1
|
Sharma AK, Sharma R, Chauhan N, Das A, Satpati D. Peptide-drug conjugate designated for targeted delivery to HER2-expressing cancer cells. J Pept Sci 2024; 30:e3602. [PMID: 38600778 DOI: 10.1002/psc.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Targeted therapy of the highest globally incident breast cancer shall resolve the issue of off-target toxicity concurring with augmented killing of specific diseased cells. Thus, the goal of this study was to prepare a peptide-drug conjugate targeting elevated expression of HER2 receptors in breast cancer. Towards this, the rL-A9 peptide was conjugated with the chemotherapeutic drug doxorubicin (DOX) through a N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) linker. The synthesized peptide-drug conjugate, rL-A9-DOX, was characterized by mass spectrometry. Molecular docking studies, based on binding energy data, suggested a stronger interaction of rL-A9-DOX with the HER2 receptor in comparison to the unconjugated peptide, rL-A9. The cytotoxic effect of the rL-A9-DOX conjugate was observed to be higher in HER2-positive SKOV3 cells compared to HER2-negative MDA-MB-231 cells, indicating selective cell killing. Cellular internalization of the rL-A9-DOX conjugate was evident from the flow cytometry analysis, where a noticeable shift in mean fluorescent intensity (MFI) was observed for the conjugate compared to the control group. This data was further validated by confocal microscopy, where the fluorescent signal ascertained nuclear accumulation of rL-A9-DOX. The present studies highlight the promising potential of rL-A9-DOX for targeted delivery of the drug into a defined group of cancer cells.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nitish Chauhan
- Homi Bhabha National Institute, Mumbai, India
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Das
- Homi Bhabha National Institute, Mumbai, India
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, Asim MH, Nazir I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022; 14:pharmaceutics14091909. [PMID: 36145657 PMCID: PMC9501312 DOI: 10.3390/pharmaceutics14091909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder’s natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain 64141, United Arab Emirates
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| |
Collapse
|
4
|
A Study on Repositioning Nalidixic Acid via Lanthanide Complexation: Synthesis, Characterization, Cytotoxicity and DNA/Protein Binding Studies. Pharmaceuticals (Basel) 2022; 15:ph15081010. [PMID: 36015158 PMCID: PMC9412414 DOI: 10.3390/ph15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/30/2022] Open
Abstract
“Drug repositioning” is a modern strategy used to uncover new applications for out-of-date drugs. In this context, nalidixic acid, the first member of the quinolone class with limited use today, has been selected to obtain nine new metal complexes with lanthanide cations (La3+, Sm3+, Eu3+, Gd3+, Tb3+); the experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms, findings that are supported by DFT calculations. The cytotoxic activity of the complexes has been studied using the tumoral cell lines, MDA-MB-231 and LoVo, and a normal cell line, HUVEC. The most active compounds of the series display selective activity against LoVo. Their affinity for DNA and the manner of binding have been tested using UV–Vis spectroscopy and competitive binding studies; our results indicate that major and minor groove binding play a significant role in these interactions. The affinity towards serum proteins has also been evaluated, the complexes displaying higher affinity towards albumin than apotransferrin.
Collapse
|
5
|
Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors. Int J Mol Sci 2022; 23:ijms23158549. [PMID: 35955683 PMCID: PMC9369312 DOI: 10.3390/ijms23158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.
Collapse
|
6
|
Peng J, Liu K, Cao L, Duan D, Song G, Liu S, Wang L, Li J, Zhang X, Huang K, Zhao Y, Niu Y, Han G. Adenoviral Vector for Enhanced Prostate Cancer Specific Transferrin Conjugated Drug Targeted Therapy. NANO LETTERS 2022; 22:4168-4175. [PMID: 35522032 DOI: 10.1021/acs.nanolett.2c00931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death for men worldwide. Unlike some other types of cancer, there is a lack of targeted therapy for prostate cancer patients that can kill cancer cells but do much less damage to the normal tissue. In this paper, we report on an adenoviral vector enhanced prostate cancer specific transferrin conjugated drug targeted therapy. In particular, a functional PCa-specific gene probe is introduced to drive and up-regulate the transferrin receptor expression on the PCa via adenoviral vector. As a result, significantly enhanced accumulation of nanoscale transferrin-doxorubicin (Tf-DOX) protein drug conjugates and concomitant notably elevated PCa tumor inhibition are observed. This conceptual strategy provides the proof-of-concept for the targeted therapy of PCa that is highly desired but not yet developed.
Collapse
Affiliation(s)
- Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Kangkang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guodong Song
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lining Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Kai Huang
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Yamaguchi S, Takamori S, Yamamoto K, Ishiwatari A, Minamihata K, Yamada E, Okamoto A, Nagamune T. Sterically Bulky Caging of Transferrin for Photoactivatable Intracellular Delivery. Bioconjug Chem 2021; 32:1535-1540. [PMID: 34328322 DOI: 10.1021/acs.bioconjchem.1c00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photoactivatable ligand proteins are potentially useful for light-induced intracellular delivery of therapeutic and diagnostic cargos through receptor-mediated cellular uptake. Here, we report the simple and effective caging of transferrin (Tf), a representative ligand protein with cellular uptake ability, which has been used in the delivery of various cargos. Tf was modified with several biotin molecules through a photocleavable linker, and then the biotinylated Tf (bTf) was conjugated with the biotin-binding protein, streptavidin (SA), to provide steric hindrance to block the interaction with the Tf receptor. Without exposure to light, the cellular uptake of the bTf-SA complex was effectively inhibited. In response to light exposure, the complex was degraded with the release of Tf, leading to cellular uptake of Tf. Similarly, the cellular uptake of Tf-doxorubicin (Dox) conjugates could be suppressed by caging with biotinylation and SA binding, and the intracellular delivery of Dox could be triggered in a light-dependent manner. The intracellularly accumulated Dox decreased the cell viability to 25% because of the cell growth inhibitory effect of Dox. These results provided proof of principle that the caged Tf can be employed as a photoactivatable molecular device for the intracellular delivery of cargos.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Satoshi Takamori
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuho Yamamoto
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akira Ishiwatari
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eriko Yamada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akimitsu Okamoto
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
8
|
Singh CSB, Eyford BA, Abraham T, Munro L, Choi KB, Okon M, Vitalis TZ, Gabathuler R, Lu CJ, Pfeifer CG, Tian MM, Jefferies WA. Discovery of a Highly Conserved Peptide in the Iron Transporter Melanotransferrin that Traverses an Intact Blood Brain Barrier and Localizes in Neural Cells. Front Neurosci 2021; 15:596976. [PMID: 34149342 PMCID: PMC8212695 DOI: 10.3389/fnins.2021.596976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of diseases of the brain. Our previous studies demonstrated that that a soluble form of melanotransferrin (MTf; Uniprot P08582; also known as p97, MFI2, and CD228), a mammalian iron-transport protein, is an effective carrier for delivery of drug conjugates across the BBB into the brain and was the first BBB targeting delivery system to demonstrate therapeutic efficacy within the brain. Here, we performed a screen to identify peptides from MTf capable of traversing the BBB. We identified a highly conserved 12-amino acid peptide, termed MTfp, that retains the ability to cross the intact BBB intact, distributes throughout the parenchyma, and enter endosomes and lysosomes within neurons, astrocytes and microglia in the brain. This peptide may provide a platform for the transport of therapeutics to the CNS, and thereby offers new avenues for potential treatments of neuropathologies that are currently refractory to existing therapies.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- Department of Neural and Behavioral Sciences and Microscopy Imaging Core Lab, Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kyung Bok Choi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mark Okon
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Reinhard Gabathuler
- Bioasis Technologies Inc., Guilford, CT, United States.,King's College London, London, United Kingdom
| | - Chieh-Ju Lu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mei Mei Tian
- Bioasis Technologies Inc., Guilford, CT, United States
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Maciuca AM, Munteanu AC, Mihaila M, Badea M, Olar R, Nitulescu GM, Munteanu CVA, Bostan M, Uivarosi V. Rare-Earth Metal Complexes of the Antibacterial Drug Oxolinic Acid: Synthesis, Characterization, DNA/Protein Binding and Cytotoxicity Studies. Molecules 2020; 25:molecules25225418. [PMID: 33228104 PMCID: PMC7699381 DOI: 10.3390/molecules25225418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
"Drug repositioning" is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y3+, La3+, Sm3+, Eu3+, Gd3+, Tb3+) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm3+ complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (Kb) towards double stranded DNA in the range of 9.33 × 104 - 10.72 × 105. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.
Collapse
Affiliation(s)
- Ana-Madalina Maciuca
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
| | - Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str, 020956 Bucharest, Romania;
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy (IBRA), 296 Spl. Independenţei, 060031 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| |
Collapse
|
10
|
Arumov A, Liyanage PY, Trabolsi A, Roberts ER, Li L, Ferreira BCLB, Gao Z, Ban Y, Newsam AD, Taggart MW, Vega F, Bilbao D, Leblanc RM, Schatz JH. Optimized Doxorubicin Chemotherapy for Diffuse Large B-cell Lymphoma Exploits Nanocarrier Delivery to Transferrin Receptors. Cancer Res 2020; 81:763-775. [PMID: 33177062 DOI: 10.1158/0008-5472.can-20-2674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
New treatments are needed to address persistent unmet clinical needs for diffuse large B-cell lymphoma (DLBCL). Overexpression of transferrin receptor 1 (TFR1) is common across cancer and permits cell-surface targeting of specific therapies in preclinical and clinical studies of various solid tumors. Here, we developed novel nanocarrier delivery of chemotherapy via TFR1-mediated endocytosis, assessing this target for the first time in DLBCL. Analysis of published datasets showed novel association of increased TFR1 expression with high-risk DLBCL cases. Carbon-nitride dots (CND) are emerging nanoparticles with excellent in vivo stability and distribution and are adaptable to covalent conjugation with multiple substrates. In vitro, linking doxorubicin (Dox) and transferrin (TF) to CND (CND-Dox-TF, CDT) was 10-100 times more potent than Dox against DLBCL cell lines. Gain- and loss-of-function studies and fluorescent confocal microscopy confirmed dependence of these effects on TFR1-mediated endocytosis. In contrast with previous therapeutics directly linking Dox and TF, cytotoxicity of CDT resulted from nuclear entry by Dox, promoting double-stranded DNA breaks and apoptosis. CDT proved safe to administer in vivo, and when incorporated into standard frontline chemoimmunotherapy in place of Dox, it improved overall survival by controlling patient-derived xenograft tumors with greatly reduced host toxicities. Nanocarrier-mediated Dox delivery to cell-surface TFR1, therefore, warrants optimization as a potential new therapeutic option in DLBCL. SIGNIFICANCE: Targeted nanoparticle delivery of doxorubicin chemotherapy via the TRF1 receptor presents a new opportunity against high-risk DLBCL tumors using potency and precision.
Collapse
Affiliation(s)
- Artavazd Arumov
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, Florida
| | - Asaad Trabolsi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Division of Hospital Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Evan R Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Lingxiao Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Zhen Gao
- Biostatistics and Bioinformatics Core Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Core Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin D Newsam
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida.
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. .,Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
11
|
Synthesis, X-ray structure, vibrational spectroscopy, DFT, biological evaluation and molecular docking studies of (E)-N’-(4-(dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128541] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Anemia of Chronic Diseases: Wider Diagnostics-Better Treatment? Nutrients 2020; 12:nu12061784. [PMID: 32560029 PMCID: PMC7353365 DOI: 10.3390/nu12061784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Anemia of chronic diseases is a condition that accompanies a specific underlying disease, in which there is a decrease in hemoglobin, hematocrit and erythrocyte counts due to a complex process, usually initiated by cellular immunity mechanisms and pro-inflammatory cytokines and hepcidin. This is the second most common type of anemia after iron deficiency anemia in the world. Its severity generally correlates with the severity of the underlying disease. This disease most often coexists with chronic inflammation, autoimmune diseases, cancer, and kidney failure. Before starting treatment, one should undertake in-depth diagnostics, which includes not only assessment of complete blood count and biochemical parameters, but also severity of the underlying disease. The differential diagnosis of anemia of chronic diseases is primarily based on the exclusion of other types of anemia, in particular iron deficiency. The main features of anemia of chronic diseases include mild to moderate lowering of hemoglobin level, decreased percentage of reticulocyte count, low iron and transferrin concentration, but increased ferritin. Due to the increasingly better knowledge of the pathomechanism of chronic diseases and cancer biology, the diagnosis of this anemia is constantly expanding with new biochemical indicators. These include: the concentration of other hematopoietic factors (folic acid, vitamin B12), hepcidin, creatinine and erythropoietin. The basic form of treatment of anemia of chronic diseases remains supplementation with iron, folic acid and vitamin B12 as well as a diet rich in the above-mentioned hematopoietic factors. The route of administration (oral, intramuscular or intravenous) requires careful consideration of the benefits and possible side effects, and assessment of the patient’s clinical status. New methods of treating both the underlying disease and anemia are raising hopes. The novel methods are associated not only with supplementing deficiencies, but also with the administration of drugs molecularly targeted to specific proteins or receptors involved in the development of anemia of chronic diseases.
Collapse
|
13
|
Fernandes MA, Hanck-Silva G, Baveloni FG, Oshiro Junior JA, de Lima FT, Eloy JO, Chorilli M. A Review of Properties, Delivery Systems and Analytical Methods for the Characterization of Monomeric Glycoprotein Transferrin. Crit Rev Anal Chem 2020; 51:399-410. [DOI: 10.1080/10408347.2020.1743639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mariza Aires Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- College of Pharmacy, Dentistry and Nursing, Federal University of Ceara (UFC), Fortaleza, Ceará, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
14
|
Capelôa T, Benyahia Z, Zampieri LX, Blackman MCNM, Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 2019; 98:181-191. [PMID: 31112797 DOI: 10.1016/j.semcdb.2019.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Anthracyclines Doxorubicin, Epirubicin, Daunorubicin and Idarubicin are used to treat a variety of tumor types in the clinics, either alone or, most often, in combination therapies. While their cardiotoxicity is well known, the emergence of chemoresistance is also a major issue accounting for treatment discontinuation. Resistance to anthracyclines is associated to the acquisition of multidrug resistance conferred by overexpression of permeability glycoprotein-1 or other efflux pumps, by altered DNA repair, changes in topoisomerase II activity, cancer stemness and metabolic adaptations. This review further details the metabolic aspects of resistance to anthracyclines, emphasizing the contributions of glycolysis, the pentose phosphate pathway and nucleotide biosynthesis, glutathione, lipid metabolism and autophagy to the chemoresistant phenotype.
Collapse
Affiliation(s)
- Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Zohra Benyahia
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marine C N M Blackman
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
15
|
Cranmer LD. Spotlight on aldoxorubicin (INNO-206) and its potential in the treatment of soft tissue sarcomas: evidence to date. Onco Targets Ther 2019; 12:2047-2062. [PMID: 30936721 PMCID: PMC6430065 DOI: 10.2147/ott.s145539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anthracyclines, and doxorubicin in particular, remain a mainstay of sarcoma therapy. Despite modest activity and significant toxicities, no cytotoxic monotherapy has yet yielded superior overall survival over doxorubicin for therapy of advanced soft tissue sarcomas in a randomized trial. Similarly, combination regimens have also been unable to overcome doxorubicin in terms of overall survival. Strategies to ameliorate the most prominent side effect of doxorubicin, cardiotoxicity, are available, but their use in sarcoma patients has been limited. Aldoxorubicin is a prodrug consisting of doxorubicin with a covalent linker. It binds rapidly after intravenous infusion to cysteine-34 of human serum albumin. The drug-albumin conjugate is preferentially retained in tumor tissue, with uptake into tumoral cells. At physiologic pH, the complex is stable. Hydrolysis can occur under the acidic conditions of the endocytic lysosome, releasing doxorubicin. Doxorubicin then distributes to various cellular compartments, including Golgi, mitochondrion, and nucleus, with subsequent cytotoxic effects. Aldoxorubicin has demonstrated in vitro and in vivo activities in both cancer model systems and human xenografts. Preclinical models also support its decreased cardiac effects vs doxorubicin, although such promising results require formal comparison at efficacy equivalent doses of the two drugs. Phase I studies confirmed the tolerability of aldoxorubicin in humans. Clinical cardiotoxicity was not observed, but molecular and subclinical cardiac effects could be demonstrated. A Phase II study in treatment-naïve, advanced sarcoma patients demonstrated improved progression-free survival and response rate over doxorubicin, although no survival benefit was evident. A Phase III study of aldoxorubicin vs investigator's choice from a panel of chemotherapy regimens in the salvage setting was unable to demonstrate a benefit in progression-free or overall survival in the entire population. Progression-free survival in L-sarcomas (leiomyosarcomas and liposarcomas) was documented. While evidence of subclinical cardiac effects was seen in a small proportion of aldoxorubicin-treated patients, data from both the Phase II and III studies indicated a favorable cardiotoxicity profile vs doxorubicin. Despite the negative results from this Phase III study, the importance of anthracycline therapy in sarcoma management merits further investigation of the potential role of aldoxorubicin in this indication. Other avenues for progress include identification of sensitive histologies and biomarkers of activity, exploration of clinical niches without proven standard therapies, and exploration of alternate dosing strategies.
Collapse
Affiliation(s)
- Lee D Cranmer
- Division of Medical Oncology, University of Washington, Seattle, WA, USA,
| |
Collapse
|
16
|
Rhodium(III) complex with pyrene-pyridyl-hydrazone: synthesis, structure, ligand redox, spectral characterization and DFT calculation. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1598-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Islami M, Zarrabi A, Tada S, Kawamoto M, Isoshima T, Ito Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int J Nanomedicine 2018; 13:6059-6071. [PMID: 30323593 PMCID: PMC6179725 DOI: 10.2147/ijn.s178374] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE An efficient drug-delivery system was prepared based on graphene oxide using a facile and one-step strategy for controlling the release of anticancer drugs. METHODS Fabrication of single-layer graphene oxide (GO) sheets was carried out by both modified and improved Hummers method. Biocompatible hyperbranched polyglycerol (HPG) was grafted on the surface of GO through the ring-opening hyperbranched polymerization of glycidol. Various ratios of GO and glycidol were used for polymer grafting. An anticancer drug, quercetin (Qu), was loaded into modified GO via noncovalent interactions. RESULTS Polymer grafting on the surface of GO sheets was confirmed by results obtained from Fourier-transform infrared and Raman spectroscopy, thermogravimetric analysis, energy-dispersive X-ray and X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. It was revealed that polymerization increased d-spacing between the basal planes. In addition, as a hydrophilic polymer, HPG improved the stability and dispersion of GO sheets in biological solutions and endowed extra drug-loading capacity for the sheets. The effect of hyperbranched structure on drug loading and release was investigated by comparing drug loading and release for HPG-modified GO and linear PPO-modified GO. Our experiments indicated high drug-loading capacity (up to 185%), and excellent encapsulation efficiency (up to 93%) for HPG-GO compared to linear PO-grafted GO. The release profile of Qu under various pH levels exhibited controlled and sustained drug release without an initial burst effect for HPG-GO, suggesting that an acidic solution could facilitate drug release. HPG-GO did not show any cytotoxicity on the MCF7 cell line in different concentrations during 72 hours' incubation. Uptake and entrance of HPG-GO into the cells were verified by determining the intracellular amount of Qu by high-performance liquid chromatography. CONCLUSION A combination of the unique properties of GO and the biodegradable polymer polyglycerol revealed high drug-loading capacity, pH-dependent drug release, and cytocompatibility with HPG-GO, thus introducing it as a promising nanocarrier for anticancer drug delivery.
Collapse
Affiliation(s)
- Matin Islami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441, Iran,
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441, Iran,
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Masuki Kawamoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Zhang YD, Huang QW, Ma C, Liu XY, Zhang HX. Magnetic fluorescent molecularly imprinted nanoparticles for detection and separation of transferrin in human serum. Talanta 2018; 188:540-545. [DOI: 10.1016/j.talanta.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
|
19
|
Chaikomon K, Chattong S, Chaiya T, Tiwawech D, Sritana-Anant Y, Sereemaspun A, Manotham K. Doxorubicin-conjugated dexamethasone induced MCF-7 apoptosis without entering the nucleus and able to overcome MDR-1-induced resistance. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2361-2369. [PMID: 30122894 PMCID: PMC6078182 DOI: 10.2147/dddt.s168588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Doxorubicin (DOX) is the most widely used chemotherapeutic agent that has multimodal cytotoxicity. The main cytotoxic actions of DOX occur in the nucleus. The emergence of drug-resistant cancer cells that have the ability to actively efflux DOX out of the nucleus, and the cytoplasm has led to the search for a more effective derivative of this drug. Materials and methods We created a new derivative of DOX that was derived via simple conjugation of the 3' amino group of DOX to the dexamethasone molecule. Results Despite having a lower cytotoxic activity in MCF-7 cells, the conjugated product, DexDOX, exerted its actions in a manner that was different to that of DOX. DexDOX rapidly induced MCF-7 cell apoptosis without entering the nucleus. Further analysis showed that Dex-DOX increased cytosolic oxidative stress and did not interfere with the cell cycle. In addition, the conjugated product retained its cytotoxicity in multidrug resistance-1-overexpressing MCF-7 cells that had an approximately 16-fold higher resistance to DOX. Conclusion We have synthesized a new derivative of DOX, which has the ability to overcome multidrug resistance-1-induced resistance. This molecule may have potential as a future chemotherapeutic agent.
Collapse
Affiliation(s)
- Kamontip Chaikomon
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bangkok, Thailand, .,Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supreecha Chattong
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bangkok, Thailand, .,EST Laboratory, SS Manufacturing, Nonthaburi, Thailand
| | - Theerasak Chaiya
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bangkok, Thailand,
| | - Danai Tiwawech
- Research Division, National Cancer Institute, Bangkok, Thailand
| | - Yongsak Sritana-Anant
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krissanapong Manotham
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bangkok, Thailand,
| |
Collapse
|
20
|
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018; 7:11. [PMID: 29541939 PMCID: PMC5852245 DOI: 10.1186/s40169-018-0185-6] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
For over six decades reductionist approaches to cancer chemotherapies including recent immunotherapy for solid tumors produced outcome failure-rates of 90% (±5) according to governmental agencies and industry. Despite tremendous public and private funding and initial enthusiasm about missile-therapy for site-specific cancers, molecular targeting drugs for specific enzymes such as kinases or inhibitors of growth factor receptors, the outcomes are very bleak and disappointing. Major scientific reasons for repeated failures of such therapeutic approaches are attributed to reductionist approaches to research and infinite numbers of genetic mutations in chaotic molecular environment of solid tumors that are bases of drug development. Safety and efficacy of candidate drugs tested in test tubes or experimental tumor models of rats or mice are usually evaluated and approved by FDA. Cost-benefit ratios of such 'targeted' therapies are also far from ideal as compared with antibiotics half a century ago. Such alarming records of failure of clinical outcomes, the increased publicity for specific vaccines (e.g., HPV or flu) targeting young and old populations, along with increasing rise of cancer incidence and death created huge and unsustainable cost to the public around the globe. This article discusses a closer scientific assessment of current cancer therapeutics and vaccines. We also present future logical approaches to cancer research and therapy and vaccines.
Collapse
Affiliation(s)
- Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto University (Med), Kumamoto, Kenshin Bldg 3F, Kuwamizu 1-chome, 24-6, Chuo-ku, Kumamoto, 862-0954, Japan.
- Osaka University Medical School, Osaka, Japan.
- Tohoku University, Sendai, Japan.
| | - Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Lelle M, Freidel C, Kaloyanova S, Müllen K, Peneva K. Multivalency: Key Feature in Overcoming Drug Resistance with a Cleavable Cell-Penetrating Peptide-Doxorubicin Conjugate. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Reuter LJ, Shahbazi MA, Mäkilä EM, Salonen JJ, Saberianfar R, Menassa R, Santos HA, Joensuu JJ, Ritala A. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjug Chem 2017; 28:1639-1648. [PMID: 28557453 DOI: 10.1021/acs.bioconjchem.7b00075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.
Collapse
Affiliation(s)
- Lauri J Reuter
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Department of Micro- and Nanotechnology, Technical University of Denmark , 2800 Copenhagen, Denmark
| | - Ermei M Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Reza Saberianfar
- London Research and Development Centre, Agriculture and Agri-Food Canada , N5V 4T3 London, Ontario Canada
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada , N5V 4T3 London, Ontario Canada
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki , 00014 Helsinki, Finland
| | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| |
Collapse
|
23
|
Panek J, Koziolova E, Stepanek P, Etrych T, Janouskova O. Intracellular fate of polymer therapeutics investigated by fluorescence lifetime imaging and fluorescence pattern analysis. Physiol Res 2017; 65:S217-S224. [PMID: 27762587 DOI: 10.33549/physiolres.933423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nanocarriers bearing anticancer drugs are promising candidates to improve the efficacy of cancer therapy and minimize side effects. The most potent cytostatics used in the treatment of various cancers are anthracyclines, e.g. doxorubicin or pirarubicin. Recently, polymer therapeutics carrying anthracyclines have been intensively studied. The precise characterization of in vitro nanocarrier biological behavior brings a better understanding of the nanocarrier characteristics and enables prediction of the behavior of the nanocarrier during in vivo application. Advanced fluorescence detection methods, e.g. fluorescence lifetime imaging microscopy (FLIM), were successfully exploited to describe the properties of various polymeric nano-systems and contributed to a complex view of anthracyclines' intracellular transport and DNA intercalation. Here, we report the application of a specific technique for processing FLIM images, called fluorescence pattern decomposition, to evaluate early events after doxorubicin or pirarubicin treatment of cells. Moreover, we characterized changes in the intracellular localization and release of the anthracyclines during the incubation of cells with polymer nanotherapeutics based on poly[N-(2-hydroxypropyl)-methacrylamide] (pHPMA).
Collapse
Affiliation(s)
- J Panek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Abdel-Monem YK, Abou El-Enein SA, El-Sheikh-Amer MM. Design of new metal complexes of 2-(3-amino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-1-yl)aceto-hydrazide: Synthesis, characterization, modelling and antioxidant activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.110] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Afzal SM, Shareef MZ, Kishan V. Transferrin tagged lipid nanoemulsion of docetaxel for enhanced tumor targeting. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Varshosaz J, Hassanzadeh F, Aliabadi HS, Khoraskani FR, Mirian M, Behdadfar B. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int J Biol Macromol 2016; 93:1192-1205. [DOI: 10.1016/j.ijbiomac.2016.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 10/20/2022]
|
27
|
Sheng Y, You Y, Chen Y. Dual-targeting hybrid peptide-conjugated doxorubicin for drug resistance reversal in breast cancer. Int J Pharm 2016; 512:1-13. [DOI: 10.1016/j.ijpharm.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
28
|
Bergamini F, Ribeiro M, Lancellotti M, Machado D, Miranda P, Cuin A, Formiga A, Corbi P. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Ishiwatari A, Yamaguchi S, Takamori S, Yamahira S, Minamihata K, Nagamune T. Photolytic Protein Aggregates: Versatile Materials for Controlled Release of Active Proteins. Adv Healthc Mater 2016; 5:1002-7. [PMID: 26945901 DOI: 10.1002/adhm.201500957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Indexed: 01/29/2023]
Abstract
Photolytic protein aggregates are developed as a facile and versatile platform for light-induced release of active proteins. The proteins modified with biotin through a photo-cleavable linker rapidly form aggregates with streptavidin and biotinylated functional molecules simply by mixing. Light irradiation releases active proteins from the aggregates in high yields, and light-induced uptake of drug-modified transferrin into living cells is successfully demonstrated.
Collapse
Affiliation(s)
- Akira Ishiwatari
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Satoshi Yamaguchi
- Research Center for Advanced Science and Technology (RCAST); The University of Tokyo; 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Satoshi Takamori
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinya Yamahira
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Minamihata
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
30
|
Lelle M, Kaloyanova S, Freidel C, Theodoropoulou M, Musheev M, Niehrs C, Stalla G, Peneva K. Octreotide-Mediated Tumor-Targeted Drug Delivery via a Cleavable Doxorubicin-Peptide Conjugate. Mol Pharm 2015; 12:4290-300. [PMID: 26524088 DOI: 10.1021/acs.molpharmaceut.5b00487] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although recent methods for targeted drug delivery have addressed many of the existing problems of cancer therapy associated with undesirable side effects, significant challenges remain that have to be met before they find significant clinical relevance. One such area is the delicate chemical bond that is applied to connect a cytotoxic drug with targeting moieties like antibodies or peptides. Here we describe a novel platform that can be utilized for the preparation of drug-carrier conjugates in a site-specific manner, which provides excellent versatility and enables triggered release inside cancer cells. Its key feature is a cleavable doxorubicin-octreotide bioconjugate that targets overexpressed somatostatin receptors on tumor cells, where the coupling between the two components was achieved through the first cleavable disulfide-intercalating linker. The tumor targeting ability and suppression of adrenocorticotropic hormone secretion in AtT-20 cells by both octreotide and the doxorubicin hybrid were determined via a specific radioimmunoassay. Both substances reduced the hormone secretion to a similar extent, which demonstrated that the tumor homing peptide is able to interact with the relevant cell surface receptors after the attachment of the drug. Effective drug release was quickly accomplished in the presence of the physiological reducing agent glutathione. We also demonstrate the relevance of this scaffold in biological context in cytotoxicity assays with pituitary, pancreatic, and breast cancer cell lines.
Collapse
Affiliation(s)
- Marco Lelle
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Stefka Kaloyanova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Freidel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Musheev
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,Division of Molecular Embryology, DKFZ-ZMBH Alliance , 69120 Heidelberg, Germany
| | - Günter Stalla
- Max Planck Institute for Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena , Lessingstrasse 8, 07743 Jena, Germany
| |
Collapse
|
31
|
Cabezón I, Manich G, Martín-Venegas R, Camins A, Pelegrí C, Vilaplana J. Trafficking of Gold Nanoparticles Coated with the 8D3 Anti-Transferrin Receptor Antibody at the Mouse Blood-Brain Barrier. Mol Pharm 2015; 12:4137-45. [PMID: 26440359 DOI: 10.1021/acs.molpharmaceut.5b00597] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Receptor-mediated transcytosis has been widely studied as a possible strategy to transport neurotherapeutics across the blood-brain barrier (BBB). Monoclonal antibodies directed against the transferrin receptor (TfR) have been proposed as potential carrier candidates. A better understanding of the mechanisms involved in their cellular uptake and intracellular trafficking is required and could critically contribute to the improvement of delivery methods. Accordingly, we studied here the trafficking of gold nanoparticles (AuNPs) coated with the 8D3 anti-transferrin receptor antibody at the mouse BBB. 8D3-AuNPs were intravenously administered to mice and allowed to recirculate for a range of times, from 10 min to 24 h, before brain extraction and analysis by transmission electron microscope techniques. Our results indicated a TfR-mediated and clathrin-dependent internalization process by which 8D3-AuNPs internalize individually in vesicles. These vesicles then follow at least two different routes. On one hand, most vesicles enter intracellular processes of vesicular fusion and rearrangement in which the AuNPs end up accumulating in late endosomes, multivesicular bodies or lysosomes, which present a high AuNP content. On the other hand, a small percentage of the vesicles follow a different route in which they fuse with the abluminal membrane and open to the basal membrane. In these cases, the 8D3-AuNPs remain attached to the abluminal membrane, which suggests an endosomal escape, but not dissociation from TfR. Altogether, although receptor-mediated transport continues to be one of the most promising strategies to overcome the BBB, different optimization approaches need to be developed for efficient drug delivery.
Collapse
Affiliation(s)
- Itsaso Cabezón
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain.,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Gemma Manich
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Raquel Martín-Venegas
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain.,Institut de Biomedicina (IBUB), Universitat de Barcelona , Barcelona, Spain.,CIBERNED Centros de Biomedicina en Red de Enfermedades Neurodegenerativas , 28031 Madrid, Spain
| | - Carme Pelegrí
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain.,CIBERNED Centros de Biomedicina en Red de Enfermedades Neurodegenerativas , 28031 Madrid, Spain
| | - Jordi Vilaplana
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Spain.,CIBERNED Centros de Biomedicina en Red de Enfermedades Neurodegenerativas , 28031 Madrid, Spain
| |
Collapse
|
32
|
KOZIOLOVA E, JANOUSKOVA O, CHYTIL P, STUDENOVSKY M, KOSTKA L, ETRYCH T. Nanotherapeutics With Anthracyclines: Methods of Determination and Quantification of Anthracyclines in Biological Samples. Physiol Res 2015; 64:S1-10. [DOI: 10.33549/physiolres.933140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anthracyclines, e.g. doxorubicin, pirarubicin, are widely used as cytostatic agents in the polymer nanotherapeutics designed for the highly effective antitumor therapy with reduced side effects. However, their precise dosage scheme needs to be optimized, which requires an accurate method for their quantification on the cellular level in vitro during nanocarrier development and in body fluids and tissues during testing in vivo. Various methods detecting the anthracycline content in biological samples have already been designed. Most of them are highly demanding and they differ in exactness and reproducibility. The cellular uptake and localization is predominantly observed and determined by microscopy techniques, the anthracycline content is usually quantified by chromatographic analysis using fluorescence detection. We reviewed and compared published methods concerning the detection of anthracycline nanocarriers.
Collapse
Affiliation(s)
- E. KOZIOLOVA
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
33
|
Sheng Y, Xu J, You Y, Xu F, Chen Y. Acid-Sensitive Peptide-Conjugated Doxorubicin Mediates the Lysosomal Pathway of Apoptosis and Reverses Drug Resistance in Breast Cancer. Mol Pharm 2015; 12:2217-28. [PMID: 26035464 DOI: 10.1021/mp500386y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan Sheng
- Nanjing Medical
University, Nanjing 211166, China
| | - Jinhui Xu
- Department
of Pharmacy, Suzhou Municipal Hospital, Suzhou 215001, China
| | - Yiwen You
- Nanjing Medical
University, Nanjing 211166, China
| | - Feifei Xu
- Nanjing Medical
University, Nanjing 211166, China
| | - Yun Chen
- Nanjing Medical
University, Nanjing 211166, China
| |
Collapse
|
34
|
Ebrahimipour SY, Sheikhshoaie I, Castro J, Haase W, Mohamadi M, Foro S, Sheikhshoaie M, Esmaeili-Mahani S. A novel cationic copper(II) Schiff base complex: Synthesis, characterization, crystal structure, electrochemical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
|
36
|
Porciani D, Tedeschi L, Marchetti L, Citti L, Piazza V, Beltram F, Signore G. Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e235. [PMID: 25919089 PMCID: PMC4417125 DOI: 10.1038/mtna.2015.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/26/2015] [Indexed: 02/08/2023]
Abstract
Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells.
Collapse
Affiliation(s)
- David Porciani
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Laura Marchetti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | | | - Vincenzo Piazza
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Giovanni Signore
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
37
|
Song Q, Chuan X, Chen B, He B, Zhang H, Dai W, Wang X, Zhang Q. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells. Drug Deliv 2015; 23:1734-46. [PMID: 25853477 DOI: 10.3109/10717544.2015.1028601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.
Collapse
Affiliation(s)
- Qin Song
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Xingxing Chuan
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Binlong Chen
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Bing He
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Hua Zhang
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Wenbing Dai
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Xueqing Wang
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| | - Qiang Zhang
- a State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , China
| |
Collapse
|
38
|
Mattingly SJ, O'Toole MG, James KT, Clark GJ, Nantz MH. Magnetic nanoparticle-supported lipid bilayers for drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3326-3332. [PMID: 25714501 DOI: 10.1021/la504830z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core-shell Fe3O4-SiO2 nanoparticles (SNPs) were prepared and evaluated as potential drug carriers. We describe how an oxime ether lipid can be mixed with SNPs to produce lipid-particle assemblies with highly positive ζ potential. To demonstrate the potential of the resultant cationic SLBs, the particles were loaded with either the anticancer drug doxorubicin or an amphiphilic analogue, prepared to facilitate integration into the supported lipid bilayer, and then examined in studies against MCF-7 breast cancer cells. The assemblies were rapidly internalized and exhibited higher toxicity than treatments with doxorubicin alone. The magnetic SLBs were also shown to increase the efficacy of unmodified doxorubicin.
Collapse
Affiliation(s)
- Stephanie J Mattingly
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Martin G O'Toole
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Kurtis T James
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Geoffrey J Clark
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Michael H Nantz
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
39
|
Sousa-Herves A, Würfel P, Wegner N, Khandare J, Licha K, Haag R, Welker P, Calderón M. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage. NANOSCALE 2015; 7:3923-32. [PMID: 25516353 DOI: 10.1039/c4nr04428b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by (1)H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.
Collapse
Affiliation(s)
- Ana Sousa-Herves
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine 2015; 10:1399-414. [PMID: 25733832 PMCID: PMC4337502 DOI: 10.2147/ijn.s74514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (K D). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments.
Collapse
Affiliation(s)
- Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Justyna Meissner
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
41
|
Cortese B, D'Amone S, Gigli G, Palamà IE. Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00348a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IM–chitosan complex encapsulated poly(ε-caprolactone) (PCL) nanoparticles are proposed for their potential in enabling more intelligent controlled release and enhancing chemotherapeutic efficiency of IM.
Collapse
Affiliation(s)
- Barbara Cortese
- Institute Nanoscience CNR (NNL, CNR-NANO)
- Lecce
- Italy
- Department of Physics
- University Sapienza
| | | | - Giuseppe Gigli
- Institute Nanoscience CNR (NNL, CNR-NANO)
- Lecce
- Italy
- Dept. Matematica e Fisica ‘Ennio De Giorgi’
- University of Salento
| | | |
Collapse
|
42
|
Protein– and Peptide–Drug Conjugates. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:1-55. [DOI: 10.1016/bs.apcsb.2014.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Szwed M, Kania KD, Jozwiak Z. Relationship between therapeutic efficacy of doxorubicin-transferrin conjugate and expression of P-glycoprotein in chronic erythromyeloblastoid leukemia cells sensitive and resistant to doxorubicin. Cell Oncol (Dordr) 2014; 37:421-8. [PMID: 25410120 PMCID: PMC4255090 DOI: 10.1007/s13402-014-0205-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Conjugation of anti-neoplastic agents with human proteins is a strategy to diminish the toxic side effects of anthracycline antibiotics. We have developed a novel doxorubicin-transferrin (DOX-TRF) conjugate aimed to direct anticancer drugs against therapeutic targets that display altered levels of expression in malignant versus normal cells. Our previous work has shown that the cellular bio-distribution of the conjugate is dependent on a dynamic balance between influx and efflux processes. Here, we set out to investigate whether P-glycoprotein (P-gp) expression may affect DOX-TRF conjugate-induced cellular drug accumulation and cytotoxicity. RESULTS All experiments were carried out on human erythromyeloblastoid cells exhibiting P-gp over-expression (K562/DOX) and its drug sensitive parental line (K562). MTT cytotoxicity, flow cytometry, fluorescence microscopy and RT-PCR assessments revealed that the investigated conjugate (DOX-TRF) possesses a greater cytotoxic potential than free DOX. CONCLUSION Our data suggest that the newly developed DOX-TRF conjugate is a less P-gp dependent substrate than free DOX and, consequently, may be used in a clinical setting to increase treatment efficacy in resistant human tumors.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236, Lodz, Poland,
| | | | | |
Collapse
|
44
|
Liang CH, Ye WL, Zhu CL, Na R, Cheng Y, Cui H, Liu DZ, Yang ZF, Zhou SY. Synthesis of Doxorubicin α-Linolenic Acid Conjugate and Evaluation of Its Antitumor Activity. Mol Pharm 2014; 11:1378-90. [DOI: 10.1021/mp4004139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun-hui Liang
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
- Department
of Pharmacy, Xi’an Children’s Hospital, Xi’an 710002, China
| | - Wei-liang Ye
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Chun-lai Zhu
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Ren Na
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Ying Cheng
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Han Cui
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Dao-zhou Liu
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Zhi-fu Yang
- Department
of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Si-yuan Zhou
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
45
|
Tortorella S, Karagiannis TC. Transferrin Receptor-Mediated Endocytosis: A Useful Target for Cancer Therapy. J Membr Biol 2014; 247:291-307. [DOI: 10.1007/s00232-014-9637-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/11/2014] [Indexed: 12/19/2022]
|
46
|
Sajeesh S, Lee TY, Hong SW, Dua P, Choe JY, Kang A, Yun WS, Song C, Park SH, Kim S, Li C, Lee DK. Long dsRNA-Mediated RNA Interference and Immunostimulation: A Targeted Delivery Approach Using Polyethyleneimine Based Nano-Carriers. Mol Pharm 2014; 11:872-84. [DOI: 10.1021/mp400541z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- S. Sajeesh
- Global
Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Tae Yeon Lee
- Global
Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sun Woo Hong
- Global
Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Pooja Dua
- Global
Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeong Yong Choe
- Global
Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Aeyeon Kang
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Wan Soo Yun
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Changsik Song
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sung Ha Park
- Department
of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Soyoun Kim
- Department
of Medical Biotechnology, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chiang Li
- Department
of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Dong-ki Lee
- Global
Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
47
|
Lelle M, Frick SU, Steinbrink K, Peneva K. Novel cleavable cell-penetrating peptide-drug conjugates: synthesis and characterization. J Pept Sci 2014; 20:323-33. [DOI: 10.1002/psc.2617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Lelle
- Department of Synthetic Chemistry; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Stefanie U. Frick
- Department of Synthetic Chemistry; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Department of Dermatology, University Medical Center; Johannes Gutenberg-University Mainz; Langenbeckstrasse 1 55131 Mainz Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center; Johannes Gutenberg-University Mainz; Langenbeckstrasse 1 55131 Mainz Germany
| | - Kalina Peneva
- Department of Synthetic Chemistry; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
48
|
Tamer Ö, Avcı D, Atalay Y. Quantum chemical characterization of N-(2-hydroxybenzylidene)acetohydrazide (HBAH): a detailed vibrational and NLO analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:78-86. [PMID: 23981418 DOI: 10.1016/j.saa.2013.07.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
The molecular modeling of N-(2-hydroxybenzylidene)acetohydrazide (HBAH) was carried out using B3LYP, CAMB3LYP and PBE1PBE levels of density functional theory (DFT). The molecular structure of HBAH was solved by means of IR, NMR and UV-vis spectroscopies. In order to find the stable conformers, conformational analysis was performed based on B3LYP level. A detailed vibrational analysis was made on the basis of potential energy distribution (PED). HOMO and LUMO energies were calculated, and the obtained energies displayed that charge transfer occurs in HBAH. NLO analysis indicated that HBAH can be used as an effective NLO material. NBO analysis also proved that charge transfer, conjugative interactions and intramolecular hydrogen bonding interactions occur through HBAH. Additionally, major contributions from molecular orbitals to the electronic transitions were investigated theoretically.
Collapse
Affiliation(s)
- Ömer Tamer
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187 Sakarya, Turkey.
| | | | | |
Collapse
|
49
|
Shahbaaz M, Hassan MI, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One 2013; 8:e84263. [PMID: 24391926 PMCID: PMC3877243 DOI: 10.1371/journal.pone.0084263] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is a Gram negative bacterium that belongs to the family Pasteurellaceae, causes bacteremia, pneumonia and acute bacterial meningitis in infants. The emergence of multi-drug resistance H. influenzae strain in clinical isolates demands the development of better/new drugs against this pathogen. Our study combines a number of bioinformatics tools for function predictions of previously not assigned proteins in the genome of H. influenzae. This genome was extensively analyzed and found 1,657 functional proteins in which function of 429 proteins are unknown, termed as hypothetical proteins (HPs). Amino acid sequences of all 429 HPs were extensively annotated and we successfully assigned the function to 296 HPs with high confidence. We also characterized the function of 124 HPs precisely, but with less confidence. We believed that sequence of a protein can be used as a framework to explain known functional properties. Here we have combined the latest versions of protein family databases, protein motifs, intrinsic features from the amino acid sequence, pathway and genome context methods to assign a precise function to hypothetical proteins for which no experimental information is available. We found these HPs belong to various classes of proteins such as enzymes, transporters, carriers, receptors, signal transducers, binding proteins, virulence and other proteins. The outcome of this work will be helpful for a better understanding of the mechanism of pathogenesis and in finding novel therapeutic targets for H. influenzae.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
50
|
Xu J, Sheng Y, Xu F, Yu Y, Chen Y. Quantitative subcellular study of transferrin receptor-targeted doxorubicin and its metabolite in human breast cancer cells. Eur J Drug Metab Pharmacokinet 2013; 39:301-10. [PMID: 24363124 DOI: 10.1007/s13318-013-0165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The extended use of doxorubicin (DOX) could be limited due to the emergence of drug resistance and cardiotoxicity associated with its treatment. Conjugates of DOX with transferrin (DOX-TRF) can effectively alleviate these side effects, thereby leading to a better treatment. The effectiveness of DOX-TRF could result from the enhancement of transferrin receptor (TfR)-mediated transportation. However, detailed TfR-mediated DOX delivery has not been fully elucidated thus far, which may rely on the quantitative subcellular study of DOX distribution and metabolism. In this study, an immunoisolation assay was developed to isolate the organelles with high purity, yield and integrity. Using this immunoisolation assay together with liquid chromatography-tandem mass spectrometry (LC/MS/MS), the subcellular distribution profiles of DOX and its main metabolite doxorubicinol (DOXol) in human breast cancer cells MCF-7/WT and MCF-7/ADR were determined and compared after the treatment of DOX and DOX-TRF. As expected, DOX-TRF treated cells have a higher drug accumulation compared to DOX treated cells. DOX-TRF was predominantly cytoplasmic. In addition, TfR-mediated transportation had a significant impact on the transformation of DOX to DOXol in the cells. This study provided the evidence that immunoisolation together with LC/MS/MS is an effective technique in subcellular investigations.
Collapse
Affiliation(s)
- Jinhui Xu
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166, China
| | | | | | | | | |
Collapse
|