1
|
Samanta S, Sengupta S, Biswas S, Ghosh S, Barman S, Dey A. Iron Dioxygen Adduct Formed during Electrochemical Oxygen Reduction by Iron Porphyrins Shows Catalytic Heme Dioxygenase Reactivity. J Am Chem Soc 2023; 145:26477-26486. [PMID: 37993986 DOI: 10.1021/jacs.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Heme dioxygenases oxidize the indole ring of tryptophan to kynurenine which is the first step in the biosynthesis of several important biomolecules like NAD, xanthurenic acid, and picolinic acid. A ferrous heme dioxygen adduct (or FeIII-O2•-) is the oxidant, and both the atoms of O2 are inserted in the product and its catalytic function has been difficult to emulate as it is complicated by competing rapid reactions like auto-oxidation and/or formation of the μ-oxo dimer. In situ resonance Raman spectroscopy technique, SERRS-RDE, is used to probe the species accumulated during electrochemical ORR catalyzed by site-isolated imidazole-bound iron porphyrin installed on a self-assembled monolayer covered electrode. These in situ SERRS-RDE data using labeled O2 show that indeed a FeIII-O2•- species accumulate on the electrode during ORR between -0.05 and -0.30 V versus Ag/AgCl (satd. KCl) and is reduced by proton coupled electron transfer to a FeIII-OOH species which, on the other hand, builds up on the electrode between -0.20 and -0.40 V versus Ag/AgCl (satd. KCl). This FeIII-OOH species then gives way to a FeIV═O species, which accumulates at -0.50 V versus Ag/AgCl (satd. KCl). When 2,3-dimethylindole is present in the solution and the applied potential is held in the range where FeIII-O2•- species accumulate, it gets oxidized to N-(2-acetylphenyl)acetamide retaining both the oxygens from O2 mimicking the reaction of heme dioxygenases. Turnover numbers more than 104 are recorded, establishing this imidazole-bound ferrous porphyrin as a functional model of heme dioxygenases.
Collapse
Affiliation(s)
- Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Srijan Sengupta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Saptarshi Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sucheta Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sudip Barman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
2
|
Sosna M, Ferapontova EE. Electron Transfer in Binary Hemin-Modified Alkanethiol Self-Assembled Monolayers on Gold: Hemin's Lateral and Interfacial Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11180-11190. [PMID: 36062334 DOI: 10.1021/acs.langmuir.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orientated coupling of redox enzymes to electrodes by their reconstitution onto redox cofactors, such as hemin conjugated to self-assembled monolayers (SAMs) formed on the electrodes, poses the requirements for a SAM design enabling reconstitution. We show that the kinetics of electron transfer (ET) in binary SAMs of alkanethiols on gold composed of in situ hemin-conjugated 11-amino-1-undecanethiol (AUT) and diluting OH-terminated alkanethiols with 11, 6, and 2 methylene groups (MC11OH, MC6OH, and MC2OH) depends on both the SAM composition and surface density of hemin, Γheme. In AUT/MC11OH SAMs composed of equal linker/diluent lengths, the heterogeneous ET rate constant ks decreased with the Γheme and varied between 70 and 500 s-1. For shorter diluents, the ks of 245-330 s-1 (C6) and 300-340 s-1 (C2) showed a little (if any) Γheme dependence. In AUT/MC11OH SAMs, the increasing Γheme resulted in the steric crowding of hemin species and their neighboring lateral interactions in the plane of hemin localization, affecting the potential distribution at the SAM/electrode interface and inducing local electrostatic effects interfering with hemin oxidation. In AUT/MC6OH and AUT/MC2OH SAMs, hemin discharged at the plane of the closest approach to the gold surface, equal to the diluent length and permeable to electrolyte ions, which lessened those effects. All studied binary SAMs provided steric hindrance for protein reconstitution on the hemin cofactor conjugated to the extended AUT linker. Further use of SAM-modified electrodes with the covalently attached hemin as interfaces for heme proteins' reconstitution should consider SAMs with loosely dispersed redox centers terminating more rigid molecular wires. Such wires place hemin at fixed distances from the electrode surface and thus ensure the interfacial properties required for the effective on-surface reconstitution of proteins and enzymes.
Collapse
Affiliation(s)
- Maciej Sosna
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Ling PH, Zang XN, Qian CH, Gao F. A metal-organic framework with multienzyme activity as a biosensing platform for real-time electrochemical detection of nitric oxide and hydrogen peroxide. Analyst 2021; 146:2609-2616. [PMID: 33720222 DOI: 10.1039/d1an00142f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Metal-Organic Framework (MOFs) with large surface area, exposed active site, excellent catalytic performance and high chemical stability has been used as an artificial enzyme and designed for nonenzymatic electrochemical sensors. Here, a strategy of using an enhanced electrochemical sensing platform for the detection of nitic oxide (NO) and hydrogen peroxide (H2O2) was designed via a nano-metalloporphyrinic metal-organic framework (NporMOF(Fe)) as an electrode material. By taking advantage of the small size, high surface area and exposed Fe active site, the obtained NporMOF(Fe) displays excellent electrocatalytic activity toward NO and H2O2. The NporMOF(Fe) modified electrode shows high sensing ability toward the in situ generated NO in NO2- containing phosphate buffer (PB) solution with a wide linear detection range of 5 μM to 200 μM and a very low detection limit of 1.3 μM. Moreover, NporMOF(Fe) exhibits high electrocatalytic activity toward the reduction of H2O2 and the practical detection of H2O2 released from HeLa cells. Furthermore, the NporMOF(Fe) modified electrode shows excellent selectivity toward the detection of NO and H2O2 in the presence of other physiologically important analytes. This method shows excellent biosensing performance, implying the universal applicability of MOFs-based artificial nanozymes for biosensors and the potential application for third generation biosensors.
Collapse
Affiliation(s)
- Ping-Hua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiao-Na Zang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Cai-Hua Qian
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
4
|
Márquez I, Olloqui-Sariego JL, Molero M, Andreu R, Roldán E, Calvente JJ. Active Role of the Buffer in the Proton-Coupled Electron Transfer of Immobilized Iron Porphyrins. Inorg Chem 2021; 60:42-54. [PMID: 32568550 DOI: 10.1021/acs.inorgchem.0c01091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evaluation of the proton-coupled electron transfer thermodynamics of immobilized hemin is challenging due to the disparity of its electrochemical titration curves reported in the literature. Deviations from the one-electron, one-proton transfer at circumneutral pHs have been commonly ascribed to either the formation of dimeric species or the ionization of a second iron-bound water molecule. Herein, however, we report on non-idealities in the more acidic region, whose onset and extent vary with the nature and concentration of the commonly used phosphate and acetate buffers. It is shown that these deviations originate in the ligand-exchange binding between the oxidized aquo-hemin complex and the anionic components of the buffer, so that they are restricted to the pH interval where these forms coexist. A stepwise approach was developed to quantify unambiguously the apparent and intrinsic binding equilibrium constants. The apparent binding equilibrium constant exhibits a peak-shaped pH dependence, whose maximum is located at approximately the midpoint between the pKa of the iron-bound water and the first pKa of the buffer, and its magnitude is greater for the phosphate than for the acetate buffer. But strikingly, the opposite trend was found for the magnitude of the intrinsic binding equilibrium constants determined from the apparent ones, due to the different relative locations of the phosphoric and acetic pKa values with respect to that of the oxidized aquo-hemin. To probe the role of the heme propionic residues, a similar study was carried out with a propionic-free iron porphyrin containing eight ethyl residues. These substituents decrease the acidity of the iron-bound water, strengthen the iron(III)-acetate binding, weaken the iron(III)-dihydrogen phosphate binding, and enable the binding between iron(III) and monohydrogen phosphate, which was hampered in hemin by the presence of the negatively charged propionate residues. Overall, this work provides a more complete speciation of immobilized iron porphyrins under acidic conditions than previously considered, showing the substitutional lability of the aqua ligand in the oxidized state of the iron center and the reluctance of its hydroxyl counterpart to anion exchange. Knowledge of these redox- and pH-dependent bindings with the buffer components is crucial for a rigorous quantification of the proton-coupled electron transfer and the electrocatalytic activity of iron porphyrins.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - José Luis Olloqui-Sariego
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Miguel Molero
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Rafael Andreu
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Emilio Roldán
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Juan José Calvente
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Sitte E, Senge MO. The Red Color of Life Transformed - Synthetic Advances and Emerging Applications of Protoporphyrin IX in Chemical Biology. European J Org Chem 2020; 2020:3171-3191. [PMID: 32612451 PMCID: PMC7319466 DOI: 10.1002/ejoc.202000074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Protoporphyrin IX (PPIX) is the porphyrin scaffold of heme b, a ubiquitous prosthetic group of proteins responsible for oxygen binding (hemoglobin, myoglobin), electron transfer (cytochrome c) and catalysis (cytochrome P450, catalases, peroxidases). PPIX and its metallated derivatives frequently find application as therapeutic agents, imaging tools, catalysts, sensors and in light harvesting. The vast toolkit of accessible porphyrin functionalization reactions enables easy synthetic modification of PPIX to meet the requirements for its multiple uses. In the past few years, particular interest has arisen in exploiting the interaction of PPIX and its synthetic derivatives with biomolecules such as DNA and heme-binding proteins to evolve molecular devices with new functions as well as to uncover potential therapeutic toeholds. This review strives to shine a light on the most recent developments in the synthetic chemistry of PPIX and its uses in selected fields of chemical biology.
Collapse
Affiliation(s)
- Elisabeth Sitte
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
| | - Mathias O. Senge
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
- Institute for Advanced Study (TUM‐IAS)Technische Universität MünchenLichtenberg‐Str. 2a85748GarchingGermany
| |
Collapse
|
6
|
Wang H, Johs A, Browning JF, Tennant DA, Liang L. Electrochemical properties of the interaction between cytochrome c and a hematite nanowire array electrode. Bioelectrochemistry 2019; 129:162-169. [PMID: 31176253 DOI: 10.1016/j.bioelechem.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
We investigate the interaction of horse heart cytochrome c (cyt c) with hematite nanowire array electrodes by cyclic voltammetry to study the electron transfer between redox active proteins and mineral surfaces. Using this model system, we quantify electron transfer rates between cyt c and hematite under varying electric potential and pH conditions. The results are consistent with two cyt c conformations adsorbed at the hematite surface: the native and a partially unfolded form. The partially unfolded protein maintained redox activity, but at a lower redox potential than the native protein. Adsorption of cyt c allowed direct electron transfer between cyt c and hematite, with an interfacial electron transfer rate, k°ET, of 0.4 s-1 for the native form and 0.55 s-1 for the partially unfolded protein at pH 7.07. At pH 4.66, protein adsorption decreased compared to neutral pH and the fraction of partially unfolded protein increased. Additionally, the diffusion controlled electron transfer rate between hematite and the electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) was determined to be k°ET = 8.0·10-3 cm·s-1 at pH 7.07. Modulation of electron transfer rates as a result of conformational changes by redox active proteins has broad implications for describing chemical transformations at biological-mineral interfaces.
Collapse
Affiliation(s)
- Hanyu Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - James F Browning
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - David Alan Tennant
- Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Liyuan Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| |
Collapse
|
7
|
Neumann B, Götz R, Wrzolek P, Scheller FW, Weidinger IM, Schwalbe M, Wollenberger U. Enhancement of the Electrocatalytic Activity of Thienyl‐Substituted Iron Porphyrin Electropolymers by a Hangman Effect. ChemCatChem 2018. [DOI: 10.1002/cctc.201800934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bettina Neumann
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| | - Robert Götz
- Department of Chemistry and Food ChemistryTechnische Universität Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Pierre Wrzolek
- Institute for ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Frieder W. Scheller
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| | - Inez M. Weidinger
- Department of Chemistry and Food ChemistryTechnische Universität Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Matthias Schwalbe
- Institute for ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Ulla Wollenberger
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| |
Collapse
|
8
|
Panagiotopoulos A, Gkouma A, Vassi A, Johnson CJ, Cass AEG, Topoglidis E. Hemin Modified SnO2
Films on ITO-PET with Enhanced Activity for Electrochemical Sensing. ELECTROANAL 2018. [DOI: 10.1002/elan.201800188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Anthi Gkouma
- Department of Materials Science; University of Patras; Rion 26504 Greece
| | - Andriana Vassi
- Department of Materials Science; University of Patras; Rion 26504 Greece
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Biomedical Engineering; Imperial College London; London SW7 2AZ UK
| | - Anthony E. G. Cass
- Department of Chemistry and Institute of Biomedical Engineering; Imperial College London; London SW7 2AZ UK
| | | |
Collapse
|
9
|
Almeida I, Mendo S, Carvalho M, Correia J, Viana A. Catalytic Co and Fe porphyrin/Fe 3 O 4 nanoparticles assembled on gold by carbon disulfide. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Bandyopadhyay S, Rana A, Mittra K, Samanta S, Sengupta K, Dey A. Effect of Axial Ligand, Spin State, and Hydrogen Bonding on the Inner-Sphere Reorganization Energies of Functional Models of Cytochrome P450. Inorg Chem 2014; 53:10150-8. [PMID: 25238648 DOI: 10.1021/ic501112a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sabyasachi Bandyopadhyay
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Atanu Rana
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Kaustuv Mittra
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Subhra Samanta
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Kushal Sengupta
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
11
|
Mashazi P, Vilakazi S, Nyokong T. Design and evaluation of an electrochemical immunosensor for measles serodiagnosis using measles-specific Immunoglobulin G antibodies. Talanta 2013; 115:694-701. [PMID: 24054649 DOI: 10.1016/j.talanta.2013.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
Abstract
The design of electrochemical immunosensors for the detection of measles-specific antibodies is reported. The measles-antigen modified surface was used as an antibody capture surface. The detection of measles-specific IgG antibodies was accomplished using the voltammetric method and horse-radish peroxidase (HRP) labeled secondary antibody (anti-IgG) as a detecting antibody. The potential applications of the designed immunosensor were evaluated in buffer and serum solutions. The immunosensor exhibited good linearity at concentrations less than 100 ng mL(-1) with R(2)=0.997 and the limit of detection of 6.60 ng mL(-1) at 3σ. The potential application of the immunosensor was evaluated in the deliberately infected human and newborn calf serum samples with measles-IgG antibody mimicking real-life samples. The designed electrochemical immunosensor could differentiate between infected and un-infected serum samples as higher catalytic currents were obtained for infected serum samples.
Collapse
Affiliation(s)
- Philani Mashazi
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; Nanotechnology Innovation Centre, Sensors, Chemistry Department, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| | | | | |
Collapse
|
12
|
Self assembly of iron protoporphyrin and its binding with carbon monoxide on dithiol modified gold electrode as probed by in situ ATR-SEIRAS. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Impedance of cation-coupled electron transfer reaction: Theoretical description of one pathway process. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Abstract
The study of natural enzymes is complicated by the fact that only the most recent evolutionary progression can be observed. In particular, natural oxidoreductases stand out as profoundly complex proteins in which the molecular roots of function, structure and biological integration are collectively intertwined and individually obscured. In the present paper, we describe our experimental approach that removes many of these often bewildering complexities to identify in simple terms the necessary and sufficient requirements for oxidoreductase function. Ours is a synthetic biology approach that focuses on from-scratch construction of protein maquettes designed principally to promote or suppress biologically relevant oxidations and reductions. The approach avoids mimicry and divorces the commonly made and almost certainly false ascription of atomistically detailed functionally unique roles to a particular protein primary sequence, to gain a new freedom to explore protein-based enzyme function. Maquette design and construction methods make use of iterative steps, retraceable when necessary, to successfully develop a protein family of sturdy and versatile single-chain three- and four-α-helical structural platforms readily expressible in bacteria. Internally, they prove malleable enough to incorporate in prescribed positions most natural redox cofactors and many more simplified synthetic analogues. External polarity, charge-patterning and chemical linkers direct maquettes to functional assembly in membranes, on nanostructured titania, and to organize on selected planar surfaces and materials. These protein maquettes engage in light harvesting and energy transfer, in photochemical charge separation and electron transfer, in stable dioxygen binding and in simple oxidative chemistry that is the basis of multi-electron oxidative and reductive catalysis.
Collapse
|
15
|
Valentini F, Cristofanelli L, Carbone M, Palleschi G. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2− detection. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.12.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mashazi P, Togo C, Limson J, Nyokong T. Applications of polymerized metal tetra-amino phthalocyanines towards hydrogen peroxide detection. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610001994] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work reports the use of metallo tetra-amino phthalocyanines ( MTAPc, M = Co and Mn ) polymer thin films on gold and glassy carbon electrode surfaces for the detection and monitoring of hydrogen peroxide ( H2O2 ). The polymer-modified electrodes were characterized using electrochemical and microscopic-based methods. Atomic force microscopy (AFM) was used to study the bare and polymer-modified ITO surfaces. The electrocatalytic reduction of H2O2 with glassy carbon polymer-modified electrodes gave higher current densities compared to their gold counterparts. The electroanalytical properties of H2O2 were obtained using a real-time calibration curve of the amperometric determination in pH 7.4 aqueous solution. The limits of detection (LoD) of the polymer-modified electrodes towards electroreduction of H2O2 were of the order of 10–7 M, with high sensitivity ranging from 6.0–15.4 mA.mM-1.cm-2.
Collapse
Affiliation(s)
- Philani Mashazi
- Project AuTEK, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa
- Chemistry Department, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Chamunorwa Togo
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Janice Limson
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Chemistry Department, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
17
|
Ozoemena K, Westbroek P, Nyokong T. Cyclic voltammetric studies of octabutylthiophthalo-cyaninato-cobalt(II) and its self-assembled monolayer (SAM) on gold electrode. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424602000130] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis of thiol-derivatized cobalt phthalocyanine complex, 2,3,9,10,16,17,23,24-octa (butylthiophthalocyaninatocobalt(II) ( CoOBTPc ) is described. Cyclic voltammetric data of this complex in DMF showed five quasi-reversible and reversible, diffusion-controlled redox couples, comprising both the phthalocyanine ring and central metal redox processes. The CoOBTPc complex forms a self-assembled monolayer (SAM) on gold electrode. The investigation of the integrity of this SAM, using the established cyclic voltammetric methods in aqueous alkaline solutions, gave evidence about the formation of a stable and easily reproducible monolayer. However, due to its susceptibility to destruction via oxidative and reductive desorptions, its potential application as an electrochemical sensor in alkaline pH is limited to a potential window of between −0.20 and +0.55 V vs Ag / AgCl .
Collapse
Affiliation(s)
- Kenneth Ozoemena
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Philippe Westbroek
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
18
|
Ma Q, Liu T, Tang T, Yin H, Ai S. Drinking water disinfection by hemin-modified graphite felt and electrogenerated reactive oxygen species. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.06.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Rivas MV, De Leo LPM, Hamer M, Carballo R, Williams FJ. Self-assembled monolayers of disulfide Cu porphyrins on Au surfaces: adsorption induced reduction and demetalation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10714-10721. [PMID: 21800840 DOI: 10.1021/la2020836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Metalloporphyrin molecules have a wide range of potential applications in diverse technological areas ranging from electronics to optoelectronics, electrochemistry, photophysics, chemical sensors, and catalysis. In particular, self-assembled monolayers of porphyrin molecules have recently attracted considerable interest. In this work we have studied for the first time the self-assembly of a novel Cu deutero porphyrin functionalized with disulfide moieties using electrochemical techniques, UV-vis absorption spectroscopy, polarization modulation infrared reflection absorption spectroscopy, and photoelectron spectroscopies (XPS and UPS). Experimental results indicate that the molecule adsorbs retaining its molecular integrity without forming molecular aggregates via the formation of Au-S covalent bonds. Furthermore, the monolayer consists of a packed array of molecules adsorbed with the plane of the porphyrin molecule at an angle of around 30° with respect to the surface normal. Interestingly, adsorption induces reduction of the Cu center and its consequent removal from the center of the porphyrin ring resulting in porphyrin demetalation. Our results are important in the design of self-assembled monolayers of metallo porphyrins where not only blocking of the metal center by the functional groups that drive the self-assembly should be considered but also possible adsorption induced demetalation with the consequent loss in the properties imparted by the metal center.
Collapse
Affiliation(s)
- M Verónica Rivas
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
20
|
Kathan-Galipeau K, Nanayakkara S, O'Brian PA, Nikiforov M, Discher BM, Bonnell DA. Direct probe of molecular polarization in de novo protein-electrode interfaces. ACS NANO 2011; 5:4835-4842. [PMID: 21612231 DOI: 10.1021/nn200887n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel approach to energy harvesting and biosensing devices would exploit optoelectronic processes found in proteins that occur in nature. However, in order to design such systems, the proteins need to be attached to electrodes and the optoelectronic properties in nonliquid (ambient) environments must be understood at a fundamental level. Here we report the simultaneous detection of electron transport and the effect of optical absorption on dielectric polarizability in oriented peptide single molecular layers. This characterization requires a peptide design strategy to control protein/electrode interface interactions, to allow peptide patterning on a substrate, and to induce optical activity. In addition, a new method to probe electronic, dielectric, and optical properties at the single molecular layer level is demonstrated. The combination enables a quantitative comparison of the change in polarization volume between the ground state and excited state in a single molecular layer in a manner that allows spatial mapping relevant to ultimate device design.
Collapse
Affiliation(s)
- Kendra Kathan-Galipeau
- Department of Materials Science and Biophysics, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
21
|
Yue XL, Ma F, Dai ZF, Liu M, Xing L, Fan HY, Xing ZW, Liu SQ. New insight into surface properties of LB film of an amphiphilic terpolymer. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Towards the conception of an amperometric sensor of l-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Croizat P, Müller F, Mantz H, Englisch A, Welter R, Hüfner S, Braunstein P. Synthesis of functional heterometallic complexes and clusters containing molybdenum and palladium or platinum, their self-assembly on gold surfaces and X-ray photoelectron spectroscopic studies. CR CHIM 2009. [DOI: 10.1016/j.crci.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Affiliation(s)
- Victor Rosca
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
25
|
|
26
|
Khene S, Geraldo DA, Togo CA, Limson J, Nyokong T. Synthesis, electrochemical characterization of tetra- and octa-substituted dodecyl-mercapto tin phthalocyanines in solution and as self-assembled monolayers. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Nombona N, Geraldo DA, Hakuzimana J, Schwarz A, Westbroek P, Nyokong T. Comparative electrocatalytic behavior of self-assembled monolayer of thiol derivatised Co (II) phthalocyanines on gold disk, ultramicro cylinder and fiber electrodes. J APPL ELECTROCHEM 2008. [DOI: 10.1007/s10800-008-9716-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Jiao J, Schmidt I, Taniguchi M, Lindsey JS, Bocian DF. Comparison of electron-transfer rates for metal- versus ring-centered redox processes of porphyrins in monolayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12047-12053. [PMID: 18823081 DOI: 10.1021/la8019843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The standard electron-transfer rate constants ( k ( 0 )) are measured for redox processes of Fe versus Zn porphyrins in monolayers on Au(111); the former undergoes a metal-centered redox process (conversion between Fe (III) and Fe (II) oxidation states) whereas the latter undergoes a ring-centered redox process (conversion between the neutral porphyrin and the pi-cation radical). Each porphyrin contains three meso-mesityl groups and a benzyl thiol for surface attachment. Under identical solvent (propylene carbonate)/electrolyte (1.0 M Bu 4NCl) conditions, the Zn (II) center has a coordinated Cl (-) ion when the porphyrin is in either the neutral or oxidized state. In the case of the Fe porphyrin, two species are observed a low-potential form ( E l (0) approximately -0.6 V) wherein the metal center has a coordinated Cl (-) ion when it is in either the Fe (II) or Fe (III) state and a high-potential form ( E h (0) approximately +0.2 V) wherein the metal center undergoes ligand exchange upon conversion from the Fe (III) to Fe (II) states. The k ( 0 ) values observed for all of the porphyrins depend on surface concentration, with higher concentrations resulting in slower rates, consistent with previous studies on porphyrin monolayers. The k ( 0 ) values for the ring-centered redox process (Zn chelate) are 10-40 times larger than those for the metal-centered process (Fe chelate); the k ( 0 ) values for the two forms of the Fe porphyrin differ by a factor of 2-4 (depending on surface concentration), the Cl (-) exchanging form generally exhibiting a faster rate. The faster rates for the ring- versus metal-centered redox process are attributed to the participating molecular orbitals and their proximity to the surface (given that the porphyrins are relatively upright on the surface): a pi molecular orbital that has significant electron density at the meso-carbon atoms (one of which is the site of attachment of the linker to the surface anchoring thiol) versus a d-orbital that is relatively well localized on the metal center.
Collapse
Affiliation(s)
- Jieying Jiao
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
We present a new design of peptide-polymer conjugates where a polymer chain is covalently linked to the side chain of a helix bundle-forming peptide. The effect of conjugated polymer chains on the peptide structure was examined using a de novo designed three-helix bundle and a photoactive four-helix bundle. Upon attachment of poly(ethylene glycol) to the exterior of the coiled-coil helix bundle, the peptide secondary structure was stabilized and the tertiary structure, that is, the coiled-coil helix bundle, was retained. When a heme-binding peptide as an example is used, the new peptide-polymer conjugate architecture also preserves the built-in functionalities within the interior of the helix bundle. It is expected that the conjugated polymer chains act to mediate the interactions between the helix bundle and its external environment. Thus, this new peptide-polymer conjugate design strategy may open new avenues to macroscopically assemble the helix bundles and may enable them to function in nonbiological environments.
Collapse
Affiliation(s)
- Jessica Y. Shu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| | - Cen Tan
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
30
|
Léger C, Bertrand P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem Rev 2008; 108:2379-438. [DOI: 10.1021/cr0680742] [Citation(s) in RCA: 594] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Carballo R, Campodall’ Orto V, Hurst J, Spiaggi A, Bonazzola C, Rezzano I. Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
de Groot MT, Koper MTM. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution. Phys Chem Chem Phys 2008; 10:1023-31. [DOI: 10.1039/b714727a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.08.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Rai N, Siepmann JI. Transferable Potentials for Phase Equilibria. 9. Explicit Hydrogen Description of Benzene and Five-Membered and Six-Membered Heterocyclic Aromatic Compounds. J Phys Chem B 2007; 111:10790-9. [PMID: 17713943 DOI: 10.1021/jp073586l] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The explicit hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to benzene, pyridine, pyrimidine, pyrazine, pyridazine, thiophene, furan, pyrrole, thiazole, oxazole, isoxazole, imidazole, and pyrazole. While the Lennard-Jones parameters for carbon, hydrogen (two types), nitrogen (two types), oxygen, and sulfur are transferable for all 13 compounds, the partial charges are specific for each compound. The benzene dimer energies for sandwich, T-shape, and parallel-displaced configurations obtained for the TraPPE-EH force field compare favorably with high-level electronic structure calculations. Gibbs ensemble Monte Carlo simulations were carried out to compute the single-component vapor-liquid equilibria for benzene, pyridine, three diazenes, and eight five-membered heterocycles. The agreement with experimental data is excellent with the liquid densities and vapor pressures reproduced within 1 and 5%, respectively. The critical temperatures and normal boiling points are predicted with mean deviations of 0.8 and 1.6%, respectively.
Collapse
Affiliation(s)
- Neeraj Rai
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
35
|
Reddy AS, Vijay D, Sastry GM, Sastry GN. From subtle to substantial: role of metal ions on pi-pi interactions. J Phys Chem B 2007; 110:2479-81. [PMID: 16471844 DOI: 10.1021/jp060018h] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum chemistry calculations reveal that the subtle pi-pi interactions, usually in the range 2-4 kcal/mol, will become substantially significant, from 6 to 17 kcal/mol, in the presence of metal ion. The metal ions have higher affinity toward a pi-pi dimer compared to a single pi-moiety. Considering the widespread occurrence of cation-pi-pi motifs in chemistry and biology, as evident from the database analysis, we propose that the two key noncovalent forces, which govern the macromolecular structure, cation-pi and pi-pi, work in concert.
Collapse
|
36
|
Characterization of self-assembled monolayers of iron and cobalt octaalkylthiosubstituted phthalocyanines and their use in nitrite electrocatalytic oxidation. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
de Groot MT, Merkx M, Koper MT. Bioinspired electrocatalytic reduction of nitric oxide by immobilized heme groups. CR CHIM 2007. [DOI: 10.1016/j.crci.2006.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
de Groot MT, Evers TH, Merkx M, Koper MTM. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:729-36. [PMID: 17209627 DOI: 10.1021/la062308v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have successfully immobilized Allochromatium vinosum cytochrome c' on carboxylic acid-terminated thiol monolayers on gold and have investigated its electron-transfer and ligand binding properties. Immobilization could only be achieved for pH's ranging from 3.5 to 5.5, reflecting the fact that the protein is only sufficiently positively charged below pH 5.5 (pI = 4.9). Upon immobilization, the protein retains a near-native conformation, as is suggested by the observed potential of 85 mV vs SHE for the heme FeIII/FeII transition, which is close to the value of 60 mV reported in solution. The electron-transfer rate to the immobilized protein depends on the length of the thiol spacer, displaying distance-dependent electron tunneling for long thiols and distance-independent protein reorganization for short thiols. The unique CO-induced dimer-to-monomer transition observed for cytochrome c' in solution also seems to occur for immobilized cytochrome c'. Upon saturation with CO, a new anodic peak corresponding to the oxidation of an FeII-CO adduct is observed. CO binding is accompanied by a significant decrease in protein coverage, which could be due to weaker electrostatic interactions between the self-assembled monolayer and cytochrome c' in its monomeric form as compared to those in its dimeric form. The observed CO binding rate of 24 M-1 s-1 is slightly slower than the binding rate in solution (48 M-1 s-1), which could be due to electrostatic protein-electrode interactions or could be the result of protein crowding on the surface. This study shows that the use of carboxyl acid-terminated thiol monolayers as a protein friendly method to immobilize redox proteins on gold electrodes is not restricted to cytochrome c, but can also be used for other proteins such as cytochrome c'.
Collapse
Affiliation(s)
- Matheus T de Groot
- Laboratory of Inorganic Chemistry and Catalysis, Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Immobilization of tetra-amine substituted metallophthalocyanines at gold surfaces modified with mercaptopropionic acid or DTSP-SAMs. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2006.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Pavlov VY. Modern aspects of the Chemistry of protoporphyrin IX. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2007. [DOI: 10.1134/s1070428007010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Mashazi PN, Ozoemena KI, Nyokong T. Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.04.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Turdean GL, Popescu IC, Curulli A, Palleschi G. Iron(III) protoporphyrin IX—single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.04.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Sinnokrot MO, Sherrill CD. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J Phys Chem A 2006; 110:10656-68. [PMID: 16970354 DOI: 10.1021/jp0610416] [Citation(s) in RCA: 595] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although supramolecular chemistry and noncovalent interactions are playing an increasingly important role in modern chemical research, a detailed understanding of prototype noncovalent interactions remains lacking. In particular, pi-pi interactions, which are ubiquitous in biological systems, are not fully understood in terms of their strength, geometrical dependence, substituent effects, or fundamental physical nature. However, state-of-the-art quantum chemical methods are beginning to provide answers to these questions. Coupled-cluster theory through perturbative triple excitations in conjunction with large basis sets and extrapolations to the complete basis set limit have provided definitive results for the binding energy of several configurations of the benzene dimer, and benchmark-quality ab initio potential curves are being used to calibrate new density functional and force-field models for pi-pi interactions. Studies of substituted benzene dimers indicate flaws in the conventional wisdom about substituent effects in pi-pi interactions. Three-body and four-body interactions in benzene clusters have also been examined.
Collapse
Affiliation(s)
- Mutasem Omar Sinnokrot
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | |
Collapse
|
44
|
Sehlotho N, Nyokong T. Electrocatalytic oxidation of thiocyanate, l-cysteine and 2-mercaptoethanol by self-assembled monolayer of cobalt tetraethoxy thiophene phthalocyanine. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2005.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Das A, Trammell SA, Hecht MH. Electrochemical and ligand binding studies of a de novo heme protein. Biophys Chem 2006; 123:102-12. [PMID: 16730114 DOI: 10.1016/j.bpc.2006.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/20/2006] [Indexed: 11/25/2022]
Abstract
Heme proteins can perform a variety of electrochemical functions. While natural heme proteins carry out particular functions selected by biological evolution, artificial heme proteins, in principle, can be tailored to suit specified technological applications. Here we describe initial characterization of the electrochemical properties of a de novo heme protein, S824C. Protein S824C is a four-helix bundle derived from a library of sequences that was designed by binary patterning of polar and nonpolar amino acids. Protein S824C was immobilized on a gold electrode and the formal potential of heme-protein complex was studied as a function of pH and ionic strength. The binding of exogenous N-donor ligands to heme/S824C was monitored by measuring shifts in the potential that occurred upon addition of various concentrations of imidazole or pyridine derivatives. The response of heme/S824C to these ligands was then compared to the response of isolated heme (without protein) to the same ligands. The observed shifts in potential depended on both the concentration and the structure of the added ligand. Small changes in structure of the ligand (e.g. pyridine versus 2-amino pyridine) produced significant shifts in the potential of the heme-protein. The observed shifts correlate to the differential binding of the N-donor molecules to the oxidized and reduced states of the heme. Further, it was observed that the electrochemical response of the buried heme in heme/S824C differed significantly from that of isolated heme. These studies demonstrate that the structure of the de novo protein modulates the binding of N-donor ligands to heme.
Collapse
Affiliation(s)
- Aditi Das
- Department of Chemistry, Princeton University, Princeton, NJ 08544-1009, USA
| | | | | |
Collapse
|
46
|
Self-assembled monolayers (SAMs) of cobalt tetracarboxylic acidchloride phthalocyanine covalently attached onto a preformed mercaptoethanol SAM: A novel method. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2005.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
de Groot MT, Merkx M, Wonders AH, Koper MTM. Electrochemical Reduction of NO by Hemin Adsorbed at Pyrolitic Graphite. J Am Chem Soc 2005; 127:7579-86. [PMID: 15898809 DOI: 10.1021/ja051151a] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of the electrochemical reduction of nitric oxide (NO) by hemin adsorbed at pyrolitic graphite was investigated. The selectivity of NO reduction was probed by combining the rotating ring disk electrode (RRDE) technique with a newly developed technique called on-line electrochemical mass spectroscopy (OLEMS). These techniques show that NO reduction by adsorbed heme groups results in production of hydroxylamine (NH(2)OH) with almost 100% selectivity at low potentials. Small amounts of nitrous oxide (N(2)O) were only observed at higher potentials. The rate-determining step in NO reduction most likely consists of an electrochemical equilibrium involving a proton transfer, as can be derived from the Tafel slope value of 62 mV/dec and the pH dependence of -42 mV/pH. The almost 100% selectivity toward NH(2)OH distinguishes this system both from NO reduction on bare metal electrodes, which often yields NH(3), and from biological NO reduction in cytochrome P450nor, which yields N(2)O exclusively.
Collapse
Affiliation(s)
- Matheus T de Groot
- Laboratory of Inorganic Chemistry and Catalysis, Schuit Institute of Catalysis, Netherlands
| | | | | | | |
Collapse
|
48
|
Li X, Xu W, Itoh T, Ikehata A, Zhao B, Li B, Ozaki Y. Effects of a central metal on the organization of 5,10,15,20-tetra-(p-chlorophenyl)–rare earth porphyrin hydroxyl compound at the air/water interface and in Langmuir–Blodgett films. J Colloid Interface Sci 2005; 284:582-92. [PMID: 15780297 DOI: 10.1016/j.jcis.2004.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 10/20/2004] [Indexed: 11/16/2022]
Abstract
Langmuir monolayers and Langmuir-Blodgett (LB) films of 5,10,15,20-tetra-(p-chlorophenyl) terbium/gadolinium porphyrin hydroxyl compound (TbOH and GdOH) and their mixtures with stearic acid (SA) in a molar ratio of 1:1 were investigated by Brewster angle microscopy (BAM), ultraviolet-visible (UV-vis), and infrared (IR) spectroscopy and atomic force microscopy (AFM). pi-A isotherms showed that well-defined Langmuir monolayers were formed at an air/water interface for the porphyrins and their mixture with SA. The BAM observations suggest that the pi-pi interaction between the GdOH molecules is stronger than that between the TbOH molecules. This result can be further confirmed by the AFM measurements. After the introduction of SA, the pi-pi interaction between the TbOH molecules is broken and thus two phases formed in the mixed LB film. However, it cannot break the stronger pi-pi interaction between the GdOH molecules. Therefore, no phase separation is observed in the GdOH/SA LB film. IR reflection-absorption (RA) spectra showed that the COOH groups of SA are partly converted to COO(-) groups, suggesting that there is an interaction between MOH and SA in the films. This interaction leads the benzene rings of TbOH to rotate toward parallel to the substrate and those of GdOH to rotate toward perpendicular to the substrate. All these results have demonstrated that the central metal ions have great effects on the organization and formation of the films.
Collapse
Affiliation(s)
- Xiaoling Li
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Hirano C, Imae T. Electrochemical properties of protoporphyrin IX zinc(II) films. J Colloid Interface Sci 2004; 280:478-83. [PMID: 15533420 DOI: 10.1016/j.jcis.2004.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
The electrochemical properties of protoporphyrin IX zinc(II) (ZnPP) films on indium-tin oxide (ITO) substrate have been studied for three types of films with different arrangements, which were an adsorbed film of ZnPP and LB films of ZnPP and its hybrid with hexadecyltrimethylammonium bromide. Cyclic voltammetry (CV) measurement showed that, as the adsorbed amount of ZnPP increases, an irreversible oxidation peak of ZnPP film is intensified. This reveals that electrochemical properties depend on the adsorbed amount rather than the orientation of porphyrin molecules. It was also supported from CV measurement and ultraviolet-visible absorption spectroscopy that porphyrins adsorbed on ITO substrate were desorbed after the single scan of potential. Additionally, photoresponse of these ZnPP films was investigated by photocurrent measurement. The photocurrent generation is due to carboxylic acid moieties but not ZnPP macrocycles.
Collapse
Affiliation(s)
- Chisato Hirano
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | |
Collapse
|
50
|
Imahori H, Mori Y, Matano Y. Nanostructured artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2003. [DOI: 10.1016/s1389-5567(03)00004-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|