1
|
Kalal B, Baweja S, Maity S. Laser Spectroscopic Characterization of Supersonic Jet-Cooled 2,6-Diazaindole (26DAI). J Phys Chem A 2024; 128:9114-9121. [PMID: 39387858 DOI: 10.1021/acs.jpca.4c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The article presents a comprehensive laser spectroscopic characterization of a nitrogen-rich indole derivative, namely, 2,6-diazaindole (26DAI), in the gas phase. A supersonic jet-cooled molecular beam of 26DAI was characterized using two-color resonant two-photon ionization (2C-R2PI) and laser-induced fluorescence spectroscopy (LIF) to investigate the electronic excitation. The S1 ← S0 origin transition was obtained at 33915 cm-1, which was red-shifted from that of one (indole) and two (7-azaindole) nitrogen-containing indole derivatives by 1317 and 713 cm-1, respectively. The molecular orbital and energy analysis for the S1 ← S0 transition shows the significant stabilization of LUMO on subsequent N-insertion, resulting in the lowering of the S1 ← S0 (ππ*) transition energy. The single vibronic level fluorescence spectrum from the vibrationless S1 state of the molecule was recorded. The spectrum displayed an extensive Franck-Condon activity until 2500 cm-1 for the vibrational modes of the S0 state of the 26DAI molecule. The experimental ground state vibrational frequencies were compared to the calculated ones obtained at three different levels of theories. More accurate results were found at DFT B3LYP-D4 than those at the wave function-based MP2 and CCSD levels of theories. Further, the N-H stretching frequency of 26DAI in the S0 state was measured at 3524 cm-1 using fluorescence-dip infrared (FDIR) spectroscopy. The stability of 26DAI against ionization radiation was probed by measuring the two-color photoionization energy (IE2P) of 26DAI at 71866 cm-1. The IE2P value is significantly higher than those of N-poor counterparts (indole and 7-azaindole). The NBO charges and spin density (SD) values of the 26DAI molecule have shown that electronegative N(6) makes the cationic ground state less stable due to the position of the positive centers on the N atom. The results provided insights into the stability of N-rich biomolecules against photodamage. The current investigation can shed light on nature's way of stabilizing biomolecules with a possible N-insertion mechanism.
Collapse
Affiliation(s)
- Bhavika Kalal
- Department of Chemistry, IIT Hyderabad, Sangareddy 502284, Telangana, India
| | - Simran Baweja
- Department of Chemistry, IIT Hyderabad, Sangareddy 502284, Telangana, India
| | - Surajit Maity
- Department of Chemistry, IIT Hyderabad, Sangareddy 502284, Telangana, India
| |
Collapse
|
2
|
Merugu SR, Selmer-Olsen S, Kaada CJ, Sundby E, Hoff BH. Synthetic Routes to 2-aryl-1 H-pyrrolo[2,3- b]pyridin-4-amines: Cross-Coupling and Challenges in SEM-Deprotection. Molecules 2024; 29:4743. [PMID: 39407670 PMCID: PMC11478076 DOI: 10.3390/molecules29194743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
7-Azaindoles are compounds of considerable medicinal interest. During development of the structure-activity relationship for inhibitors of the colony stimulated factor 1 receptor tyrosine kinase (CSF1R), a specific 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine was needed. Two different synthetic strategies were evaluated, in which the order of the key C-C and C-N cross-coupling steps differed. The best route relied on a chemoselective Suzuki-Miyaura cross-coupling at C-2 on a 2-iodo-4-chloropyrrolopyridine intermediate, and subsequently a Buchwald-Hartwig amination with a secondary amine at C-4. Masking of hydroxyl and pyrroles proved essential to succeed with the latter transformation. The final trimethylsilylethoxymethyl (SEM) deprotection step was challenging, as release of formaldehyde gave rise to different side products, most interestingly a tricyclic eight-membered 7-azaindole. The target 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amine (compound 3c) proved to be 20-fold less potent than the reference inhibitor, confirming the importance of the N-3 in the pyrrolopyrimidine parent compound for efficient CSF1R inhibition.
Collapse
Affiliation(s)
- Srinivas Reddy Merugu
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| | - Sigrid Selmer-Olsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| | - Camilla Johansen Kaada
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| | - Eirik Sundby
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway;
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (S.R.M.); (S.S.-O.); (C.J.K.)
| |
Collapse
|
3
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Vanga MK, Bhukya R, Thumma V, Ambadipudi SSSSS, Nayak VL, Andugulapati SB, Manga V. Design and synthesis of Meldrum's acid based 7-azaindole anchored 1,2,3-triazole hybrids as anticancer agents. RSC Med Chem 2024; 15:1709-1721. [PMID: 38784465 PMCID: PMC11110793 DOI: 10.1039/d4md00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
A series of Meldrum's acid, 7-azaindole and 1,2,3-triazole hybrids were synthesized and evaluated for their in vitro anticancer activity against five different cancer cell lines viz. MCF-7 (breast cancer), HeLa (cervical cancer), DU-145 (prostate cancer), HepG2 (liver cancer) and K562 (myelogenous leukemia cell). Among the series, compound 6b containing a 4-methyl substitution showed potent activity against HeLa cell line. Cell cycle analysis revealed that compound 6b induced cell cycle arrest at the G2/M phase and induced apoptosis. Apoptotic activity was further confirmed by Hoechst staining and Annexin V-FITC assay. Compound 6b has been found to exhibit higher activity in all four cell lines, with IC50 values of 6.67 ± 0.39 μM, 4.44 ± 0.32 μM, 12.38 ± 0.51 μM and 9.97 ± 0.25 μM against MCF-7, HeLa, DU-145 and HepG2 cell lines respectively. Compounds 6m (9.68 ± 0.10 μM) and 6n (9.52 ± 0.38 μM), which have dimethoxy and trimethoxy substitutions, respectively, have demonstrated significant anticancer activity against HeLa cells compared to the other cells. The molecular docking study of ligand 6b against the crystal structure of EGFR and Mcl-1 scored notable binding energy values and displayed important interactions like H-bond, π-cation and other hydrophobic interactions.
Collapse
Affiliation(s)
| | - Rambabu Bhukya
- Department of Chemistry, Osmania University Hyderabad-500007 Telangana India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College Hyderabad-500059 Telangana India
| | - S S S S Sudha Ambadipudi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - V Lakshma Nayak
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Vijjulatha Manga
- Department of Chemistry, Osmania University Hyderabad-500007 Telangana India
- Telangana Mahila Viswavidyalayam Hyderabad - 500095 Telangana India
| |
Collapse
|
5
|
Baweja S, Kalal B, Maity S. Laser spectroscopic characterization of supersonic jet cooled 2,7-diazaindole. Phys Chem Chem Phys 2023; 25:26679-26691. [PMID: 37772686 DOI: 10.1039/d3cp03010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
We report the first gas phase comprehensive study of the electronic spectroscopy of 2,7-diazaindole molecule in the ground and excited states. Single vibronic level fluorescence spectroscopy (SVLF) was performed to determine the ground state vibrations of the molecule, which depicted a large Franck-Condon activity beyond 2600 cm-1. For the excited state characterization, laser-induced fluorescence (LIF) and two-color resonant two-photon ionization spectroscopy (2C-R2PI) were performed. The band origin (000) for S1 ← S0 transition appeared at 33910 ± 1 cm-1 which was red shifted by 718 cm-1 and 1322 cm-1 compared to that of 7-azaindole and indole respectively. The Franck-Condon active vibrational modes in the spectra were seen till the (000) + 1600 cm-1 region. The IR-UV hole burning spectroscopy confirmed the absence of any other isomeric species in the molecular beam. The ionization energy (IE) of the molecule was measured as 8.921 ± 0.001 eV, recorded using photoionization efficiency spectroscopy. The above IE value was significantly higher than that of the related indole derivatives, suggesting the higher photostability of the 27DAI molecule due to N(2) insertion. The ground and excited state N-H stretching frequencies of the molecule were determined using fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR), and the values are 3523 and 3467 cm-1, respectively. The lower value of νNH in the electronic excited state implied the increased photoacidity of the group. A comparative analysis of the experimental LIF/2C-R2PI spectra was done against Franck-Condon simulated spectra at three different levels of theory. The vibrational frequencies calculated at B3LYP-D4/def2-TZVPP showed the most accurate prediction in comparison with the experimentally detected symmetric modes in the ground state. However, in the excited state, the lower energy asymmetric modes simulated at the B3LYP/def-SVP level of theory provided the best agreement with the experiment. This is most probably due to the distortion observed at the pyrazolyl ring leading to the appearance of asymmetric vibrational modes. The above study highlights the possibility to appropriately tune the excitation wavelengths as well as alter the photostability of the organic chromophores via additional N-insertion in the molecular systems.
Collapse
Affiliation(s)
- Simran Baweja
- Department of Chemistry, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Bhavika Kalal
- Department of Chemistry, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Surajit Maity
- Department of Chemistry, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
6
|
Mehata MS, Aneesha. Selectively probing ferric ions in aqueous environments using protonated and neutral forms of 7-azaindole as a multiparametric chemosensor. Photochem Photobiol Sci 2023:10.1007/s43630-023-00393-6. [PMID: 36805446 DOI: 10.1007/s43630-023-00393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/05/2023] [Indexed: 02/21/2023]
Abstract
7-azaindole (7AI) dimer is a model molecule for DNA study and understanding the mutagenic behavior based on the excited-state proton transfer process in hydrogen-bonded networks. The neutral and protonated forms of 7AI monomer with significant fluorescence (FL) intensity fit the fluorescent sensor strategy to recognize selective metal ions. Out of several metal ions (Fe3+, Al3+, Fe2+, Pb2+, Ba2+, Ni2+, Zn2+, Mg2+, Ca2+, Cu2+, Hg2+ and Cd2+), the absorption, fluorescence and fluorescence lifetime of 7AI in the aqueous medium are selectively sensitive to the ferric (Fe3+) ions. The absolute value of absorption intensity increases linearly with concentration of a particular metal ions. FL intensity of both the forms of 7AI decreases gradually with Fe3+ ions and trails the linear Stern-Volmer relation. The formation of non-fluorescent complexes was confirmed with Benesi-Hildebrand and Job plots, along with FL and FL decays. The FL lifetime of the protonated form of 7AI, which is 0.83 ± 0.01 ns, is nearly constant with Fe3+ ions concentrations, confirming the static quenching mechanism. The limit of detection (LoD) of Fe3+ ions over the long range of 16-363 µM for the neutral and protonated forms of 7AI is 0.46 ± 0.02 and 0.49 ± 0.02 µM, respectively, estimated using FL spectra. Additionally, the linear plot of absorbance with Fe3+ ions of both the forms of 7AI can also act as a calibration curve with very close LoDs, as obtained by FL spectra. Thus, the multi-parameters-based probe for detecting the Fe3+ ions over long-range in real aqueous environments with operational, high sensitivity, fast response (< 5 s), and good selectivity (over 12 metal ions) is undoubtedly a superior approach over other methods.
Collapse
Affiliation(s)
- Mohan Singh Mehata
- Laser Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi, 110042, India.
| | - Aneesha
- Laser Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi, 110042, India
| |
Collapse
|
7
|
Lu M, Toptygin D, Xiang Y, Shi Y, Schwieters CD, Lipinski EC, Ahn J, Byeon IJL, Gronenborn AM. The Magic of Linking Rings: Discovery of a Unique Photoinduced Fluorescent Protein Crosslink. J Am Chem Soc 2022; 144:10809-10816. [PMID: 35574633 PMCID: PMC9233106 DOI: 10.1021/jacs.2c02054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Fluorosubstituted tryptophans serve
as valuable probes for fluorescence
and nuclear magnetic resonance (NMR) studies of proteins. Here, we
describe an unusual photoreactivity introduced by replacing the single
tryptophan in cyclophilin A with 7-fluoro-tryptophan. UV exposure
at 282 nm defluorinates 7-fluoro-tryptophan and crosslinks it to a
nearby phenylalanine, generating a bright fluorophore. The crosslink-containing
fluorescent protein possesses a large quantum yield of ∼0.40
with a fluorescence lifetime of 2.38 ns. The chemical nature of the
crosslink and the three-dimensional protein structure were determined
by mass spectrometry and NMR spectroscopy. To the best of our knowledge,
this is the first report of a Phe–Trp crosslink in a protein.
Our finding may break new ground for developing novel fluorescence
probes and for devising new strategies to exploit aromatic crosslinks
in proteins.
Collapse
Affiliation(s)
- Manman Lu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Dmitri Toptygin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Emma C. Lipinski
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - In-Ja L. Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
9
|
Kumar M, Raziullah, Ahmad A, Dutta HS, Khan AA, Rastogi A, Kant R, Koley D. Cu(II)-Catalyzed C-N, C-O, C-Cl, C-S, and C-Se Bond Formation via C(sp 2)-H Activation Using 7-Azaindole as an Intrinsic Directing Group. J Org Chem 2021; 86:15185-15202. [PMID: 34696586 DOI: 10.1021/acs.joc.1c01811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A general protocol has been developed for the construction of carbon-heteroatom (C-N, C-Cl, C-O, C-S, and C-Se) bonds using the bench stable, earth-abundant, and environmentally benign copper catalyst. Only oxygen is sufficient to regenerate the copper catalyst. Control experiments suggested that the proto-demetalation step is reversible. Depending on the coupling partner, the reaction follows either disproportionation or radical pathways to complete the catalytic cycle. The synthetic utility of the developed protocol has been demonstrated via various functional group transformations.
Collapse
Affiliation(s)
- Mohit Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Afsar Ali Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushka Rastogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dipankar Koley
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
10
|
Fong KP, Ahmed IA, Mravic M, Jo H, Kim OV, Litvinov RI, Weisel JW, DeGrado WF, Gai F, Bennett JS. Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid. Biochemistry 2021; 60:1722-1730. [PMID: 34010565 DOI: 10.1021/acs.biochem.1c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.
Collapse
Affiliation(s)
- Karen P Fong
- Hematology-Oncology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco Mravic
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - Oleg V Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Joel S Bennett
- Hematology-Oncology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Roy S, Das SK, Khatua H, Das S, Singh KN, Chattopadhyay B. Iron‐Catalyzed Radical Activation Mechanism for Denitrogenative Rearrangement Over C(sp
3
)–H Amination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Satyajit Roy
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Sandip Kumar Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Hillol Khatua
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Subrata Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR) SGPGIMS Campus Raebareli Road Lucknow 226014 U.P. India
| |
Collapse
|
12
|
Roy S, Das SK, Khatua H, Das S, Singh KN, Chattopadhyay B. Iron-Catalyzed Radical Activation Mechanism for Denitrogenative Rearrangement Over C(sp 3 )-H Amination. Angew Chem Int Ed Engl 2021; 60:8772-8780. [PMID: 33463874 DOI: 10.1002/anie.202014950] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Indexed: 11/11/2022]
Abstract
An iron-catalyzed denitrogenative rearrangement of 1,2,3,4-tetrazole is developed over the competitive C(sp3 )-H amination. This catalytic rearrangement reaction follows an unprecedented metalloradical activation mechanism. Employing the developed method, a wide number of complex-N-heterocyclic product classes have been accessed. The synthetic utility of this radical activation method is showcased with the short synthesis of a bioactive molecule. Collectively, this discovery underlines the progress of radical activation strategy that should find wide application in the perspective of medicinal chemistry, drug discovery and natural product synthesis research.
Collapse
Affiliation(s)
- Satyajit Roy
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India.,Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sandip Kumar Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| | - Hillol Khatua
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| | - Subrata Das
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Bio-Medical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, U.P., India
| |
Collapse
|
13
|
Yu JT, Shan Y, Yuan C, Pan C. Iridium-catalyzed selective ortho C H carbenoid functionalization of N-aryl-7-azaindoles with diazotized Meldrum’s acid. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Fang H. A theoretical study on water-assisted excited state double proton transfer process in substituted 2,7-diazaindole-H2O complex. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02655-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
Most biological molecules are intrinsically non- or weakly-fluorescent, hence requiring labeling with an external fluorophore(s) to be studied via fluorescence-based techniques. However, such labeling could perturb the native property of the system in question. One effective strategy to minimize such undesirable perturbation is to use fluorophores that are simple analogs of natural amino acids. In this chapter, we describe the synthesis and spectroscopic utility of two indole-based fluorophores, 4-cynaotryprophan (4CN-Trp) and 4-cyanoindole-2'-deoxyribonucleoside (4CNI-NS), with a focus on 4CN-Trp. This unnatural amino acid, which is only slightly larger than its natural counterpart, tryptophan (Trp), exhibits unique photophysical properties, making it a versatile fluorophore in biological spectroscopic and imaging applications. Through several specific examples, we highlight its broad utility in the study of various biological problems and processes.
Collapse
|
16
|
Tian Y, Kong XQ, Niu J, Huang YB, Wu ZH, Xu B. Rhodium-catalyzed regioselective C(sp2)–H bond activation reactions of N-(hetero)aryl-7-azaindoles and cross-coupling with α-carbonyl sulfoxonium ylides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Yi J, Fang H. Effect of water on excited‐state double proton transfer in 7‐azaindole‐H
2
O complex: A theoretical study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiacheng Yi
- Department of Chemistry and Material Science, College of ScienceNanjing Forestry University Nanjing China
| | - Hua Fang
- Department of Chemistry and Material Science, College of ScienceNanjing Forestry University Nanjing China
| |
Collapse
|
18
|
Zilberg S. Design of Light‐Induced Molecular Switcher for the Driver of the Quantum Cellular Automata (QCA) Based on the Transition through the Intramolecular Charge Transfer (ICT) Structure. Isr J Chem 2020. [DOI: 10.1002/ijch.201900148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shmuel Zilberg
- Department of Chemical SciencesAriel University 40700 Ariel Israel
| |
Collapse
|
19
|
You M, Fan H, Wang Y, Zhang W. Aldehyde-derivatized indoles as fluorescent probes for hydration environments. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Cardoza S, Das P, Tandon V. Pd-Catalyzed Sequential Arylation of 7-Azaindoles: Aggregate-Induced Emission of Tetra-Aryl 7-Azaindoles. J Org Chem 2019; 84:14015-14029. [DOI: 10.1021/acs.joc.9b02187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Savio Cardoza
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
21
|
Fang H. Halogen substituent effect on the water-assisted excited-state tautomerization of 2, 7-diazaindole-H 2O complex in aqueous solution: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:152-160. [PMID: 30776716 DOI: 10.1016/j.saa.2019.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
We studied the ESPT process in the 2-DAI-H2O complex theoretically for the first time, and compared the kinetics of 2-DAI-H2O with those features of 7-DAI-H2O. The substituted effect on the dynamics of excited-state double proton transfer in 2-DAI-H2O and 7-DAI-H2O clusters in water were also investigated at the TD-M06-2X/6-311+G(d, p) level. In this work, 2,7-DAI-H2O is also expressed as 2-DAI-H2O and 7-DAI-H2O, in which correspond to different ESPT reactions and generate two tautomers (N2H form and N7H form). In both the 2-DAI-H2O and 7-DAI-H2O complexes, ESPT processes happened in a concertedly but asynchronously protolysis pathway. The ESPT process preferred to occur in the 7-DAI-H2O complex due to its lower barrier height. For the 3-X-2-DAI-H2O and 3-X-7-DAI-H2O (X = H, F, Cl, Br) complexes, the replacement of halogen atom did not influence the ESPT mechanism. However, the replacement of halogen atom changed the structural parameters evidently, reduced the barrier height up to 4-5 kcal/mol, and enlarged the asynchronicity of ESPT apparently. ∆(R1+R2) values in the 3X-2-DAI-H2O and 3X-7-DAI-H2O complexes have linear correlation to the ZPE-corrected ESPT barrier height linearly.
Collapse
Affiliation(s)
- Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
22
|
Zhang K, Ahmed IA, Kratochvil HT, DeGrado WF, Gai F, Jo H. Synthesis and application of the blue fluorescent amino acid l-4-cyanotryptophan to assess peptide-membrane interactions. Chem Commun (Camb) 2019; 55:5095-5098. [PMID: 30957824 PMCID: PMC6508085 DOI: 10.1039/c9cc01152h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, l-4-cyanotryptophan has been shown to be an efficient blue fluorescence emitter, with the potential to enable novel applications in biological spectroscopy and microscopy. However, lack of facile synthetic routes to this unnatural amino acid limits its wide use. Herein, we describe an expedient approach to synthesize Fmoc protected l-4-cyanotryptophan with high optical purity (>99%). Additionally, we test the utility of this blue fluorophore in imaging cell-membrane-bound peptides and in determining peptide-membrane binding constants.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, United States
| | - Ismail A. Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Huong T. Kratochvil
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, United States
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, United States
| |
Collapse
|
23
|
Immadi SS, Dopart R, Wu Z, Fu B, Kendall DA, Lu D. Exploring 6-Azaindole and 7-Azaindole Rings for Developing Cannabinoid Receptor 1 Allosteric Modulators. Cannabis Cannabinoid Res 2018; 3:252-258. [PMID: 30547095 PMCID: PMC6290480 DOI: 10.1089/can.2018.0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction and Objective: Org27569 is a prototypical allosteric modulator of the cannabinoid receptor 1 (CB1). It belongs to the indole-2-carboxamide scaffold and has been intensively investigated in pharmacology and in structure-activity relationship (SAR) studies. Although azaindoles are rare in natural products and differ only by the presence of an extra ring nitrogen, they were demonstrated as valuable bioisosteres in many pharmacologically important molecules. To extend the SAR investigation of the indole-2-carboxamide class of CB1 allosteric modulators, azaindole (pyrrolopyridine) rings were used to replace the indole ring of Org27569 analogs to explore the potential of azaindole-2-carboxamides as CB1 allosteric modulators. Using 6- and 7-azaindole in lieu of the indole moiety within this class of CB1 allosteric modulators indeed improved the aqueous solubility. Materials and Methods: We synthesized 6- and 7-azaindole-2-carboxamides and their indole-2-carboxamide counterparts. The molecules were evaluated by [3H]CP55,940 binding and [35S]GTPγS binding assays for their allosteric modulation of the CB1 receptor. Results: The 7-azaindole-2-carboxamides lost the ability to bind to the CB1 receptor. The 6-azaindole-2-carboxamides (e.g., 3c and 3d) showed markedly reduced binding affinities to the CB1 receptor in comparison with their indole-2-carboxamide counterparts. However, they behaved similarly as indole-2-carboxamides in potentiating the orthosteric agonist binding and inhibiting the orthosteric agonist-induced G-protein coupling. The results indicated that some azaindole scaffolds (e.g., 6-azaindole) are worth further exploration, whereas the 7-azaindole ring is not a viable bioisostere of the indole ring in the Org27569 class of CB1 allosteric modulators.
Collapse
Affiliation(s)
- Sri Sujana Immadi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, Texas
| | - Rachel Dopart
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Zhixing Wu
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, Texas
| | - Boqiao Fu
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, Texas
| | - Debra A. Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Dai Lu
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, Texas
| |
Collapse
|
24
|
Huang XY, You M, Ran GL, Fan HR, Zhang WK. Ester-Derivatized indoles as fluorescent and infrared probes for hydration environments. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1805118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xin-yue Huang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Min You
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Guang-liu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Hao-ran Fan
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wen-kai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Wagner BD, Arnold AE, Gallant ST, Grinton CR, Locke JK, Mills ND, Snow CA, Uhlig TB, Vessey CN. The polarity sensitivity factor of some fluorescent probe molecules used for studying supramolecular systems and other heterogeneous environments. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fluorescence spectroscopy provides an excellent technique for investigating heterogeneous systems, due to its high sensitivity and the large effect of the local environment on molecular emission. In addition, the use of polarity-sensitive fluorescent probes as guests in supramolecular host–guest inclusion complexes can be exploited in fluorescent sensors. This paper identifies, tabulates, and quantifies a series of useful polarity-sensitive fluorescent probes, with a wide range of polarity-dependent fluorescence responses. The degree of polarity sensitivity is quantified using the polarity sensitivity factor (PSF), developed in our laboratory. In most cases, such polarity-sensitive probes show increased emission as the local polarity is decreased (PSF > 1); 10 such probes are described. However, less commonly, “reverse polarity dependence” can occur in which probe emission decreases with decreasing polarity (PSF < 1); four such probes are described. The mechanism for the observed polarity-induced fluorescence changes will also be discussed in selected representative cases. The purpose of this paper is to present details on a broad arsenal of polarity-sensitive fluorescence probes with varying properties, with potentially useful applications in the study of heterogeneous systems, including inclusion phenomena, and in practical applications such as fluorescent sensors, which will be useful to researchers studying supramolecular and other heterogeneous systems using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Brian D. Wagner
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Amy E. Arnold
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Spencer T. Gallant
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Carmen R. Grinton
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Julia K. Locke
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Natasha D. Mills
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Carrie A. Snow
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Timara B. Uhlig
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| | - Christen N. Vessey
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada
| |
Collapse
|
26
|
Vats TK, Mishra A, Deb I. Rhodium-Catalyzed Direct and Selective ortho
C−H Chalcogenation of N
-(Hetero)aryl-7-azaindoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tripta Kumari Vats
- Organic & Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4-Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Aniket Mishra
- Organic & Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4-Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Indubhusan Deb
- Organic & Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4-Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| |
Collapse
|
27
|
Mishra A, Vats TK, Nair MP, Das A, Deb I. Rhodium-Catalyzed sp2 C–H Acetoxylation of N-Aryl Azaindoles/N-Heteroaryl Indolines. J Org Chem 2017; 82:12406-12415. [DOI: 10.1021/acs.joc.7b02203] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aniket Mishra
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tripta Kumari Vats
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mahesh P. Nair
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arindam Das
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
28
|
Hilaire MR, Mukherjee D, Troxler T, Gai F. Solvent Dependence of Cyanoindole Fluorescence Lifetime. Chem Phys Lett 2017; 685:133-138. [PMID: 29225366 DOI: 10.1016/j.cplett.2017.07.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several cyanotryptophans have been shown to be useful biological fluorophores. However, how their fluorescence lifetimes vary with solvent has not been examined. In this regard, herein we measure the fluorescence decay kinetics as well as the absorption and emission spectra of six cyanoindoles in different solvents. In particular, we find, among other results, that only 4-cyanoindole affords a long fluorescence lifetime and hence high quantum yield in H2O. Therefore, our measurements provide not only a guide for choosing which cyanotryptophan to use in practice but also data for computational modeling of the substitution effect on the electronic transitions of indole.
Collapse
Affiliation(s)
- Mary Rose Hilaire
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Debopreeti Mukherjee
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Thomas Troxler
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA.,Ultrafast Optical Processes Laboratory, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA.,Ultrafast Optical Processes Laboratory, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Abstract
Many fluorescent proteins are currently available for biological spectroscopy and imaging measurements, allowing a wide range of biochemical and biophysical processes and interactions to be studied at various length scales. However, in applications where a small fluorescence reporter is required or desirable, the choice of fluorophores is rather limited. As such, continued effort has been devoted to the development of amino acid-based fluorophores that do not require a specific environment and additional time to mature and have a large fluorescence quantum yield, long fluorescence lifetime, good photostability, and an emission spectrum in the visible region. Herein, we show that a tryptophan analog, 4-cyanotryptophan, which differs from tryptophan by only two atoms, is the smallest fluorescent amino acid that meets these requirements and has great potential to enable in vitro and in vivo spectroscopic and microscopic measurements of proteins.
Collapse
|
30
|
Investigation of charge-separation/change in dipole moment of 7-azaindole: Quantitative measurement using solvatochromic shifts and computational approaches. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Mishra A, Vats TK, Deb I. Ruthenium-Catalyzed Direct and Selective C–H Cyanation of N-(Hetero)aryl-7-azaindoles. J Org Chem 2016; 81:6525-34. [DOI: 10.1021/acs.joc.6b01148] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aniket Mishra
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tripta Kumari Vats
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry
Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
32
|
Zhang YJ, Zhao JF, Li YQ. The investigation of excited state proton transfer mechanism in water-bridged 7-azaindole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:147-151. [PMID: 26301539 DOI: 10.1016/j.saa.2015.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
Based on the time-dependent density functional theory (TDDFT), the excited-state intermolecular proton transfer (ESIPT) mechanism of water-bridged 7-azaindole has been investigated theoretically. The calculations of primary bond lengths and the IR vibrational spectra between the S0 state and the S1 state that verified the intramolecular hydrogen bond were strengthened. The fact that reproduced experimental absorbance and fluorescence emission spectra well theoretically demonstrate that the TDDFT theory we adopted is reasonable and effective. In addition, intramolecular charge transfer based on the frontier molecular orbitals demonstrated the indication of the ESIPT reaction. The constructed potential energy curves of ground state and the first excited state based on keeping the H2···O3 and H6···N7 distances fixed at a series of values have been used to illustrate the ESIPT process. A relative lower barrier of 5.94 kcal/mol in the S1 state potential energy curve for type II (lower than that of 9.82 kcal/mol in the S1 state for type I) demonstrates that type II ESIPT process occurs firstly in 7Al-2H2O complex.
Collapse
Affiliation(s)
- Yong-Jia Zhang
- Department of Physics, Liaoning University, Shenyang 110036, PR China
| | - Jin-Feng Zhao
- Department of Physics, Liaoning University, Shenyang 110036, PR China; State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yong-Qing Li
- Department of Physics, Liaoning University, Shenyang 110036, PR China; State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| |
Collapse
|
33
|
Theoretical study on excited-state proton transfer via hydrogen-bonded ethanol (EtOH) wire for 7AI in the gas phase. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1723-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Peng CY, Shen JY, Chen YT, Wu PJ, Hung WY, Hu WP, Chou PT. Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde. J Am Chem Soc 2015; 137:14349-57. [PMID: 26493857 DOI: 10.1021/jacs.5b08562] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1,8-Dihydroxy-2-naphthaldehyde (DHNA), having doubly intramolecular hydrogen bonds, was strategically designed and synthesized in an aim to probe a long-standing fundamental issue regarding synchronous versus asynchronous double-proton transfer in the excited state. In cyclohexane, DHNA shows the lowest lying S0 →S1 (π-π*) absorption at ∼400 nm. Upon excitation, two large Stokes shifted emission bands maximized at 520 and 650 nm are resolved, which are ascribed to the tautomer emission resulting from the first and second proton-transfer products, denoted by TA* and TB*, respectively. The first proton transfer (DHNA* → TA*) is ultrafast (< system response of 150 fs), whereas the second proton transfer is reversible, for which the rates of forward (TA* → TB*) and backward (TA* ← TB*) proton transfer were determined to be (1.7 ps)(-1) and (3.6 ps)(-1), respectively. The fast equilibrium leads to identical population lifetimes of ∼54 ps for both TA* and TB* tautomers. Similar excited-state double-proton transfer takes place for DHNA in a single crystal, resulting in TA* (560 nm) and TB* (650 nm) dual-tautomer emission. A comprehensive 2D plot of reaction potential energy surface further proves that the sequential two-step proton motion is along the minimum energetic pathway firmly supporting the experimental results. Using DHNA as a paradigm, we thus demonstrate unambiguously a stepwise, proton-relay type of intramolecular double-proton transfer reaction in the excited state, which should gain fundamental understanding of the multiple proton transfer reactions.
Collapse
Affiliation(s)
- Chia-Yu Peng
- Department of Chemistry and Biochemistry, National Chung Cheng University , Chia-Yi 62102, Taiwan R.O.C
| | - Jiun-Yi Shen
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan R.O.C
| | - Yi-Ting Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan R.O.C
| | - Pei-Jhen Wu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan R.O.C
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University , Keelung 20224, Taiwan R.O.C
| | - Wei-Ping Hu
- Department of Chemistry and Biochemistry, National Chung Cheng University , Chia-Yi 62102, Taiwan R.O.C
| | - Pi-Tai Chou
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan R.O.C
| |
Collapse
|
35
|
Kyrychenko A. Using fluorescence for studies of biological membranes: a review. Methods Appl Fluoresc 2015; 3:042003. [DOI: 10.1088/2050-6120/3/4/042003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Noichl BP, Durkin PM, Budisa N. Toward intrinsically colored peptides: Synthesis and investigation of the spectral properties of methylated azatryptophans in tryptophan-cage mutants. Biopolymers 2015; 104:585-600. [DOI: 10.1002/bip.22709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin P. Noichl
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| | - Patrick M. Durkin
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| | - Nediljko Budisa
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| |
Collapse
|
37
|
Li H, Shi Y, Yin H, Wang Y, Cong L, Jin M, Ding D. New insights into the solvent-assisted excited-state double proton transfer of 2-(1H-pyrazol-5-yl)pyridine with alcoholic partners: a TDDFT investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 141:211-215. [PMID: 25679182 DOI: 10.1016/j.saa.2015.01.060] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Excited-state double proton transfer (ESDPT) in the hydrogen-bonded 2-(1H-pyrazol-5-yl)pyridine with propyl alcoholic partner (PPP) was theoretically investigated by time-dependent density functional theory (TDDFT) method. Great changes have taken place for the calculated geometric structures, the electron density features and vibrational spectrum of PPP system in S0 and S1 state. Our results have demonstrated that ESDPT reaction happens within the system upon photoexcitation. We also found that the ESDPT process is facilitated by the electronically excited state intermolecular hydrogen bond strengthening. Particularly, after the photoexcitation from HOMO(π) to the LUMO(π(∗)), the rearrangement of electronic density distribution of frontier molecular orbitals (MOs) on pyridine and the pyrazol moieties exhibits a very important positive factor for the ESDPT. Furthermore, by the investigation of the stretching vibrations of NH and OH groups, the infrared (IR) spectroscopic results provide us not only a theoretical evidence of ESDPT, but also a considerable clue to characterize the nature of intermolecular reaction. In addition, efforts have also been devoted towards calculating the absorption peak, which shows good consistency with the experimental result of the studied system.
Collapse
Affiliation(s)
- Hui Li
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China.
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Ye Wang
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Lin Cong
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Mingxing Jin
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| |
Collapse
|
38
|
Basarić N, Thomas SS, Bregović VB, Cindro N, Bohne C. Phototautomerization in Pyrrolylphenylpyridine Terphenyl Systems. J Org Chem 2015; 80:4430-42. [DOI: 10.1021/acs.joc.5b00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nikola Basarić
- Department
of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Suma S. Thomas
- Department
of Chemistry, University of Victoria, Box 3065 STN CSC, Victoria, BC V8W 3 V6, Canada
| | - Vesna Blažek Bregović
- Department
of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Nikola Cindro
- Department
of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Cornelia Bohne
- Department
of Chemistry, University of Victoria, Box 3065 STN CSC, Victoria, BC V8W 3 V6, Canada
| |
Collapse
|
39
|
Shen JY, Chao WC, Liu C, Pan HA, Yang HC, Chen CL, Lan YK, Lin LJ, Wang JS, Lu JF, Chun-Wei Chou S, Tang KC, Chou PT. Probing water micro-solvation in proteins by water catalysed proton-transfer tautomerism. Nat Commun 2014; 4:2611. [PMID: 24177573 DOI: 10.1038/ncomms3611] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/13/2013] [Indexed: 11/09/2022] Open
Abstract
Scientists have made tremendous efforts to gain understanding of the water molecules in proteins via indirect measurements such as molecular dynamic simulation and/or probing the polarity of the local environment. Here we present a tryptophan analogue that exhibits remarkable water catalysed proton-transfer properties. The resulting multiple emissions provide unique fingerprints that can be exploited for direct sensing of a site-specific water environment in a protein without disrupting its native structure. Replacing tryptophan with the newly developed tryptophan analogue we sense different water environments surrounding the five tryptophans in human thromboxane A₂ synthase. This development may lead to future research to probe how water molecules affect the folding, structures and activities of proteins.
Collapse
Affiliation(s)
- Jiun-Yi Shen
- 1] Department of Chemistry, Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kurhade S, Rajopadhyay V, Avaragolla SV, Koul S, Ramaiah PA, Bhuniya D. Synthesis of l-azaisotryptophan and its analogs: a general access to new 2-substituted azaindoles. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Kungwan N, Kerdpol K, Daengngern R, Hannongbua S, Barbatti M. Effects of the second hydration shell on excited-state multiple proton transfer: dynamics simulations of 7-azaindole:(H2O)1–5 clusters in the gas phase. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1480-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Kyrychenko A, Herbich J, Izydorzak M, Gil M, Dobkowski J, Wu F, Thummel RP, Waluk J. Photoinduced Double Proton Transfer: Inter- and Intramolecular Cases. Isr J Chem 2013. [DOI: 10.1002/ijch.199900038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
|
44
|
Daengngern R, Kerdpol K, Kungwan N, Hannongbua S, Barbatti M. Dynamics simulations of excited-state triple proton transfer in 7-azaindole complexes with water, water–methanol and methanol. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Fang H, Kim Y. Excited-State Tautomerization of 7-Azaindole in Nonpolar Solution: A Theoretical Study Based on Liquid-Phase Potential Surfaces of Mean Force. J Chem Theory Comput 2013; 9:3557-66. [DOI: 10.1021/ct3010694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hua Fang
- Department of Applied Chemistry, Kyung Hee University, 1 Seochun-Dong,
Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| | - Yongho Kim
- Department of Applied Chemistry, Kyung Hee University, 1 Seochun-Dong,
Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-701, Republic of Korea
| |
Collapse
|
46
|
Mandal S, Ghosh S, Banerjee C, Kuchlyan J, Sarkar N. Roles of Viscosity, Polarity, and Hydrogen-Bonding Ability of a Pyrrolidinium Ionic Liquid and Its Binary Mixtures in the Photophysics and Rotational Dynamics of the Potent Excited-State Intramolecular Proton-Transfer Probe 2,2′-Bipyridine-3,3′-diol. J Phys Chem B 2013; 117:6789-800. [PMID: 23668553 DOI: 10.1021/jp4025443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Jagannath Kuchlyan
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
47
|
Basarić N, Došlić N, Ivković J, Wang YH, Veljković J, Mlinarić-Majerski K, Wan P. Excited State Intramolecular Proton Transfer (ESIPT) from Phenol to Carbon in Selected Phenylnaphthols and Naphthylphenols. J Org Chem 2012; 78:1811-23. [DOI: 10.1021/jo301456y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta
54, 10000 Zagreb, Croatia
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb,
Croatia
| | - Jakov Ivković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta
54, 10000 Zagreb, Croatia
| | - Yu-Hsuan Wang
- Department of Chemistry, University of Victoria, Box 3065 Stn CSC, Victoria
BC, V8W 3 V6, Canada
| | - Jelena Veljković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta
54, 10000 Zagreb, Croatia
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta
54, 10000 Zagreb, Croatia
| | - Peter Wan
- Department of Chemistry, University of Victoria, Box 3065 Stn CSC, Victoria
BC, V8W 3 V6, Canada
| |
Collapse
|
48
|
Serrano AL, Bilsel O, Gai F. Native state conformational heterogeneity of HP35 revealed by time-resolved FRET. J Phys Chem B 2012; 116:10631-8. [PMID: 22891809 DOI: 10.1021/jp211296e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The villin headpiece subdomain (HP35) has become one of the most widely used model systems in protein folding studies, due to its small size and ultrafast folding kinetics. Here, we use HP35 as a test bed to show that the fluorescence decay kinetics of an unnatural amino acid, p-cyanophenylalanine (Phe(CN)), which are modulated by a nearby quencher (e.g., tryptophan or 7-azatryptophan) through the mechanism of fluorescence resonance energy transfer (FRET), can be used to detect protein conformational heterogeneity. This method is based on the notion that protein conformations having different donor-acceptor distances and interconverting slowly compared to the fluorescence lifetime of the donor (Phe(CN)) would exhibit different donor fluorescence lifetimes. Our results provide strong evidence suggesting that the native free energy basin of HP35 is populated with conformations that differ mostly in the position and mean helicity of the C-terminal helix. This finding is consistent with several previous experimental and computational studies. Moreover, this result holds strong implications for computational investigation of the folding mechanism of HP35.
Collapse
Affiliation(s)
- Arnaldo L Serrano
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
49
|
Polymorphism, Hydrogen Bond Properties, and Vibrational Structure of 1H-Pyrrolo[3,2-h]Quinoline Dimers. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/236793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two forms of cyclic, doubly hydrogen-bonded dimers are discovered for crystalline 1H-pyrrolo[3,2-h]quinoline, a bifunctional molecule possessing both hydrogen bond donor and acceptor groups. One of the forms is planar, the other is twisted. Analysis of IR and Raman spectra, combined with DFT calculations, allows one to assign the observed vibrations and to single out vibrational transitions which can serve as markers of hydrogen bond formation and dimer structure. Raman spectra measured for samples submitted to high pressure indicate a transition from the planar towards the twisted structure. Formation of intermolecular hydrogen bonds leads to a large increase of the Raman intensity of the NH stretching band: it can be readily observed for the dimer, but is absent in the monomer spectrum.
Collapse
|
50
|
Reyman D, Viñas MH, Tardajos G, Mazario E. The Impact of Dihydrogen Phosphate Anions on the Excited-State Proton Transfer of Harmane. Effect of β-Cyclodextrin on These Photoreactions. J Phys Chem A 2011; 116:207-14. [DOI: 10.1021/jp2074495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dolores Reyman
- Departamentode Química Física Aplicada, Universidad Autónoma de Madrid, E-28049 España
| | - Montserrat H. Viñas
- Departamento de Sistemas Inteligentes Aplicados, Universidad Politécnica de Madrid, E-28031 Madrid, España
| | - Gloria Tardajos
- Departamento Química Física, Universidad Complutense de Madrid, E-28040 Madrid, España
| | - Eva Mazario
- Departamentode Química Física Aplicada, Universidad Autónoma de Madrid, E-28049 España
| |
Collapse
|