1
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
2
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
3
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized
129
Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alixander S. Khan
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Rebecca L. Harvey
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Jonathan R. Birchall
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
| | - Robert K. Irwin
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems 45101 Warp Drive Sterling VA 20166 USA
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
4
|
Fujiwara H, Imai H, Kimura A. Stability Enhancement of 129Xe Hyperpolarizing System Using Alkali Metal Vapor in Spin-Exchange Optical Pumping Cell to Achieve High NMR Sensitivity. ANAL SCI 2019; 35:869-873. [PMID: 30982799 DOI: 10.2116/analsci.19p047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyperpolarized (HP) 129Xe NMR and MRI have enabled 129Xe studies with extraordinarily enhanced sensitivity, stimulating new developments in magnetic resonance in chemistry, physics, biology and medicine. However, the standard method of HP 129Xe production inevitably demands Rb vapor for the excitation, which has made the method very sensitive to impurities such as water or oxygen. This is the case especially in the recirculating system. In the present study, stability of the hyperpolarizing system is discussed by proposing the "cell decay constant", which symbolizes the decay rate of the NMR signal obtained from the system. The cell decay constant is effectively decreased to 1/3 by introducing separated chambers and mechanical stirring of the alkali metals used in the system, making it effective for accumulating FIDs over 30 to 100 h. The newly developed hyperpolarizing system has been successfully applied for newly detecting a broad signal at 190 ppm with an industrial material Nanofiber.
Collapse
Affiliation(s)
- Hideaki Fujiwara
- Division of Health Sciences, Graduate School of Medicine, Osaka University.,MR MedChem Research, LLC
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University
| | - Atsuomi Kimura
- Division of Health Sciences, Graduate School of Medicine, Osaka University
| |
Collapse
|
5
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
6
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
7
|
Dvoyashkin M, Bhase H, Mirnazari N, Vasenkov S, Bowers CR. Single-File Nanochannel Persistence Lengths from NMR. Anal Chem 2014; 86:2200-4. [DOI: 10.1021/ac403868t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muslim Dvoyashkin
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Hrishi Bhase
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Navid Mirnazari
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sergey Vasenkov
- Department
of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Clifford R. Bowers
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Larson PEZ, Kerr AB, Swisher CL, Pauly JM, Vigneron DB. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 225:71-80. [PMID: 23143011 PMCID: PMC3531583 DOI: 10.1016/j.jmr.2012.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 05/27/2023]
Abstract
In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T(1) decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-(13)C]-lactate produced in tissue by metabolic conversion from [1-(13)C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.
Collapse
Affiliation(s)
- Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 1700 4th St, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
We have investigated several building stone materials, including minerals and rocks, using continuous flow hyperpolarized xenon (CF-HP) NMR spectroscopy to probe the surface composition and porosity. Chemical shift and line width values are consistent with petrographic information. Rare upfield shifts were measured and attributed to the presence of transition metal cations on the surface. The evolution of freshly cleaved rocks exposed to the atmosphere was also characterized. The CF-HP 129Xe NMR technique is non-destructive and it could complement currently used techniques, like porosimetry and microscopy, providing additional information on the chemical nature of the rock surface and its evolution.
Collapse
|
10
|
Koptyug IV. MRI of mass transport in porous media: drying and sorption processes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 65:1-65. [PMID: 22781314 DOI: 10.1016/j.pnmrs.2011.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/05/2011] [Indexed: 06/01/2023]
Affiliation(s)
- Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya Str., Novosibirsk 630090, Russian Federation.
| |
Collapse
|
11
|
Cheng CY, Stamatatos TC, Christou G, Bowers CR. Molecular Wheels as Nanoporous Materials: Differing Modes of Gas Diffusion through Ga10 and Ga18 Wheels Probed by Hyperpolarized 129Xe NMR Spectroscopy. J Am Chem Soc 2010; 132:5387-93. [DOI: 10.1021/ja908327w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32606-7200
| | | | - George Christou
- Department of Chemistry, University of Florida, Gainesville, Florida 32606-7200
| | - Clifford R. Bowers
- Department of Chemistry, University of Florida, Gainesville, Florida 32606-7200
| |
Collapse
|
12
|
Cheng CY, Pfeilsticker J, Bowers CR. Dramatic enhancement of hyperpolarized xenon-129 2D-NMR exchange cross-peak signals in nanotubes by interruption of the gas flow. J Am Chem Soc 2008; 130:2390-1. [PMID: 18237170 DOI: 10.1021/ja078031i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry, University of Florida, P.O. Box 118440, Gainesville, Florida 32611-8440, USA
| | | | | |
Collapse
|
13
|
Cheng CY, Bowers CR. Direct Observation of Atoms Entering and Exiting l-Alanyl-l-valine Nanotubes by Hyperpolarized Xenon-129 NMR. J Am Chem Soc 2007; 129:13997-4002. [DOI: 10.1021/ja074563n] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chi-Yuan Cheng
- Contribution from the Chemistry Department, University of Florida, P.O. Box 117200, Gainesville, Florida 32611
| | - Clifford R. Bowers
- Contribution from the Chemistry Department, University of Florida, P.O. Box 117200, Gainesville, Florida 32611
| |
Collapse
|
14
|
Comotti A, Bracco S, Valsesia P, Ferretti L, Sozzani P. 2D Multinuclear NMR, Hyperpolarized Xenon and Gas Storage in Organosilica Nanochannels with Crystalline Order in the Walls. J Am Chem Soc 2007; 129:8566-76. [PMID: 17579407 DOI: 10.1021/ja071348y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The combination of 2D 1H-13C and 1H-29Si solid state NMR, hyperpolarized 129Xe NMR, synchrotron X-ray diffraction, together with adsorption measurements of vapors and gases for environmental and energetic relevance, was used to investigate the structure and the properties of periodic mesoporous hybrid p-phenylenesilica endowed with crystalline order in the walls. The interplay of 1H, 13C, and 29Si in the 2D heteronuclear correlation NMR measurements, together with the application of Lee-Goldburg homonuclear decoupling, revealed the spatial relationships (<5 angstroms) among various spin-active nuclei of the framework. Indeed, the through-space correlations in the 2D experiments evidenced, for the first time, the interfaces of the matrix walls with guest molecules confined in the nanochannels. Organic-inorganic and organic-organic heterogeneous interfaces between the matrix and the guests were identified. The open-pore structure and the easy accessibility of the nanochannels to the gas phase have been demonstrated by highly sensitive hyperpolarized (HP) xenon NMR, under extreme xenon dilution. Two-dimensional exchange experiments showed the exchange time to be as short as 2 ms. Through variable-temperature HP 129Xe NMR experiments we were able to achieve an unprecedented description of the nanochannel space and surface, a physisorption energy of 13.9 kJ mol-1, and the chemical shift value of xenon probing the internal surfaces. These results prompted us to measure the high storage capacity of the matrix towards benzene, hexafluorobenzene, ethanol, and carbon dioxide. Both host-guest, CH...pi, and OH...pi interactions contribute to the stabilization of the aromatic guests (benzene and hexafluorobenzene) on the extended surfaces. The full carbon dioxide loading in the channels could be detected by synchrotron radiation X-ray diffraction experiments. The selective adsorption of carbon dioxide (ca. 90 wt %) vs that of oxygen and hydrogen, together with the permanent porosity, high thermal stability, and high degree of order, makes this a suitable matrix for purifying hydrogen in clean-energy generation.
Collapse
Affiliation(s)
- Angiolina Comotti
- Department of Materials Science and INSTM, University of Milano Bicocca, Via R. Cozzi 53, I-20125 Milan, Italy
| | | | | | | | | |
Collapse
|
15
|
Comotti A, Bracco S, Ferretti L, Mauri M, Simonutti R, Sozzani P. A single-crystal imprints macroscopic orientation on xenon atoms. Chem Commun (Camb) 2007:350-2. [PMID: 17220967 DOI: 10.1039/b612002d] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A porous single-crystal collects xenon atoms from the gas phase and orients them macroscopically, as highlighted by hyperpolarized xenon NMR.
Collapse
Affiliation(s)
- Angiolina Comotti
- Department of Materials Science, University of Milan Bicocca and INSTM, Via R. Cozzi 53, Milano, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Guenneau F, Nader M, Salamé P, Launay F, Semmer-Herledan V, Gédéon A. Probing the pore space in mesoporous materials by laser enhanced hyperpolarised 129Xe NMR. Catal Today 2006. [DOI: 10.1016/j.cattod.2005.11.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Stupic KF, Cleveland ZI, Pavlovskaya GE, Meersmann T. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2006; 29:79-84. [PMID: 16202568 DOI: 10.1016/j.ssnmr.2005.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 08/07/2005] [Indexed: 05/04/2023]
Abstract
This work reports the first systematic study of relaxation experienced by the hyperpolarized (hp) noble gas isotope (83)Kr (I=9/2) in contact with surfaces. The spin-lattice relaxation of (83)Kr is found to depend strongly on the chemical composition of the surfaces in the vicinity of the gas. This effect is caused by quadrupolar interactions during brief periods of surface adsorption that are the dominating source of longitudinal spin relaxation in the (83)Kr atoms. Simple model systems of closest packed glass beads with uniform but variable bead sizes are used for the relaxation measurements. The observed relaxation rates depend strongly on the chemical treatment of the glass surfaces and on the surface to volume ratio. Hp (83)Kr NMR relaxation measurements of porous polymers with pore sizes of 70-250 microm demonstrate the potential use of this new technique for material sciences applications.
Collapse
Affiliation(s)
- Karl F Stupic
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
18
|
Hunger M, Wang W. Characterization of Solid Catalysts in the Functioning State by Nuclear Magnetic Resonance Spectroscopy. ADVANCES IN CATALYSIS 2006. [DOI: 10.1016/s0360-0564(06)50004-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Fujiwara H, Kimura A, Wakayama T. Hyperpolarized 129Xe as a novel probe agent of lung functions in MRI and MRS. Experimental results with mice at 9.4 T. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Dubes A, Moudrakovski IL, Shahgaldian P, Coleman AW, Ratcliffe CI, Ripmeester JA. Distribution and Modification of Sorption Sites in Amphiphilic Calixarene-Based Solid Lipid Nanoparticles from Hyperpolarized 129Xe NMR Spectroscopy. J Am Chem Soc 2004; 126:6236-7. [PMID: 15149213 DOI: 10.1021/ja038653d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The site distribution and accessibility in amphiphilic calixarenes-based solid lipid nanoparticles were determined as a function of lipid chain length using in situ 129Xe NMR spectroscopy with flowing hyperpolarized Xe gas. The study illustrates that host cavities in as-prepared materials are increasingly occluded by the lipid chain for compounds with chain lengths from C6 to C12 and are almost completely occluded for C14 and C16 chain lengths. Host cavities present at the surface of the particles are still accessible to small atoms (xenon) and organic molecules (methylene chloride, etc). The Xe spectra show that the accessible void space can be increased remarkably by exposure of the particle surface to suitably sized guest molecules that appear to displace the occluding hydrocarbon chains from the host cavities by competitive adsorption. This postsynthesis treatment thus modifies the state of self-assembly and improves sorption capability. The HP Xe NMR approach presented is suitable for small samples (a few milligrams) of SLNs, likely also for other biomaterials such as vesicles, model membranes, etc.
Collapse
Affiliation(s)
- Alix Dubes
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Haddad E, Nossov A, Guenneau F, Gédéon A. General correlation between the chemical shift of hyperpolarized 129Xenon and pore size of mesoporous solids. CR CHIM 2004. [DOI: 10.1016/j.crci.2003.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Haddad E, Nossov A, Guenneau F, Nader M, Grosso D, Sanchez C, Gédéon A. Exploring the internal structure of mesoporous powders and thin films by continuous flow laser-enhanced 129Xe NMR. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-2991(04)80665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
23
|
Anala S, Pavlovskaya GE, Pichumani P, Dieken TJ, Olsen MD, Meersmann T. In Situ NMR Spectroscopy of Combustion. J Am Chem Soc 2003; 125:13298-302. [PMID: 14570507 DOI: 10.1021/ja035838b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The first successful in situ studies of free combustion processes by one- and two-dimensional NMR spectroscopy are reported, and the feasibility of this concept is demonstrated. In this proof-of-principle work, methane combustion over a nanoporous material is investigated using hyperpolarized (hp)-xenon-129 NMR spectroscopy. Different inhomogeneous regions within the combustion cell are identified by the xenon chemical shift, and the gas exchange between these regions during combustion is revealed by two-dimensional exchange spectra (EXSY). The development of NMR spectroscopy as an analytical tool for combustion processes is of potential importance for catalyzed reactions within opaque media that are difficult to investigate by other techniques.
Collapse
Affiliation(s)
- Satyanarayana Anala
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mortuza MG, Anala S, Pavlovskaya GE, Dieken TJ, Meersmann T. Spin-exchange optical pumping of high-density xenon-129. J Chem Phys 2003. [DOI: 10.1063/1.1539042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
Nossov A, Haddad E, Guenneau F, Gédéon A. Application of continuously circulating flow of hyperpolarized (HP)129Xe-NMR on mesoporous materials. Phys Chem Chem Phys 2003. [DOI: 10.1039/b305788g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Nossov A, Guenneau F, Springuel-Huet MA, Haddad E, Montouillout V, Knott B, Engelke F, Fernandez C, Gédéon A. Continuous flow hyperpolarized129Xe-MAS NMR studies of microporous materials. Phys Chem Chem Phys 2003. [DOI: 10.1039/b305793n] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Zook AL, Adhyaru BB, Bowers CR. High capacity production of >65% spin polarized xenon-129 for NMR spectroscopy and imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 159:175-82. [PMID: 12482697 DOI: 10.1016/s1090-7807(02)00030-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A rubidium spin exchange optical pumping system for high capacity production of >65% spin polarized 129Xe gas is described. This system is based on a fiber coupled multiple laser diode array capable of producing an unprecedented 210 W of circularly polarized light at the pumping cell with a laser line width of 1.6 nm. The 129Xe nuclear spin polarization is measured as a function of flow rate, pumping cell pressure, and laser power for varying pumping gas compositions. A maximum 129Xe nuclear polarization of 67% was achieved using a 0.6% Xe mixture at a Xe flow rate of 2.45 sccm. The ability to generate 12% polarized 129Xe at rates in excess of 1L-atm/h is also demonstrated. To achieve production of 129Xe gas at even higher polarization will rely on further optimization of the pumping cell and laser beam geometries in order to mitigate problems associated with temperature gradients that are encountered at high laser power and Rb density.
Collapse
Affiliation(s)
- Anthony L Zook
- Chemistry Department and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | |
Collapse
|
28
|
Hunger M, Weitkamp J. In situ IR, NMR, EPR, and UV/Vis Spectroscopy: Tools for New Insight into the Mechanisms of Heterogeneous Catalysis. Angew Chem Int Ed Engl 2002; 40:2954-71. [PMID: 12203619 DOI: 10.1002/1521-3773(20010817)40:16<2954::aid-anie2954>3.0.co;2-#] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The development of new solid catalysts for use in industrial chemistry has hitherto been based to a large extent upon the empirical testing of a wide range of different materials. In only a few exceptional cases has success been achieved in understanding the overall, usually very complex mechanism of the chemical reaction through the elucidation of individual intermediate aspects of a heterogeneously catalyzed reaction. With the modern approach of combinatorial catalysis it is now possible to prepare and test much more rapidly a wide range of different materials within a short time and thus find suitable catalysts or optimize their chemical composition. Our understanding of the mechanisms of reactions catalyzed by these materials must be developed, however, by spectroscopic investigations on working catalysts under conditions that are as close as possible to practice (temperature, partial pressures of the reactants, space velocity). This demands the development and the application of new techniques of in situ spectroscopy. This review will show how this objective is being achieved. By the term in situ (Lat.: in the original position) is meant the investigation of the chemical reactions which are taking place as well as the changes in the working catalysts directly in the spectrometer.
Collapse
Affiliation(s)
- M Hunger
- Institut für Technische Chemie Universität Stuttgart 70550 Stuttgart, Germany, Fax: (+49) 711-685-4065.
| | | |
Collapse
|
29
|
Wong-Foy A, Saxena S, Moulé AJ, Bitter HML, Seeley JA, McDermott R, Clarke J, Pines A. Laser-polarized (129)Xe NMR and MRI at ultralow magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 157:235-241. [PMID: 12323142 DOI: 10.1006/jmre.2002.2592] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Laser-polarized (129)Xe and a high-T(c)superconducting quantum interference device (SQUID) are used to obtain magnetic resonance images in porous materials at a magnetic field of 2.3 mT, corresponding to a Larmor frequency of 27 kHz. Image resolution of 1 mm is obtained with gradients of only 1 mT/m. The resolution of xenon chemical shifts in different physicochemical environments at ultralow fields is also demonstrated. Details of the circulating flow optical pumping apparatus and the SQUID spectrometer are presented.
Collapse
Affiliation(s)
- Annjoe Wong-Foy
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Moudrakovski IL, Terskikh VV, Ratcliffe CI, Ripmeester JA, Wang LQ, Shin Y, Exarhos GJ. A 129Xe NMR Study of Functionalized Ordered Mesoporous Silica. J Phys Chem B 2002. [DOI: 10.1021/jp014585a] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Goodson BM. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:157-216. [PMID: 12036331 DOI: 10.1006/jmre.2001.2341] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI.
Collapse
Affiliation(s)
- Boyd M Goodson
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley 94720-1460, USA
| |
Collapse
|
32
|
Terskikh VV, Moudrakovski IL, Du H, Ratcliffe CI, Ripmeester JA. The (129)Xe chemical shift tensor in a silicalite single crystal from hyperpolarized (129)Xe NMR spectroscopy. J Am Chem Soc 2001; 123:10399-400. [PMID: 11603996 DOI: 10.1021/ja0114106] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- V V Terskikh
- Steacie Institute for Molecular Sciences, National Research Council, Ottawa, Ontario, K1A 0R6, Canada
| | | | | | | | | |
Collapse
|
33
|
Hunger M, Weitkamp J. In-situ-IR-, -NMR-, -EPR- und -UV/Vis-Spektroskopie: Wege zu neuen Erkenntnissen in der heterogenen Katalyse. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010817)113:16<3040::aid-ange3040>3.0.co;2-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Nossov AV, Soldatov DV, Ripmeester JA. In situ switching of sorbent functionality as monitored with hyperpolarized (129)Xe NMR spectroscopy. J Am Chem Soc 2001; 123:3563-8. [PMID: 11472127 DOI: 10.1021/ja002767x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this contribution, we demonstrate that a material (organic zeolite mimetic coordination polymer [CuL(2)], where L = L(-) = CF(3)COCHCOC(OCH(3))(CH(3))(2)) can be endowed with its functionality in situ under molecular-level control. This process involves the isomerization of the ligands followed by phase interconversion from a dense to an open, porous form. The porous (beta) form of the complex reveals zeolite-like behavior but, unlike zeolites and many other hard porous frameworks, porosity may be created or destroyed at will by the application of suitable external stimuli. Contact with methylene chloride vapor was used to switch on the sorbent functionality, whereas switching off was accomplished with a temperature pulse. The transformations between functionally inactive alpha and active beta forms, as well as the amount of vacant pore space, were monitored in situ by observing the NMR spectrum of hyperpolarized (HP) Xe atom probes. For methylene chloride, the chemical shift of the coabsorbed HP Xe correlated directly with the amount of adsorbate in the pore system of the open framework, illustrating the use of HP Xe for following sorption kinetics. The adsorption of propane, as an inert adsorbate, was also monitored directly with (1)H NMR, with HP Xe and by BET measurements, revealing more complex behavior.
Collapse
Affiliation(s)
- A V Nossov
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa K1A 0R6, Canada
| | | | | |
Collapse
|
35
|
Landon C, Berthault P, Vovelle F, Desvaux H. Magnetization transfer from laser-polarized xenon to protons located in the hydrophobic cavity of the wheat nonspecific lipid transfer protein. Protein Sci 2001; 10:762-70. [PMID: 11274467 PMCID: PMC2373978 DOI: 10.1110/ps.47001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Nonspecific lipid transfer protein from wheat is studied by liquid-state NMR in the presence of xenon. The gas-protein interaction is indicated by the dependence of the protein proton chemical shifts on the xenon pressure and formally confirmed by the first observation of magnetization transfer from laser-polarized xenon to the protein protons. Twenty-six heteronuclear nOes have allowed the characterization of four interaction sites inside the wheat ns-LTP cavity. Their locations are in agreement with the variations of the chemical shifts under xenon pressure and with solvation simulations. The richness of the information obtained by the noble gas with a nuclear polarization multiplied by approximately 12,000 makes this approach based on dipolar cross-relaxation with laser-polarized xenon promising for probing protein hydrophobic pockets at ambient pressure.
Collapse
Affiliation(s)
- C Landon
- Centre de Biophysique Moléculaire, CNRS, 45071 Orléans cedex 02, France
| | | | | | | |
Collapse
|
36
|
Smith J, Smith LJ, Knagge K, MacNamara E, Raftery D. Hyperpolarized xenon-mediated cross-polarization to material surfaces observed at room temperature and above. J Am Chem Soc 2001; 123:2927-8. [PMID: 11456998 DOI: 10.1021/ja0056670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Smith LJ, Smith J, MacNamara E, Knagge K, Raftery D. Variable Temperature Study of the Cross-Relaxation Dynamics in the Hyperpolarized Xenon-Induced Enhancement of Surface Nuclei. J Phys Chem B 2001. [DOI: 10.1021/jp0032309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis J. Smith
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Jay Smith
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Ernesto MacNamara
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Kevin Knagge
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Daniel Raftery
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| |
Collapse
|
38
|
Kneller JM, Soto RJ, Surber SE, Colomer JF, Fonseca A, Nagy JB, Pietrass T. Continuous-flow optical pumping NMR in a closed circuit system. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 147:261-265. [PMID: 11097817 DOI: 10.1006/jmre.2000.2210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In a typical continuous-flow optical pumping setup, the chemical shift of xenon in the adsorbed phase depends on the gas flow rate due to warming of the sample surface by the gas stream. Calibration of the system using the (207)Pb resonance of solid lead nitrate is necessary to determine the actual sample temperature. Optimum pulse repetition rates are strongly affected by gas flow and spin-lattice relaxation rates. The interplay of flow and pulse repetition rate alters signal intensity ratios and may lead to the complete suppression of signals.
Collapse
Affiliation(s)
- J M Kneller
- Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kneller JM, Soto RJ, Surber SE, Colomer JF, Fonseca A, J. B. Nagy,, Van Tendeloo G, Pietraβ T. TEM and Laser-Polarized 129Xe NMR Characterization of Oxidatively Purified Carbon Nanotubes. J Am Chem Soc 2000. [DOI: 10.1021/ja994441y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J. M. Kneller
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - R. J. Soto
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - S. E. Surber
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - J.-F. Colomer
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - A. Fonseca
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - J. B. Nagy,
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - G. Van Tendeloo
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - T. Pietraβ
- Contribution from the Department of Chemistry, New Mexico Tech, Socorro, New Mexico 87801, Laboratoire de Résonance Magnétique Nucléaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue Bruxelles, 5000 Namur, Belgium, and EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
40
|
Moudrakovski IL, Lang S, Ratcliffe CI, Simard B, Santyr G, Ripmeester JA. Chemical shift imaging with continuously flowing hyperpolarized xenon for the characterization of materials. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 144:372-7. [PMID: 10828205 DOI: 10.1006/jmre.2000.2078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this contribution we report new approaches to the MRI of materials using continuously produced laser-polarized (129)Xe gas. This leads to vastly improved sensitivity and makes new kinds of information available. The hyperpolarized xenon is produced in a continuous flow system that conveniently delivers the xenon at low partial pressure to probes for NMR and MRI experiments. We illustrate applications to the study of micropore and other kinds of void space and show for the first time that with flowing hyperpolarized xenon it is possible to obtain chemical-shift-resolved images in a relatively short time.
Collapse
Affiliation(s)
- I L Moudrakovski
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
41
|
MacNamara E, Rice CV, Smith J, Smith LJ, Raftery D. Cross-relaxation dynamics between laser-polarized xenon and a surface species using a simple three-spin model. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(99)01355-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|