was related to the disruption of the hydrogen-bond network of water onto a set of clusters characterized by strengthened O - H interactions, inducing a hardening of protein dynamics. The mechanism is opposite to that observed upon heating, i.e., the softening of the hydrogen bond network of water inducing a softer protein dynamics. The analysis of the intramolecular O-H stretching reveals that pressurizing lysozyme aqueous solution favors the development of low-density water from the protein surface to the bulk, contrasting to the compression of pure water leading to crystallization of high-density ice-VI.
Collapse
|
40
|
Quantitative and real time detection of pulsed electric field induced damage on Escherichia coli cells and sublethally injured microbial cells using flow cytometry in combination with fluorescent techniques. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Pulsed Electric Field Induced Aggregation of Food Proteins: Ovalbumin and Bovine Serum Albumin. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0464-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Decca MB, Galassi VV, Perduca M, Monaco HL, Montich GG. Influence of the Lipid Phase State and Electrostatic Surface Potential on the Conformations of a Peripherally Bound Membrane Protein. J Phys Chem B 2010; 114:15141-50. [DOI: 10.1021/jp104035z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- María B. Decca
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC−CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, República Argentina, and Laboratorio di Biocrystallografia, Dipartimento Scientifico e Tecnologico, Università di Verona, Italia
| | - Vanesa V. Galassi
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC−CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, República Argentina, and Laboratorio di Biocrystallografia, Dipartimento Scientifico e Tecnologico, Università di Verona, Italia
| | - Massimiliano Perduca
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC−CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, República Argentina, and Laboratorio di Biocrystallografia, Dipartimento Scientifico e Tecnologico, Università di Verona, Italia
| | - Hugo L. Monaco
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC−CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, República Argentina, and Laboratorio di Biocrystallografia, Dipartimento Scientifico e Tecnologico, Università di Verona, Italia
| | - Guillermo G. Montich
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC−CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, República Argentina, and Laboratorio di Biocrystallografia, Dipartimento Scientifico e Tecnologico, Università di Verona, Italia
| |
Collapse
|