1
|
Skłodowski K, Suprewicz Ł, Chmielewska-Deptuła SJ, Kaliniak S, Okła S, Zakrzewska M, Minarowski Ł, Mróz R, Daniluk T, Savage PB, Fiedoruk K, Bucki R. Ceragenins exhibit bactericidal properties that are independent of the ionic strength in the environment mimicking cystic fibrosis sputum. Front Microbiol 2023; 14:1290952. [PMID: 38045035 PMCID: PMC10693459 DOI: 10.3389/fmicb.2023.1290952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
The purpose of the work was to investigate the impact of sodium chloride (NaCl) on the antimicrobial efficacy of ceragenins (CSAs) and antimicrobial peptides (AMPs) against bacterial and fungal pathogens associated with cystic fibrosis (CF) lung infections. CF-associated bacterial (Pseudomonas aeruginosa, Ochrobactrum spp., and Staphylococcus aureus), and fungal pathogens (Candida albicans, and Candida tropicalis) were used as target organisms for ceragenins (CSA-13 and CSA-131) and AMPs (LL-37 and omiganan). Susceptibility to the tested compounds was assessed using minimal inhibitory concentrations (MICs) and bactericidal concentrations (MBCs), as well as by colony counting assays in CF sputum samples supplemented with various concentrations of NaCl. Our results demonstrated that ceragenins exhibit potent antimicrobial activity in CF sputum regardless of the NaCl concentration when compared to LL-37 and omiganan. Given the broad-spectrum antimicrobial activity of ceragenins in the microenvironments mimicking the airways of CF patients, ceragenins might be promising agents in managing CF disease.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | | | | | - Sławomir Okła
- Holy Cross Cancer Center, Kielce, Poland
- Institute of Health Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Minarowski
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Robert Mróz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
2
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
3
|
Adhikari BR, Dummer J, Gordon KC, Das SC. An expert opinion on respiratory delivery of high dose powders for lung infections. Expert Opin Drug Deliv 2022; 19:795-813. [PMID: 35695722 DOI: 10.1080/17425247.2022.2089111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION High dose powder inhalation is evolving as an important approach to to treat lung infections. It is important to its identify applications, consider the factors affecting high dose powder delivery, and assess the effect of high dose drugs in patients. AREA COVERED Both current and pipeline high dose inhalers and their applications have been summarized. Challenges and opportunities to high dose delivery have been highlighted after reviewing formulation techniques in the context of factors affecting aerosolization, devices, and patient factors. EXPERT OPINION High dose inhaled delivery of antimicrobials is an innovative way to increase treatment efficacy of respiratory infections, tackle drug resistance, and the scarcity of new antimicrobials. The high dose inhaled technology also has potential for systemic action; however, innovations in formulation strategies and devices are required to realize its full potential. Advances in formulation strategies include the use of excipients or the engineering of particles to decrease the cohesive property of microparticles and their packing density. Similarly, selection of a synergistic drug instead of an excipient can be considered to increase aerosolization and stability. Device development focused on improving dispersion and loading capacity is also important, and modification of existing devices for high dose delivery can also be considered.
Collapse
Affiliation(s)
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Mohammed M. Ways T, Filippov SK, Maji S, Glassner M, Cegłowski M, Hoogenboom R, King S, Man Lau W, Khutoryanskiy VV. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies. J Colloid Interface Sci 2022; 626:251-264. [DOI: 10.1016/j.jcis.2022.06.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
|
5
|
Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Adv Drug Deliv Rev 2022; 183:114141. [PMID: 35149123 DOI: 10.1016/j.addr.2022.114141] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 01/15/2023]
Abstract
Mucus covers all wet epithelia and acts as a protective barrier. In the airways of the lungs, the viscoelastic mucus meshwork entraps and clears inhaled materials and efficiently removes them by mucociliary escalation. In addition to physical and chemical interaction mechanisms, the role of macromolecular glycoproteins (mucins) and antimicrobial constituents in innate immune defense are receiving increasing attention. Collectively, mucus displays a major barrier for inhaled aerosols, also including therapeutics. This review discusses the origin and composition of tracheobronchial mucus in relation to its (barrier) function, as well as some pathophysiological changes in the context of pulmonary diseases. Mucus models that contemplate key features such as elastic-dominant rheology, composition, filtering mechanisms and microbial interactions are critically reviewed in the context of health and disease considering different collection methods of native human pulmonary mucus. Finally, the prerequisites towards a standardization of mucus models in a regulatory context and their role in drug delivery research are addressed.
Collapse
|
6
|
Effect of chest physiotherapy on cystic fibrosis sputum nanostructure: an experimental and theoretical approach. Drug Deliv Transl Res 2022; 12:1943-1958. [PMID: 35286625 PMCID: PMC9242959 DOI: 10.1007/s13346-022-01131-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
Cystic fibrosis (CF) is a disease characterized by the production of viscous mucoid secretions in multiple organs, particularly the airways. The pathological increase of proteins, mucin and biological polymers determines their arrangement into a three-dimensional polymeric network, affecting the whole mucus and impairing the muco-ciliary clearance which promotes inflammation and bacterial infection. Thus, to improve the efficacy of the drugs usually applied in CF therapy (e.g., mucolytics, anti-inflammatory and antibiotics), an in-depth understanding of the mucus nanostructure is of utmost importance. Drug diffusivity inside a gel-like system depends on the ratio between the diffusing drug molecule radius and the mesh size of the network. Based on our previous findings, we propose the combined use of rheology and low field NMR to study the mesh size distribution of the sputum from CF patients. Specifically, we herein explore the effects of chest physiotherapy on CF sputum characteristic as evaluated by rheology, low field NMR and the drug penetration through the mucus via mathematical simulation. These data show that chest physiotherapy has beneficial effects on patients, as it favourably modifies sputum and enhances drug penetration through the respiratory mucus.
Collapse
|
7
|
Abrami M, Maschio M, Conese M, Confalonieri M, Gerin F, Dapas B, Farra R, Adrover A, Torelli L, Ruaro B, Grassi G, Grassi M. Combined use of rheology and portable low-field NMR in cystic fibrosis patients. Respir Med 2021; 189:106623. [PMID: 34624628 DOI: 10.1016/j.rmed.2021.106623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND As most cystic fibrosis (CF) patients progress to respiratory failure, lung functionality assessment is pivotal. We previously developed a test that indirectly monitors airways (inflammation/functional test) by measuring the spin-spin relaxation time (T2m) of the water hydrogens present in CF sputum. Here the T2m significance in the monitoring of CF lung disease was further investigated by studying the correlation of T2m with: 1) sputum viscoelasticity, 2) mucociliary clearability index (MCI)/cough clearability index (CCI) and 3) sputum average mesh-size. METHODS Sputum samples from 25 consenting CF subjects were analyzed by rheology tests (elastic modulus G and zero shear viscosity η0) and Low Field Nuclear Magnetic (LF-NMR) resonance (T2m). MCI/CCI were calculated from the rheological parameters. The average mesh-size (ξ) of the sputum structure was then evaluated by rheology/LF-NMR, together with FEV1 for each patient. RESULTS There was an inverse correlation between G and η0 versus T2m, indicating that a worsening of the lung condition (T2m-FEV1 drop) is paralleled by an increase in sputum viscoelasticity (G and η0) favoring mucus stasis/inflammation. A direct correlation was also observed between T2m and MCI/CCI, showing that T2m provides information as to airway mucus clearing. Moreover, there was a direct correlation between T2m and the average sputum mesh size (ξ). CONCLUSIONS We demonstrated a correlation between T2m (measured in CF patient's sputum) and the sputum viscoelasticity/average mesh-size and with MCI/CCI, parameters related to airway mucus clearing. Thus, the present data strengthen the potential of our test to provide indirect monitoring of airway disease course in CF patients as T2m depends on mucus solid concentration and nanostructure.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127, Trieste, Italy
| | - Massimo Maschio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via Dell'Istria, 65, I-34137, Trieste, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, Foggia University, Ospedali Riuniti, Via L. Pinto, 1, I-71122, Foggia, Italy
| | - Marco Confalonieri
- Cattinara University Hospital, Pulmonology Department, Strada di Fiume 447, I-34149, Trieste, Italy
| | - Fabio Gerin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149, Trieste, Italy
| | - Rossella Farra
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149, Trieste, Italy
| | - Alessandra Adrover
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Roma, Via Eudossiana 18, I-00184, Rome, Italy
| | - Lucio Torelli
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149, Trieste, Italy
| | - Barbara Ruaro
- Cattinara University Hospital, Pulmonology Department, Strada di Fiume 447, I-34149, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149, Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127, Trieste, Italy
| |
Collapse
|
8
|
Rahman Sabuj MZ, Islam N. Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections. NANOSCALE ADVANCES 2021; 3:4005-4018. [PMID: 36132845 PMCID: PMC9419283 DOI: 10.1039/d1na00205h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Lower respiratory tract infections (LRTIs) are one of the leading causes of deaths in the world. Currently available treatment for this disease is with high doses of antibiotics which need to be administered frequently. Instead, pulmonary delivery of drugs has been considered as one of the most efficient routes of drug delivery to the targeted areas as it provides rapid onset of action, direct deposition of drugs into the lungs, and better therapeutic effects at low doses and is self-administrable by the patients. Thus, there is a need for scientists to design more convenient pulmonary drug delivery systems towards the innovation of a novel treatment system for LRTIs. Drug-encapsulating polymer nanoparticles have been investigated for lung delivery which could significantly reduce the limitations of the currently available treatment system for LRTIs. However, the selection of an appropriate polymer carrier for the drugs is a critical issue for the successful formulations of inhalable nanoparticles. In this review, the current understanding of LRTIs, management systems for this disease and their limitations, pulmonary drug delivery systems and the challenges of drug delivery through the pulmonary route are discussed. Drug-encapsulating polymer nanoparticles for lung delivery, antibiotics used in pulmonary delivery and drug encapsulation techniques have also been reviewed. A strong emphasis is placed on the impact of drug delivery into the infected lungs.
Collapse
Affiliation(s)
- Mohammad Zaidur Rahman Sabuj
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT) Brisbane QLD Australia
| |
Collapse
|
9
|
Pedersoli L, Zhang S, Briatico-Vangosa F, Petrini P, Cardinaels R, den Toonder J, Peneda Pacheco D. Engineered modular microphysiological models of the human airway clearance phenomena. Biotechnol Bioeng 2021; 118:3898-3913. [PMID: 34143430 DOI: 10.1002/bit.27866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022]
Abstract
Mucociliary clearance is a crucial mechanism that supports the elimination of inhaled particles, bacteria, pollution, and hazardous agents from the human airways, and it also limits the diffusion of aerosolized drugs into the airway epithelium. In spite of its relevance, few in vitro models sufficiently address the cumulative effect of the steric and interactive barrier function of mucus on the one hand, and the dynamic mucus transport imposed by ciliary mucus propulsion on the other hand. Here, ad hoc mucus models of physiological and pathological mucus are combined with magnetic artificial cilia to model mucociliary transport in both physiological and pathological states. The modular concept adopted in this study enables the development of mucociliary clearance models with high versatility since these can be easily modified to reproduce phenomena characteristic of healthy and diseased human airways while allowing to determine the effect of each parameter and/or structure separately on the overall mucociliary transport. These modular airway models can be available off-the-shelf because they are exclusively made of readily available materials, thus ensuring reproducibility across different laboratories.
Collapse
Affiliation(s)
- Lucia Pedersoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Shuaizhong Zhang
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Ruth Cardinaels
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven, Heverlee, Belgium
| | - Jaap den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Daniela Peneda Pacheco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res 2021; 11:1752-1765. [PMID: 34047967 PMCID: PMC8236054 DOI: 10.1007/s13346-021-01002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/22/2023]
Abstract
The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.
Collapse
|
11
|
Frisch S, Boese A, Huck B, Horstmann JC, Ho DK, Schwarzkopf K, Murgia X, Loretz B, de Souza Carvalho-Wodarz C, Lehr CM. A pulmonary mucus surrogate for investigating antibiotic permeation and activity against Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 2021; 76:1472-1479. [PMID: 33712824 DOI: 10.1093/jac/dkab068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pulmonary infections associated with Pseudomonas aeruginosa can be life-threatening for patients suffering from chronic lung diseases such as cystic fibrosis. In this scenario, the formation of biofilms embedded in a mucus layer can limit the permeation and the activity of anti-infectives. OBJECTIVES Native human pulmonary mucus can be isolated from endotracheal tubes, but this source is limited for large-scale testing. This study, therefore, aimed to evaluate a modified artificial sputum medium (ASMmod) with mucus-like viscoelastic properties as a surrogate for testing anti-infectives against P. aeruginosa biofilms. METHODS Bacterial growth in conventional broth cultures was compared with that in ASMmod, and PAO1-GFP biofilms were imaged by confocal microscopy. Transport kinetics of three antibiotics, tobramycin, colistin, and ciprofloxacin, through native mucus and ASMmod were studied, and their activity against PAO1 biofilms grown in different media was assessed by determination of metabolic activity and cfu. RESULTS PAO1(-GFP) cultured in human pulmonary mucus or ASMmod showed similarities in bacterial growth and biofilm morphology. A limited permeation of antibiotics through ASMmod was observed, indicating its strong barrier properties, which are comparable to those of native human mucus. Reduced susceptibility of PAO1 biofilms was observed in ASMmod compared with LB medium for tobramycin and colistin, but less for ciprofloxacin. CONCLUSIONS These findings underline the importance of mucus as a biological barrier to antibiotics. ASMmod appears to be a valuable surrogate for studying mucus permeation of anti-infectives and their efficacy against PAO1 biofilms.
Collapse
Affiliation(s)
- Sarah Frisch
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Annette Boese
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Benedikt Huck
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Justus C Horstmann
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Duy-Khiet Ho
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive Care, Klinikum Saarbrücken, Germany
| | - Xabier Murgia
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
12
|
Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev 2021; 40:575-588. [PMID: 33813658 DOI: 10.1007/s10555-021-09959-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Collapse
|
13
|
Akkerman-Nijland AM, Akkerman OW, Grasmeijer F, Hagedoorn P, Frijlink HW, Rottier BL, Koppelman GH, Touw DJ. The pharmacokinetics of antibiotics in cystic fibrosis. Expert Opin Drug Metab Toxicol 2020; 17:53-68. [PMID: 33213220 DOI: 10.1080/17425255.2021.1836157] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Dosing of antibiotics in people with cystic fibrosis (CF) is challenging, due to altered pharmacokinetics, difficulty of lung tissue penetration, and increasing presence of antimicrobial resistance. AREAS COVERED The purpose of this work is to critically review original data as well as previous reviews and guidelines on pharmacokinetics of systemic and inhaled antibiotics in CF, with the aim to propose strategies for optimization of antibacterial therapy in both children and adults with CF. EXPERT OPINION For systemic antibiotics, absorption is comparable in CF patients and non-CF controls. The volume of distribution (Vd) of most antibiotics is similar between people with CF with normal body composition and healthy individuals. However, there are a few exceptions, like cefotiam and tobramycin. Many antibiotic class-dependent changes in drug metabolism and excretion are reported, with an increased total body clearance for ß-lactam antibiotics, aminoglycosides, fluoroquinolones, and trimethoprim. We, therefore, recommend following class-specific guidelines for CF, mostly resulting in higher dosages per kg bodyweight in CF compared to non-CF controls. Higher local antibiotic concentrations in the airways can be obtained by inhalation therapy, with which eradication of bacteria may be achieved while minimizing systemic exposure and risk of toxicity.
Collapse
Affiliation(s)
- Anne M Akkerman-Nijland
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Onno W Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmacy, PureIMS B.V , Roden, The Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen, The Netherlands
| | - Bart L Rottier
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Daniel J Touw
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen , Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
14
|
Mello TP, Lackner M, Branquinha MH, Santos ALS. Impact of biofilm formation and azoles' susceptibility in Scedosporium/Lomentospora species using an in vitro model that mimics the cystic fibrosis patients' airway environment. J Cyst Fibros 2020; 20:303-309. [PMID: 33334714 DOI: 10.1016/j.jcf.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Scedosporium species are the second most isolated filamentous fungi from cystic fibrosis (CF) patients; however, little is known about their virulence aspects in a CF environment. In this context, the current study aimed to evaluate the (i) antifungal susceptibility profiles, (ii) ability to form biofilm and (iii) impact of biofilm formation on the susceptibility to azoles in 21 clinical isolates of Scedosporium recovered from CF patients. METHODS Scedosporium apiospermum (n=6), S. aurantiacum (n=6), S. minutisporum (n=3) and Lomentospora prolificans (n=6) were firstly used to compare the antifungal susceptibility profile using a standard culture broth (RPMI-1640) and a mucin (M)-containing synthetic CF sputum medium (SCFM). The ability to form biofilms was investigated in polystyrene microtiter plates containing Sabouraud-dextrose (a classical medium), SCFM and SCFM+M. Mature biofilms were tested for their susceptibility to azoles by microdilution assay. RESULTS Our results showed that the minimum inhibitory concentrations (MICs) for planktonic conidia ranged from 0.25 to >16.0 mg/L for voriconazole and 1.0 to >16.0 mg/L for posaconazole. Overall, the MICs for azoles increased from 2- to 8-folds when the susceptibility tests were performed using SCFM+M compared to RPMI-1640. All fungi formed robust biofilms on polystyrene surface at 72 h, with a significant increase in the MICs (ranging from 128- to 1024-times) against both azoles compared to the planktonic cells. CONCLUSION These findings confirm the challenge of antifungal treatment of CF patients infected with Scedosporium/Lomentospora and also demonstrated a strong biofilm formation, with extensive increase in antifungal resistance, triggered underconditions mimicking the CF patient airway.
Collapse
Affiliation(s)
- Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Michaela Lackner
- Medical University of Innsbruck, Institute for Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Lababidi N, Montefusco-Pereira CV, de Souza Carvalho-Wodarz C, Lehr CM, Schneider M. Spray-dried multidrug particles for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles. Eur J Pharm Biopharm 2020; 157:200-210. [PMID: 33222771 DOI: 10.1016/j.ejpb.2020.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Nowadays, the resistance of bacterial biofilms towards the available antibiotics is a severe problem. Therefore, many efforts were devoted to develop new formulations using nanotechnology. We have developed an inhalable microparticle formulation using spray-drying combining multiple drugs: an antibiotic (tobramycin, ciprofloxacin or azithromycin), N-acetylcysteine (NAC), and curcumin (Cur). The use of PLGA nanoparticles (NP) also allowed incorporating curcumin to facilitate spray drying and modify the release of some compounds. The aerosolizable microparticles formulations were characterized in terms of size, morphology, and aerodynamic properties. Biocompatibility when tested on macrophage-like cells was acceptable after 20 h exposure for concentrations up to at least 32 µg/mL. Antibacterial activity of free drugs versus drugs in the multiple drug formulations was evaluated on P. aeruginosa in the same range. When co-delivered the efficacy of tobramycin was enhanced compared to the free drug for the 1 µg/mL concentration. The combinations of azithromycin and ciprofloxacin with NAC and Cur did not show an improved antibacterial activity. Bacteria-triggered cytokine release was not inhibited by free antibiotics, except for TNF-α. In contrast, the application of NAC and the addition of curcumin-loaded PLGA NPs showed a higher potential to inhibit TNF-α, IL-8, and IL-1β release. Overall, the approach described here allows simultaneous delivery of antibacterial, mucolytic, and anti-inflammatory compounds in a single inhalable formulation and may therefore pave the way for a more efficient therapy of pulmonary infections.
Collapse
Affiliation(s)
- Nashrawan Lababidi
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Carlos Victor Montefusco-Pereira
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Campus E8 1, 66123 Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Campus E8 1, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
16
|
De Sutter PJ, Gasthuys E, Van Braeckel E, Schelstraete P, Van Biervliet S, Van Bocxlaer J, Vermeulen A. Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019. Clin Pharmacokinet 2020; 59:1551-1573. [DOI: 10.1007/s40262-020-00932-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Youhanna S, Lauschke VM. The Past, Present and Future of Intestinal In Vitro Cell Systems for Drug Absorption Studies. J Pharm Sci 2020; 110:50-65. [PMID: 32628951 DOI: 10.1016/j.xphs.2020.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
The intestinal epithelium acts as a selective barrier for the absorption of water, nutrients and orally administered drugs. To evaluate the gastrointestinal permeability of a candidate molecule, scientists and drug developers have a multitude of cell culture models at their disposal. Static transwell cultures constitute the most extensively characterized intestinal in vitro system and can accurately categorize molecules into low, intermediate and high permeability compounds. However, they lack key aspects of intestinal physiology, including the cellular complexity of the intestinal epithelium, flow, mechanical strain, or interactions with intestinal mucus and microbes. To emulate these features, a variety of different culture paradigms, including microfluidic chips, organoids and intestinal slice cultures have been developed. Here, we provide an updated overview of intestinal in vitro cell culture systems and critically review their suitability for drug absorption studies. The available data show that these advanced culture models offer impressive possibilities for emulating intestinal complexity. However, there is a paucity of systematic absorption studies and benchmarking data and it remains unclear whether the increase in model complexity and costs translates into improved drug permeability predictions. In the absence of such data, conventional static transwell cultures remain the current gold-standard paradigm for drug absorption studies.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
18
|
Leal J, Peng X, Liu X, Arasappan D, Wylie DC, Schwartz SH, Fullmer JJ, McWilliams BC, Smyth HDC, Ghosh D. Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery. J Control Release 2020; 322:457-469. [PMID: 32243979 DOI: 10.1101/659540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 05/21/2023]
Abstract
Therapeutic delivery of drug and gene delivery systems have to traverse multiple biological barriers to achieve efficacy. Mucosal administration, such as pulmonary delivery in cystic fibrosis (CF) disease, remains a significant challenge due to concentrated viscoelastic mucus, which prevents drugs and particles from penetrating the mucus barrier. To address this problem, we used combinatorial peptide-presenting phage libraries and next-generation sequencing (NGS) to identify hydrophilic, net-neutral charged peptide coatings that enable penetration through human CF mucus ex vivo with ~600-fold better penetration than control, improve uptake into lung epithelial cells compared to uncoated or PEGylated-nanoparticles, and exhibit enhanced uniform distribution and retention in the mouse lung airways. These peptide coatings address multiple delivery barriers and effectively serve as excellent alternatives to standard PEG surface chemistries to achieve mucus penetration and address some of the challenges encountered using these chemistries. This biomolecule-based strategy can address multiple delivery barriers and hold promise to advance efficacy of therapeutics for diseases like CF.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xinquan Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Sarah H Schwartz
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Jason J Fullmer
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Bennie C McWilliams
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Pacheco DP, Butnarasu CS, Briatico Vangosa F, Pastorino L, Visai L, Visentin S, Petrini P. Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery. J Mater Chem B 2020; 7:4940-4952. [PMID: 31411620 DOI: 10.1039/c9tb00957d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mucus is a natural barrier with a protective role that hinders drug diffusion, representing a steric and interactive barrier to overcome for an effective drug delivery to target sites. In diseases like cystic fibrosis (CF), pulmonary mucus exhibits altered features, which hamper clearance mechanisms and drug diffusion, ultimately leading to lung failure. Effectively modelling the passage through mucus still represents an unmet challenge. An airway CF mucus model is herein proposed to disassemble the complexity of the mucus barrier following a modular approach. A hydrogel, mainly composed of mucin in an alginate (Alg) network, is proposed to specifically model the chemical-physical properties of CF mucus. The steric retention of pathological mucus was reproduced by targeting its mesh size (approximately 50 nm) and viscoelastic properties. The interactive barrier was reproduced by a composition inspired from the CF mucus. Optimized mucus models, composed of 3 mg ml-1 Alg and 25 mg ml-1 mucin, exhibited a G' increasing from ∼21.2 to 55.2 Pa and a G'' ranging from ∼5.26 to 28.8 Pa in the frequency range of 0.1 to 20 Hz. Drug diffusion was tested using three model drugs. The proposed mucus model was able to discriminate between the mucin-drug interaction and the steric barrier of a mucus layer with respect to the parallel artificial membrane permeability (PAMPA) that models the phospholipidic cell membrane, the state-of-the-art screening tool for passive drug diffusion. The mucus model can be proposed as an in vitro tool for early drug discovery, representing a step forward to model the mucus layer. Additionally, the proposed methodology allows to easily include other molecules present within mucus, as relevant proteins, lipids and DNA.
Collapse
Affiliation(s)
- Daniela Peneda Pacheco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" at Politecnico di Milano, Milan, Italy.
| | - Cosmin Stefan Butnarasu
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy.
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" at Politecnico di Milano, Milan, Italy.
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy and Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Sonja Visentin
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy.
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" at Politecnico di Milano, Milan, Italy.
| |
Collapse
|
20
|
Leal J, Peng X, Liu X, Arasappan D, Wylie DC, Schwartz SH, Fullmer JJ, McWilliams BC, Smyth HDC, Ghosh D. Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery. J Control Release 2020; 322:457-469. [PMID: 32243979 DOI: 10.1016/j.jconrel.2020.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Therapeutic delivery of drug and gene delivery systems have to traverse multiple biological barriers to achieve efficacy. Mucosal administration, such as pulmonary delivery in cystic fibrosis (CF) disease, remains a significant challenge due to concentrated viscoelastic mucus, which prevents drugs and particles from penetrating the mucus barrier. To address this problem, we used combinatorial peptide-presenting phage libraries and next-generation sequencing (NGS) to identify hydrophilic, net-neutral charged peptide coatings that enable penetration through human CF mucus ex vivo with ~600-fold better penetration than control, improve uptake into lung epithelial cells compared to uncoated or PEGylated-nanoparticles, and exhibit enhanced uniform distribution and retention in the mouse lung airways. These peptide coatings address multiple delivery barriers and effectively serve as excellent alternatives to standard PEG surface chemistries to achieve mucus penetration and address some of the challenges encountered using these chemistries. This biomolecule-based strategy can address multiple delivery barriers and hold promise to advance efficacy of therapeutics for diseases like CF.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xinquan Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Sarah H Schwartz
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Jason J Fullmer
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Bennie C McWilliams
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA.
| |
Collapse
|
21
|
Development of an In Vitro System to Study the Interactions of Aerosolized Drugs with Pulmonary Mucus. Pharmaceutics 2020; 12:pharmaceutics12020145. [PMID: 32053877 PMCID: PMC7076363 DOI: 10.3390/pharmaceutics12020145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 01/23/2023] Open
Abstract
Mucus is the first biological component inhaled drugs encounter on their journey towards their pharmacological target in the upper airways. Yet, how mucus may influence drug disposition and efficacy in the lungs has been essentially overlooked. In this study, a simple in vitro system was developed to investigate the factors promoting drug interactions with airway mucus in physiologically relevant conditions. Thin layers of porcine tracheal mucus were prepared in Transwell® inserts and initially, the diffusion of various fluorescent dyes across those layers was monitored over time. A deposition system featuring a MicroSprayer® aerosolizer was optimized to reproducibly deliver liquid aerosols to multiple air-facing layers and then exploited to compare the impact of airway mucus on the transport of inhaled bronchodilators. Both the dyes and drugs tested were distinctly hindered by mucus with high logP compounds being the most affected. The diffusion rate of the bronchodilators across the layers was in the order: ipratropium ≈ glycopyronnium > formoterol > salbutamol > indacaterol, suggesting hydrophobicity plays an important role in their binding to mucus but is not the unique parameter involved. Testing of larger series of compounds would nevertheless be necessary to better understand the interactions of inhaled drugs with airway mucus.
Collapse
|
22
|
Alp G, Aydogan N. Lipid-based mucus penetrating nanoparticles and their biophysical interactions with pulmonary mucus layer. Eur J Pharm Biopharm 2020; 149:45-57. [PMID: 32014491 DOI: 10.1016/j.ejpb.2020.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
Abstract
Lungs are critical organs that are continuously exposed to exogeneous matter. The presence of the mucus layer helps to protect them via its adhesive structure and filtering mechanisms. Mucus also acts as a strong barrier against the drugs and nanocarriers in drug delivery. In this study, solid lipid nanoparticles (SLNs), at different sizes and surface properties, were prepared and their spreading/penetration ability was tested for their use in pulmonary drug delivery. The biophysical interactions of SLNs have been studied via light scattering (LS) and zeta potential analyses by incubating the SLNs in mucin solution and forming a model mucus layer using a Langmuir-Blodgett (LB) trough. In addition, the penetration performance of the particles was evaluated using Franz diffusion cell and rotating diffusion tubes. It was determined that 36% of SLNs can penetrate through a 1.2 ± 0.2-mm-thick mucus layer. Finally, the spreading behavior of the particles on a mucus-mimicking subphase was characterized and enhanced using a catanionic surfactant mixture. Overall, the current study was the first to investigates both the spreading and penetration performance of SLNs. The developed systems offer a drug delivery system that is able to achieve high penetration rates through a thick mucus layer.
Collapse
Affiliation(s)
- Gokce Alp
- Department of Chemical Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Nihal Aydogan
- Department of Chemical Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey.
| |
Collapse
|
23
|
Habibi S, Lee HY, Moncada-Hernandez H, Gooding J, Minerick AR. Impacts of low concentration surfactant on red blood cell dielectrophoretic responses. BIOMICROFLUIDICS 2019; 13:054101. [PMID: 31531153 PMCID: PMC6746619 DOI: 10.1063/1.5113735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Cell dielectrophoretic responses have been extensively studied for biomarker expression, blood typing, sepsis, circulating tumor cell separations, and others. Surfactants are often added to the analytical buffer in electrokinetic cellular microfluidic systems to lower surface/interfacial tensions. In nonelectrokinetic systems, surfactants influence cell size, shape, and agglomeration; this has not been systematically documented in electrokinetic systems. In the present work, the impacts of the Triton X-100 surfactant on human red blood cells (RBCs) were explored via ultraviolet-visible spectroscopy (UV-Vis) and dielectrophoresis (DEP) to compare nonelectrokinetic and electrokinetic responses, respectively. The UV-Vis spectra of Triton X-100 treated RBCs were dramatically different from that of native RBCs. DEP responses of RBCs were compared to RBCs treated with low concentrations of Triton X-100 (0.07-0.17 mM) to ascertain surfactant effects on dielectric properties. A star-shaped electrode design was used to quantify RBC dielectric properties by fitting a single-shell oblate cell model to experimentally-derived DEP spectra. The presence of 0.07 and 0.11 mM of Triton X-100 shifted the RBC's DEP spectra yielding lower crossover frequencies ( f C O ) . The single-shell oblate model revealed that cell radius and membrane permittivity are the dominant influencers of DEP spectral shifts. The trends observed were similar for 0.11 mM and 0.07 mM Triton X-100 treated cells. However, a further increase of Triton X-100 to 0.17 mM caused cells to only exhibit negative DEP. The magnitude of the DEP force increased with Triton X-100 concentration. This work indicates that dynamic surfactant interactions with cell membranes alter cell dielectric responses and properties.
Collapse
|
24
|
Activity of Antibiotics against Staphylococcus aureus in an In Vitro Model of Biofilms in the Context of Cystic Fibrosis: Influence of the Culture Medium. Antimicrob Agents Chemother 2019; 63:AAC.00602-19. [PMID: 31036685 DOI: 10.1128/aac.00602-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/20/2019] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is a highly prevalent pathogen in the respiratory tract of young patients with cystic fibrosis (CF) and causes biofilm-related infections. Here, we set up an in vitro model of a biofilm grown in Trypticase soy broth supplemented with glucose and NaCl (TGN) or in artificial sputum medium (ASM) and used it to evaluate on a pharmacodynamic basis the activity of antibiotics used in CF patients and active on staphylococci (meropenem, vancomycin, azithromycin, linezolid, rifampin, ciprofloxacin, tobramycin). Rheological studies showed that ASM was more elastic than viscous, as was also observed for sputa from CF patients, with elastic and viscous moduli being, respectively, similar to and slightly lower than those of CF sputa. Biofilms formed by methicillin-sensitive S. aureus strain ATCC 25923 and methicillin-resistant S. aureus strain ATCC 33591 reached maturity after 24 h, with biomass (measured by crystal violet staining) and metabolic activity (assessed by following resazurin metabolization) being lower in ASM than in TGN and viability (assessed by bacterial counts) being similar in both media. Full concentration-response curves of antibiotics obtained after 24 h of incubation of biofilms showed that all antibiotics were drastically less potent and less efficient in ASM than in TGN toward viability, metabolic activity, and biomass. Tobramycin selected for small-colony variants, specifically in biofilms grown in ASM; the auxotrophism of these variants could not be established. These data highlight the major influence exerted by the culture medium on S. aureus responsiveness to antibiotics in biofilms. The use of ASM may help to determine effective drug concentrations or to evaluate new therapeutic options against biofilms in CF patients.
Collapse
|
25
|
Abdulkarim M, Sharma PK, Gumbleton M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Adv Drug Deliv Rev 2019; 142:62-74. [PMID: 30974131 DOI: 10.1016/j.addr.2019.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Mucus is a dynamic barrier which covers and protects the underlying mucosal epithelial membrane against bacteria and foreign particles. This protection mechanism extends to include therapeutic macromolecules and nanoparticles (NPs) through trapping of these particles. Mucus is not only a physical barrier that limiting particles movements based on their sizes but it selectively binds with particles through both hydrophilic and lipophilic interactions. Therefore, nano-carriers for mucosal delivery should be designed to eliminate entrapment by the mucus barrier. For this reason, different strategies have been approached for both solid nano-carriers and liquid core nano-carriers to synthesise muco-diffusive nano-carrier. Among these nano-strategies, Self-Emulsifying Drug Delivery System (SEDDS) was recognised as very promising nano-carrier for mucus delivery. The system was introduced to enhance the dissolution and bioavailability of orally administered insoluble drugs. SEDDS has shown high stability against intestinal enzymatic activity and more importantly, relatively rapid permeation characteristics across mucus barrier. The high diffusivity of SEDDS has been tested using various in vitro measurement techniques including both bulk and individual measurement of droplets diffusion within mucus. The selection and processing of an optimum in vitro technique is of great importance to avoid misinterpretation of the diffusivity of SEDDS through mucus barrier. In conclusion, SEDDS is a system with high capacity to diffuse through intestinal mucus even though this system has not been studied to the same extent as solid nano-carriers.
Collapse
Affiliation(s)
- Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Peeyush Kumar Sharma
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
26
|
Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. PEGylated Chitosan for Nonviral Aerosol and Mucosal Delivery of the CRISPR/Cas9 System in Vitro. Mol Pharm 2018; 15:4814-4826. [PMID: 30222933 DOI: 10.1021/acs.molpharmaceut.8b00434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chitosan has been widely employed to deliver nucleic acids such as siRNA and plasmids. However, chitosan-mediated delivery of a gene-editing system has not been reported yet. In this study, poly(ethylene glycol) monomethyl ether (mPEG) was conjugated to chitosan with different molecular weights (low molecular weight and medium molecular weight chitosan) achieving a high degree of substitution as identified by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) spectra. PEGylated chitosan/pSpCas9-2A-GFP nanocomplexes were formed at different N/ P (amine group to phosphate group) ratios and characterized in terms of size and zeta potential. The nanocomplexes developed showed the capability to protect loaded nucleic acids from DNase I digestion and from the stresses of nebulization. In addition, we demonstrated that the PEG conjugation of chitosan improved the mucus-penetration capability of the formed nanocomplexes at N/ P ratios of 5, 10, 20, and 30. Finally, PEGylated low molecular weight chitosan nanocomplexes showed optimal transfection efficiency at an N/ P ratio of 20, while PEGylated medium molecular weight chitosan nanocomplexes showed an optimal transfection efficiency at an N/ P ratio of 5 at pH 6.5 and 6.8. This study established the basis for the delivery of a gene-editing system by PEGylated chitosan nanocomplexes.
Collapse
|
27
|
Mucus-penetrating phage-displayed peptides for improved transport across a mucus-like model. Int J Pharm 2018; 553:57-64. [PMID: 30268850 DOI: 10.1016/j.ijpharm.2018.09.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
The objective of this work is to use phage display libraries as a screening tool to identify peptides that facilitate transport across the mucus barrier. Mucus is a complex selective barrier to particles and molecules, limiting penetration to the epithelial surface of mucosal tissues. In mucus-associated diseases such as cystic fibrosis (CF), mucus has increased viscoelasticity and a higher concentration of covalent and non-covalent physical entanglements compared to healthy tissues, which greatly hinders permeability and transport of drugs and particles across the mucosae for therapeutic delivery. Treatment of CF lung diseases and associated infections must overcome this abnormal mucosal barrier. Critical bottlenecks hindering effective drug penetration remain and while recent studies have shown hydrophilic, net-neutral charge polymers can improve the transport of nanoparticles and minimize interactions with mucus, there is a dearth of alternative carriers available. We hypothesized that the screening of a phage peptide library against a CF mucus model would lead to the identification of phage-displayed peptide sequences able to improve transport in mucus. These combinatorial libraries possess a large diversity of peptide-based formulations (108-109) to achieve unprecedented screening for potential mucus-penetrating peptides. Here, phage clones displaying discovered peptides were shown to have up to 2.6-fold enhanced diffusivity in the CF mucus model. In addition, we demonstrate reduced binding affinities to mucin compared to wild-type control. These findings suggest that phage display libraries can be used as a strategy to improve transmucosal delivery.
Collapse
|
28
|
Puglia C, Blasi P, Ostacolo C, Sommella E, Bucolo C, Platania CBM, Romano GL, Geraci F, Drago F, Santonocito D, Albertini B, Campiglia P, Puglisi G, Pignatello R. Innovative Nanoparticles Enhance N-Palmitoylethanolamide Intraocular Delivery. Front Pharmacol 2018; 9:285. [PMID: 29643808 PMCID: PMC5882782 DOI: 10.3389/fphar.2018.00285] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Nanostructured lipid carriers (NLCs) loaded with palmitoylethanolamide (PEA) were formulated with the aim to enhance ocular bioavailability of PEA, particularly to the back of the eye. Technological characterization (e.g., size, charge) of NLC loaded with PEA formulation (PEA-NLC) was performed, and NLC morphology was characterized by electron microscopy. Ocular pharmacokinetic study, after topical administration of the formulation, was carried out in rabbit eye. Ultra-high performance liquid chromatography tandem mass spectrometry analysis was carried out to detect PEA levels in ocular tissues. Finally, the ocular tolerability of PEA-NLC formulation was assessed in rabbit eye. The novel formulation significantly increased PEA levels in ocular tissues compared to PEA suspension. Vitreous and retinal levels of PEA were significantly higher in the group treated with PEA-NLC formulation versus PEA suspension (PEA-NLC Cmax 5919 ± 541 pmol/g and 315 ± 70 pmol/g in vitreous and retina, respectively). The PEA-NLC formulation was characterized by high stability and robust ocular bioavailability. Therefore, this innovative formulation may be useful in clinical practice to manage retinal diseases.
Collapse
Affiliation(s)
- Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Centre on Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Paolo Blasi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology, University of Catania, Catania, Italy
| | - Chiara B M Platania
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni L Romano
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, United States
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology, University of Catania, Catania, Italy
| | | | - Barbara Albertini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Centre on Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Centre on Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
29
|
Bahamondez-Canas TF, Zhang H, Tewes F, Leal J, Smyth HDC. PEGylation of Tobramycin Improves Mucus Penetration and Antimicrobial Activity against Pseudomonas aeruginosa Biofilms in Vitro. Mol Pharm 2018. [PMID: 29514003 DOI: 10.1021/acs.molpharmaceut.8b00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa is the predominant pathogen in the persistent lung infections of cystic fibrosis (CF) patients among other diseases. One of the mechanisms of resistance of P. aeruginosa infections is the formation and presence of biofilms. Previously, we demonstrated that PEGylated-tobramycin (Tob-PEG) had superior antimicrobial activity against P. aeruginosa biofilms compared to tobramycin (Tob). The goal of this study was to optimize the method of PEGylation of Tob and assess its activity in an in vitro CF-like mucus barrier biofilm model. Tob was PEGylated using three separate chemical conjugation methods and analyzed by 1H NMR. A comparison of the Tob-PEG products from the different conjugation methods showed significant differences in the reduction of biofilm proliferation after 24 h of treatment. In the CF-like mucus barrier model, Tob-PEG was significantly better than Tob in reducing P. aeruginosa proliferation after only 5 h of treatment ( p < 0.01). Finally, Tob-PEG caused a reduction in the number of surviving P. aeruginosa biofilm colonies higher than that of Tob ( p < 0.0001). We demonstrate the significantly improved antimicrobial activity of Tob-PEG against P. aeruginosa biofilms compared to Tob using two PEGylation methods. Tob-PEG had better in vitro activity compared to that of Tob against P. aeruginosa biofilms growing in a CF-like mucus barrier model.
Collapse
Affiliation(s)
- Tania F Bahamondez-Canas
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Frederic Tewes
- INSERM, U1070, UFR de Médecine Pharmacie , Université de Poitiers , 86073 Poitiers Cedex 9 , France
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States.,Center for Infectious Disease , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
30
|
Alp G, Aydogan N. Enhancing the Spreading Behavior on Pulmonary Mucus Mimicking Subphase via Catanionic Surfactant Solutions: Toward Effective Drug Delivery through the Lungs. Mol Pharm 2018; 15:1361-1370. [DOI: 10.1021/acs.molpharmaceut.8b00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev 2018; 124:140-149. [PMID: 28736302 DOI: 10.1016/j.addr.2017.07.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022]
Abstract
Mucus is a highly hydrated viscoelastic gel present on various moist surfaces in our body including the eyes, nasal cavity, mouth, gastrointestinal, respiratory and reproductive tracts. It serves as a very efficient barrier that prevents harmful particles, viruses and bacteria from entering the human body. However, the protective function of the mucus also hampers the diffusion of drugs and nanomedicines, which dramatically reduces their efficiency. Functionalisation of nanoparticles with low molecular weight poly(ethylene glycol) (PEGylation) is one of the strategies to enhance their penetration through mucus. Recently a number of other polymers were explored as alternatives to PEGylation. These alternatives include poly(2-alkyl-2-oxazolines), polysarcosine, poly(vinyl alcohol), other hydroxyl-containing non-ionic water-soluble polymers, zwitterionic polymers (polybetaines) and mucolytic enzymes. This review discusses the studies reporting the use of these polymers or potential application to facilitate mucus permeation of nanoparticles.
Collapse
Affiliation(s)
- Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, RG6 6AD Reading, United Kingdom.
| |
Collapse
|
32
|
Abstract
The nasal route is commonly used for local delivery of drugs to treat inflammatory conditions. It is also an attractive route for systemic delivery of some drugs. Irrespective of intended use, administered drugs must permeate the epithelial or olfactory membrane to be effective. The enthusiasm for potential use of the nasal route for systemic drug delivery has not been met by comparable success. In this paper, the anatomical and physiological attributes of the nasal cavity and paranasal sinuses important for drug delivery and challenges limiting drug absorption are discussed. Efforts made so far in improving nasal drug absorption such as overcoming restrictive nasal geometry and paranasal sinuses accessibility, mucociliary clearance, absorption barriers, metabolism and drug physicochemical challenges are discussed. Highlights on future prospects of nasal drug delivery/absorption were discussed.
Collapse
|
33
|
Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017; 532:555-572. [PMID: 28917986 PMCID: PMC5744044 DOI: 10.1016/j.ijpharm.2017.09.018] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Mucus is a selective barrier to particles and molecules, preventing penetration to the epithelial surface of mucosal tissues. Significant advances in transmucosal drug delivery have recently been made and have emphasized that an understanding of the basic structure, viscoelastic properties, and interactions of mucus is of great value in the design of efficient drug delivery systems. Mucins, the primary non-aqueous component of mucus, are polymers carrying a complex and heterogeneous structure with domains that undergo a variety of molecular interactions, such as hydrophilic/hydrophobic, hydrogen bonds and electrostatic interactions. These properties are directly relevant to the numerous mucin-associated diseases, as well as delivering drugs across the mucus barrier. Therefore, in this review we discuss regional differences in mucus composition, mucus physicochemical properties, such as pore size, viscoelasticity, pH, and ionic strength. These factors are also discussed with respect to changes in mucus properties as a function of disease state. Collectively, the review seeks to provide a state of the art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA.
| |
Collapse
|
34
|
Dhand R. The Rationale and Evidence for Use of Inhaled Antibiotics to Control Pseudomonas aeruginosa Infection in Non-cystic Fibrosis Bronchiectasis. J Aerosol Med Pulm Drug Deliv 2017; 31:121-138. [PMID: 29077527 PMCID: PMC5994662 DOI: 10.1089/jamp.2017.1415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-cystic fibrosis bronchiectasis (NCFBE) is a chronic inflammatory lung disease characterized by irreversible dilation of the bronchi, symptoms of persistent cough and expectoration, and recurrent infective exacerbations. The prevalence of NCFBE is on the increase in the United States and Europe, but no licensed therapies are currently available for its treatment. Although there are many similarities between NCFBE and cystic fibrosis (CF) in terms of respiratory symptoms, airway microbiology, and disease progression, there are key differences, for example, in response to treatment, suggesting differences in pathogenesis. This review discusses possible reasons underlying differences in response to inhaled antibiotics in people with CF and NCFBE. Pseudomonas aeruginosa infections are associated with the most severe forms of bronchiectasis. Suboptimal levels of antibiotics in the lung increase the mutation frequency of P. aeruginosa and lead to the development of mucoid strains characterized by formation of a protective polysaccharide biofilm. Mucoid strains of P. aeruginosa are associated with a chronic infection stage, requiring long-term antibiotic therapy. Inhaled antibiotics provide targeted delivery to the lung with minimal systemic toxicity and adverse events compared with oral/intravenous routes of administration, and they could be alternative treatment options to help address some of the treatment challenges in the management of severe cases of NCFBE. This review provides an overview of completed and ongoing trials that evaluated inhaled antibiotic therapy for NCFBE. Recently, several investigators conducted phase 3 randomized controlled trials with inhaled aztreonam and ciprofloxacin in patients with NCFBE. While the aztreonam trial results were not associated with significant clinical benefit in NCFBE, initial results reported from the inhaled ciprofloxacin (dry powder for inhalation and liposome-encapsulated/dual-release formulations) trials hold promise. A more targeted approach could identify specific populations of NCFBE patients who benefit from inhaled antibiotics.
Collapse
Affiliation(s)
- Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine , Knoxville, Tennessee
| |
Collapse
|
35
|
Lafforgue O, Seyssiecq I, Poncet S, Favier J. Rheological properties of synthetic mucus for airway clearance. J Biomed Mater Res A 2017; 106:386-396. [DOI: 10.1002/jbm.a.36251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Olivier Lafforgue
- Laboratoire M2P2 UMR 7340, CNRS, Ecole Centrale de Marseille, Aix-Marseille Université, 38 rue F. Joliot-Curie, Technopôle de Château-Gombert; Marseille 13451 France
| | - Isabelle Seyssiecq
- Laboratoire M2P2 UMR 7340, CNRS, Ecole Centrale de Marseille, Aix-Marseille Université, 38 rue F. Joliot-Curie, Technopôle de Château-Gombert; Marseille 13451 France
| | - Sébastien Poncet
- Laboratoire M2P2 UMR 7340, CNRS, Ecole Centrale de Marseille, Aix-Marseille Université, 38 rue F. Joliot-Curie, Technopôle de Château-Gombert; Marseille 13451 France
- Faculté de génie, Département de génie mécanique, Université de Sherbrooke, 2500 Boulevard de l'Université; Sherbrooke Quebec J1K 2R1 Canada
| | - Julien Favier
- Laboratoire M2P2 UMR 7340, CNRS, Ecole Centrale de Marseille, Aix-Marseille Université, 38 rue F. Joliot-Curie, Technopôle de Château-Gombert; Marseille 13451 France
| |
Collapse
|
36
|
Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int J Pharm 2017; 527:92-102. [PMID: 28499793 DOI: 10.1016/j.ijpharm.2017.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/22/2022]
Abstract
Treatment of bacterial airway infections is essential for cystic fibrosis therapy. However, effectiveness of antibacterial treatment is limited as bacteria inside the mucus are protected from antibiotics and immune response. To overcome this biological barrier, ciprofloxacin was loaded into lipid-core nanocapsules (LNC) for high mucus permeability, sustained release and antibacterial activity. Ciprofloxacin-loaded LNC with a mean size of 180nm showed a by 50% increased drug permeation through mucus. In bacterial growth assays, the drug in the LNC had similar minimum inhibitory concentrations as the free drug in P. aeruginosa and S. aureus. Interestingly, formation of biofilm-like aggregates, which were observed for S. aureus treated with free ciprofloxacin, was avoided by exposure to LNC. With the combined advantages over the non-encapsulated drug, ciprofloxacin-loaded LNC represent a promising drug delivery system with the prospect of an improved antibiotic therapy in cystic fibrosis.
Collapse
|
37
|
Günday Türeli N, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Lehr CM, Schneider M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 2017; 117:363-371. [PMID: 28476373 DOI: 10.1016/j.ejpb.2017.04.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
Current pulmonary treatments against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with ciprofloxacin complex offer a solution for emerging treatment strategies. NPs were prepared under controlled conditions by utilizing MicroJet Reactor (MJR) to yield a particle size of 190.4±28.6nm with 0.089 PDI. Encapsulation efficiency of the drug was 79% resulting in a loading of 14%. Release was determined to be controlled and medium-independent in PBS, PBS+0.2% Tween 80 and simulated lung fluid. Cytotoxicity assays with Calu-3 cells and CF bronchial epithelial cells (CFBE41o-) indicated that complex-loaded PLGA NPs were non-toxic at concentrations ≫ MICcipro against lab strains of the bacteria. Antibacterial activity tests revealed enhanced activity when applied as nanoparticles. NPs' colloidal stability in mucus was proven. Notably, a decrease in mucus turbidity was observed upon incubation with NPs. Herewith, ciprofloxacin complex-loaded PLGA NPs are introduced as promising pulmonary nano drug delivery systems against P.aeruginosa infections in CF lung.
Collapse
Affiliation(s)
- Nazende Günday Türeli
- MJR PharmJet GmbH, Industriestr. 1B, 66802 Überherrn, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Afra Torge
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Jenny Juntke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Bianca C Schwarz
- Pferdeklinik Altforweiler, Raiffeisenstraβe 100, 66802 Überherrn, Germany
| | - Nicole Schneider-Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
38
|
Jensen PØ, Kolpen M, Kragh KN, Kühl M. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 2017; 125:276-288. [PMID: 28407427 DOI: 10.1111/apm.12668] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
Abstract
In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.
Collapse
Affiliation(s)
- Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
39
|
Torge A, Grützmacher P, Mücklich F, Schneider M. The influence of mannitol on morphology and disintegration of spray-dried nano-embedded microparticles. Eur J Pharm Sci 2017; 104:171-179. [PMID: 28390837 DOI: 10.1016/j.ejps.2017.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/18/2017] [Accepted: 04/04/2017] [Indexed: 11/15/2022]
Abstract
Nano-embedded microparticles represent a promising approach to deliver nanoparticles to the lungs. Microparticles with an appropriate aerodynamic diameter enable an application by dry powder inhaler and the transport of nanoparticles into the airways. By disintegration after deposition, nanoparticles can be released to exhibit their advantages such as a sustained drug release and delivery of the drug across the mucus barrier. The use of an appropriate matrix excipient to embed the nanoparticles is essential for the necessary disintegration and release of nanoparticles. In this context we investigated the influence of mannitol on the morphology, aerodynamic properties and disintegration behavior of nano-embedded microparticles. PLGA nanoparticles and mannitol were spray dried each as sole component and in combination in three different ratios. An influence of the mannitol content on the morphology was observed. Pure mannitol microparticles were solid and spherical, while the addition of nanoparticles resulted in raisin-shaped hollow particles. The different morphologies can be explained by diffusion processes of the compounds described by the Péclet-number. All powders showed suitable aerodynamic properties. By dispersion of the powders in simulated lung fluid, initial nanoparticle sizes could be recovered for samples containing mannitol. The fraction of redispersed nanoparticles was increased with increasing mannitol content. To evaluate the disintegration under conditions with higher comparability to the in vivo situation, spray-dried powders were exposed to >90% relative humidity. The disintegration behavior was monitored by analyzing roughness values by white light interferometry and supporting SEM imaging. The exposure to high relative humidity was shown to be sufficient for disintegration of the microparticles containing mannitol, releasing morphologically unchanged nanoparticles. With increasing mannitol content, the disintegration occurred faster and to a higher degree. Under these conditions, microparticles only composed of nanoparticles did not disintegrate. By enabling the release of nanoparticles from nano-embedded microparticles, mannitol was shown to be an ideal excipient to convert nanoparticles by spray drying into an inhalable dry power formulation.
Collapse
Affiliation(s)
- Afra Torge
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus A4 1, 66123 Saarbrücken, Germany.
| | - Philipp Grützmacher
- Department of Functional Materials, Saarland University, Campus D3 3, 66123 Saarbrücken, Germany.
| | - Frank Mücklich
- Department of Functional Materials, Saarland University, Campus D3 3, 66123 Saarbrücken, Germany.
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus A4 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
40
|
Bos AC, Passé KM, Mouton JW, Janssens HM, Tiddens HAWM. The fate of inhaled antibiotics after deposition in cystic fibrosis: How to get drug to the bug? J Cyst Fibros 2016; 16:13-23. [PMID: 28254026 DOI: 10.1016/j.jcf.2016.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Chronic airway infections in patients with cystic fibrosis (CF) are most often treated with inhaled antibiotics of which deposition patterns have been extensively studied. However, the journey of aerosol particles does not end after deposition within the bronchial tree. OBJECTIVES To review how local conditions affect the clinical efficacy of antibiotic aerosol particles after deposition in the airways of patients with CF. METHODS Electronic databases were searched from inception to September 2015. Original studies describing the effect of CF sputum or bacterial factors on antibiotic efficacy and formulations to increase efficacy were included. RESULTS 35 articles were included which mostly described in vitro studies and mainly investigated aminoglycosides. After deposition, diffusion through the mucus layer was reduced for aminoglycosides, β-lactam antibiotics and fluoroquinolones. Within CF mucus, low oxygen tension adversely affected aminoglycosides, β-lactam antibiotics, and chloramphenicol; and molecules inactivated aminoglycosides but not β-lactam antibiotics. Finally, the alginate layer surrounding Pseudomonas aeruginosa was an important factor in the resistance against all antibiotics. CONCLUSIONS After deposition in the airways, the local efficacy of inhaled antibiotics can be reduced by molecules within CF mucus and the alginate layer surrounding P. aeruginosa.
Collapse
Affiliation(s)
- Aukje C Bos
- Department of Paediatric Pulmonology and Allergology, Erasmus Medical Centre (MC) - Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Kimberly M Passé
- Department of Paediatric Pulmonology and Allergology, Erasmus Medical Centre (MC) - Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Hettie M Janssens
- Department of Paediatric Pulmonology and Allergology, Erasmus Medical Centre (MC) - Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Harm A W M Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus Medical Centre (MC) - Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Pritchard MF, Powell LC, Menzies GE, Lewis PD, Hawkins K, Wright C, Doull I, Walsh TR, Onsøyen E, Dessen A, Myrvold R, Rye PD, Myrset AH, Stevens HNE, Hodges LA, MacGregor G, Neilly JB, Hill KE, Thomas DW. A New Class of Safe Oligosaccharide Polymer Therapy To Modify the Mucus Barrier of Chronic Respiratory Disease. Mol Pharm 2016; 13:863-72. [PMID: 26833139 DOI: 10.1021/acs.molpharmaceut.5b00794] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12-15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Human studies showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF.
Collapse
Affiliation(s)
- Manon F Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University , Cardiff CF14 4XY, U.K
| | - Lydia C Powell
- Advanced Therapies Group, School of Dentistry, Cardiff University , Cardiff CF14 4XY, U.K
| | | | | | | | | | - Iolo Doull
- Respiratory/Cystic Fibrosis Unit, Children's Hospital for Wales , Cardiff CF14 4XW, U.K
| | - Timothy R Walsh
- Medical Microbiology, School of Medicine, College of Biomedical and Life Sciences, Cardiff University , Cardiff CF14 4EP, U.K
| | | | | | | | | | | | | | - Lee A Hodges
- Bio-Images Drug Delivery Ltd., Glasgow G4 0SF, U.K
| | | | | | - Katja E Hill
- Advanced Therapies Group, School of Dentistry, Cardiff University , Cardiff CF14 4XY, U.K
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University , Cardiff CF14 4XY, U.K
| |
Collapse
|
42
|
Stigliani M, Manniello MD, Zegarra-Moran O, Galietta L, Minicucci L, Casciaro R, Garofalo E, Incarnato L, Aquino RP, Del Gaudio P, Russo P. Rheological Properties of Cystic Fibrosis Bronchial Secretion and in Vitro Drug Permeation Study: The Effect of Sodium Bicarbonate. J Aerosol Med Pulm Drug Deliv 2016; 29:337-45. [PMID: 26741302 DOI: 10.1089/jamp.2015.1228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is characterized by a thick, sticky mucus responsible for both airway obstruction and resistance to drug diffusion, reducing the effectiveness of drug delivery to the lung. Studies of drug-mucus interaction may be a crucial step in therapeutic management of CF. In the present research, the effect of a saline solution of sodium bicarbonate (100 mM) on sputum viscosity and the permeation properties of ketoprofen lysinate (Klys) from a previously developed dry powder inhaler were evaluated. METHODS Rheological measurements were performed using an ARES rotational rheometer (Rheometrics, Inc.) with a parallel plate geometry. The gel fraction, separated from the liquid phase of various sputum samples from CF patients was loaded onto the plate. The elastic (G') and the viscous (G") moduli, tan δ (ratio of G" to G') and η* (complex viscosity) were evaluated as frequency-dependent parameters. Drug permeation across CF sputum from dry powders was studied by means of Franz-type vertical diffusion cells. The experiments were conducted on untreated sputum and on sputum treated with bicarbonate. RESULTS Rheological studies showed that the elastic modulus (G') was always greater than the viscous modulus (G") and the viscosity decreased with increasing frequency, as for pseudo-plastic fluids. Bicarbonate caused a downward shift of both the elastic and viscous moduli, with a reduction in complex viscosity. As to drug permeation, the untreated sputum slowed down drug dissolution and permeation compared to buffer permeability (control). Permeation studies across CF sputum treated with bicarbonate showed higher Klys dissolution/permeation than untreated sputum. CONCLUSIONS The interesting results confirm the previously reported bicarbonate. effectiveness in CF; this weak base seems to act by decreasing high viscosity of the CF bronchial secretion and, potentially, resulting in better mucus clearance and in fighting pulmonary infections.
Collapse
Affiliation(s)
| | | | - Olga Zegarra-Moran
- 2 U.O.C. Genetica Medica Giannina Gaslini Institute , Genoa, Genoa, Italy
| | - Luis Galietta
- 2 U.O.C. Genetica Medica Giannina Gaslini Institute , Genoa, Genoa, Italy
| | - Laura Minicucci
- 2 U.O.C. Genetica Medica Giannina Gaslini Institute , Genoa, Genoa, Italy
| | - Rosaria Casciaro
- 2 U.O.C. Genetica Medica Giannina Gaslini Institute , Genoa, Genoa, Italy
| | - Emilia Garofalo
- 3 Department of Industrial Engineering, University of Salerno , Salerno, Italy
| | - Loredana Incarnato
- 3 Department of Industrial Engineering, University of Salerno , Salerno, Italy
| | - Rita P Aquino
- 1 Department of Pharmacy, University of Salerno , Salerno, Italy
| | | | - Paola Russo
- 1 Department of Pharmacy, University of Salerno , Salerno, Italy
| |
Collapse
|
43
|
Bharatwaj B, Mohammad AK, Dimovski R, Cassio FL, Bazito RC, Conti D, Fu Q, Reineke J, da Rocha SRP. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm 2015; 12:826-38. [PMID: 25455560 PMCID: PMC4350608 DOI: 10.1021/mp500662z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The purpose of this study was to
determine the effect of PEGylation
on the interaction of poly(amidoamine) (PAMAM) dendrimer nanocarriers
(DNCs) with in vitro and in vivo models of the pulmonary epithelium. Generation-3 PAMAM dendrimers
with varying surface densities of PEG 1000 Da were synthesized and
characterized. The results revealed that the apical to basolateral
transport of DNCs across polarized Calu-3 monolayers increases with
an increase in PEG surface density. DNC having the greatest number
of PEG groups (n = 25) on their surface traversed
at a rate 10-fold greater than its non-PEGylated counterpart, in spite
of their larger size. This behavior was attributed to a significant
reduction in charge density upon PEGylation. We also observed that
PEGylation can be used to modulate cellular internalization. The total
uptake of PEG-free DNC into polarized Calu-3 monolayers was 12% (w/w)
vs 2% (w/w) for that with 25 PEGs. Polarization is also shown to be
of great relevance in studying this in vitro model
of the lung epithelium. The rate of absorption of DNCs administered
to mice lungs increased dramatically when conjugated with 25 PEG groups,
thus supporting the in vitro results. The exposure
obtained for the DNC with 25PEG was determined to be very high, with
peak plasma concentrations reaching 5 μg·mL–1 within 3 h. The combined in vitro and in
vivo results shown here demonstrate that PEGylation can be
potentially used to modulate the internalization and transport of
DNCs across the pulmonary epithelium. Modified dendrimers thereby
may serve as a valuable platform that can be tailored to target the
lung tissue for treating local diseases, or the circulation, using
the lung as pathway to the bloodstream, for systemic delivery.
Collapse
Affiliation(s)
- Balaji Bharatwaj
- Department of Chemical Engineering and Materials Science, and ‡Department of Pharmaceutical Sciences, Wayne State University , Detroit, Michigan 48202, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vasquez PA, Forest MG. Complex Fluids and Soft Structures in the Human Body. COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS 2015. [DOI: 10.1007/978-1-4939-2065-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
45
|
Odziomek M, Sosnowski TR, Gradoń L. The Influence of Functional Carrier Particles (FCPs) on the Molecular Transport Rate Through the Reconstructed Bronchial Mucus: In Vitro Studies. Transp Porous Media 2014. [DOI: 10.1007/s11242-014-0409-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Groo AC, Lagarce F. Mucus models to evaluate nanomedicines for diffusion. Drug Discov Today 2014; 19:1097-108. [DOI: 10.1016/j.drudis.2014.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 01/25/2023]
|
47
|
Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2014; 1846:142-51. [PMID: 24785432 DOI: 10.1016/j.bbcan.2014.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
Epithelial cancer patients not considered eligible for surgical resection frequently benefit from chemotherapy. Chemotherapy is the treatment of cancer with one or combination of cytotoxic or cytostatic drugs. Recent advances in chemotherapy allowed a great number of cancer patients to receive treatment with significant results. Unfortunately, resistance to chemotherapeutic drug treatment is a major challenge for clinicians in the majority of epithelial cancers because it is responsible for the inefficiency of therapies. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Implications of mucins have been described in relation to cancer cell behavior and cell signaling pathways associated with epithelial tumorigenesis. Because of the frequent alteration of the pattern of mucin expression in cancers as well as their structural and functional characteristics, mucins are thought to also be involved in response to therapies. In this report, we review the roles of mucins in chemoresistance and the associated underlying molecular mechanisms (physical barrier, resistance to apoptosis, drug metabolism, cell stemness, epithelial-mesenchymal transition) and discuss the therapeutic tools/strategies and/or prognosis biomarkers for personalized chemotherapy that could be proposed from these studies.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France.
| | - Nicolas Skrypek
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| |
Collapse
|
48
|
A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLoS One 2014; 9:e87681. [PMID: 24558372 PMCID: PMC3928107 DOI: 10.1371/journal.pone.0087681] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/29/2013] [Indexed: 12/04/2022] Open
Abstract
In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions.
Collapse
|
49
|
Gentamicin and leucine inhalable powder: What about antipseudomonal activity and permeation through cystic fibrosis mucus? Int J Pharm 2013; 440:250-5. [DOI: 10.1016/j.ijpharm.2012.05.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
|
50
|
Bocchinfuso DG, Taylor P, Ross E, Ignatchenko A, Ignatchenko V, Kislinger T, Pearson BJ, Moran MF. Proteomic profiling of the planarian Schmidtea mediterranea and its mucous reveals similarities with human secretions and those predicted for parasitic flatworms. Mol Cell Proteomics 2012; 11:681-91. [PMID: 22653920 PMCID: PMC3434776 DOI: 10.1074/mcp.m112.019026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/17/2012] [Indexed: 11/06/2022] Open
Abstract
The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model because of its capability of regenerating large portions of missing body parts. Exteriorly, planarians are covered in mucous secretions of unknown composition, implicated in locomotion, predation, innate immunity, and substrate adhesion. Although the planarian genome has been sequenced, it remains mostly unannotated, challenging both genomic and proteomic analyses. The goal of the current study was to annotate the proteome of the whole planarian and its mucous fraction. The S. mediterranea proteome was analyzed via mass spectrometry by using multidimensional protein identification technology with whole-worm tryptic digests. By using a proteogenomics approach, MS data were searched against an in silico translated planarian transcript database, and by using the Swiss-Prot BLAST algorithm to identify proteins similar to planarian queries. A total of 1604 proteins were identified. The mucous subproteome was defined through analysis of a mucous trail fraction and an extract obtained by treating whole worms with the mucolytic agent N-acetylcysteine. Gene Ontology analysis confirmed that the mucous fractions were enriched with secreted proteins. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with intestinal schistosomiasis, with the mucous subproteome particularly highly conserved. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. We suggest planarians have potential to be a model system for the characterization of mucous protein function and relevant to parasitic flatworm infections and diseases underlined by mucous aberrancies, such as cystic fibrosis, asthma, and other lung diseases.
Collapse
Affiliation(s)
- Donald G. Bocchinfuso
- From the ‡Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Canada
- §Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Paul Taylor
- From the ‡Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Canada
| | - Eric Ross
- ¶Stowers Institute for Medical Research, Kansas City, Missouri
| | | | | | - Thomas Kislinger
- From the ‡Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Canada
- **Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bret J. Pearson
- §Department of Molecular Genetics, University of Toronto, Toronto, Canada
- ‡‡Developmental and Stem Cell Biology Program, The Hospital for Sick Children; and
| | - Michael F. Moran
- From the ‡Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Canada
- §Department of Molecular Genetics, University of Toronto, Toronto, Canada
- ‖Ontario Cancer Institute, University Health Network
- §§Banting and Best Department of Medical Research, University of Toronto, MaRS Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|