1
|
Huang G, Huang J. Revisiting the Thickness of the Air-Water Interface from Two Extremes of Interface Hydrogen Bond Dynamics. J Chem Theory Comput 2024; 20:9107-9115. [PMID: 39365976 PMCID: PMC11500428 DOI: 10.1021/acs.jctc.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The air-water interface plays a crucial role in many aspects of science because of its unique properties, such as a two-dimensional hydrogen bond (HB) network and completely different HB dynamics compared to bulk water. However, accurately determining the boundary of interfacial and bulk water, that is, the thickness of the air-water interface, still challenges experimentalists. Various simulation-based methods have been developed to estimate the thickness, converging on a range of approximately 3-10 (Å). In this study, we introduce a novel approach, grounded in density functional theory-based molecular dynamics and deep potential molecular dynamics simulations, to measure the air-water interface thickness, offering a different perspective based on prior research. To capture realistic HB dynamics in the air-water interface, two extreme scenarios of the interface HB dynamics are obtained: one underestimates the interface HB dynamics, while the other overestimates it. Surprisingly, our results suggest that the interface HB dynamics in both scenarios converges as the thickness of the air-water interface increases to 4 (Å). This convergence point, indicative of the realistic interface thickness, is also validated by our calculation of anisotropic decay of OH stretch and the free OH dynamics at the air-water interface.
Collapse
Affiliation(s)
- Gang Huang
- Institute
of Theoretical Physics, Chinese Academy
of Sciences, Zhongguancun East Road 55, 100190 Beijing, China
| | - Jie Huang
- Department
of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| |
Collapse
|
2
|
Kastinen T, Batys P, Tolmachev D, Laasonen K, Sammalkorpi M. Ion-Specific Effects on Ion and Polyelectrolyte Solvation. Chemphyschem 2024; 25:e202400244. [PMID: 38712639 DOI: 10.1002/cphc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ion-specific effects on aqueous solvation of monovalent counter ions, Na+ ${^+ }$ , K+ ${^+ }$ , Cl- ${^- }$ , and Br- ${^- }$ , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation. Notably, AIMD captures the experimentally observed differences in Cl- ${^- }$ and Br- ${^- }$ anion solvation and binding with the PEs, while the classical MD simulations fail to differentiate the ion species response. Furthermore, the findings show that combining AIMD with the computationally less costly classical MD simulations allows benefiting from both the increased accuracy and statistics reach.
Collapse
Affiliation(s)
- Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere University, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Dmitry Tolmachev
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| |
Collapse
|
3
|
Ojha D, Henao A, Zysk F, Kühne TD. Nuclear quantum effects on the vibrational dynamics of the water-air interface. J Chem Phys 2024; 160:204114. [PMID: 38804494 DOI: 10.1063/5.0204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
We have applied path-integral molecular dynamics simulations to investigate the impact of nuclear quantum effects on the vibrational dynamics of water molecules at the water-air interface. The instantaneous fluctuations in the frequencies of the O-H stretch modes are calculated using the wavelet method of time series analysis, while the time scales of vibrational spectral diffusion are determined from frequency-time correlation functions and joint probability distributions. We find that the inclusion of nuclear quantum effects leads not only to a redshift in the vibrational frequency distribution by about 120 cm-1 for both the bulk and interfacial water molecules but also to an acceleration of the vibrational dynamics at the water-air interface by as much as 35%. In addition, a blueshift of about 45 cm-1 is seen in the vibrational frequency distribution of interfacial water molecules compared to that of the bulk. Furthermore, the dynamics of water molecules beyond the topmost molecular layer was found to be rather similar to that of bulk water.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Andrés Henao
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Advanced Systems Understanding (CASUS), Untermarkt 20, D-02826 Görlitz, Germany, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany, and TU Dresden, Institute of Artificial Intelligence, Chair of Computational System Sciences, Nöthnitzer Straße 46, D-01187 Dresden, Germany
| |
Collapse
|
4
|
Becker M, Loche P, Rezaei M, Wolde-Kidan A, Uematsu Y, Netz RR, Bonthuis DJ. Multiscale Modeling of Aqueous Electric Double Layers. Chem Rev 2024; 124:1-26. [PMID: 38118062 PMCID: PMC10785765 DOI: 10.1021/acs.chemrev.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
From the stability of colloidal suspensions to the charging of electrodes, electric double layers play a pivotal role in aqueous systems. The interactions between interfaces, water molecules, ions and other solutes making up the electrical double layer span length scales from Ångströms to micrometers and are notoriously complex. Therefore, explaining experimental observations in terms of the double layer's molecular structure has been a long-standing challenge in physical chemistry, yet recent advances in simulations techniques and computational power have led to tremendous progress. In particular, the past decades have seen the development of a multiscale theoretical framework based on the combination of quantum density functional theory, force-field based simulations and continuum theory. In this Review, we discuss these theoretical developments and make quantitative comparisons to experimental results from, among other techniques, sum-frequency generation, atomic-force microscopy, and electrokinetics. Starting from the vapor/water interface, we treat a range of qualitatively different types of surfaces, varying from soft to solid, from hydrophilic to hydrophobic, and from charged to uncharged.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Majid Rezaei
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Institute
of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | | | - Yuki Uematsu
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, 820-8502 Iizuka, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Douwe Jan Bonthuis
- Institute
of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
5
|
Gaur A, Balasubramanian S. Liquid-Vapor Interface of Aqueous Ethylene Glycol Solutions: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:230-240. [PMID: 38150706 DOI: 10.1021/acs.langmuir.3c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
While the organic constituent in an aqueous binary solution enriches its liquid-vapor (l-v) interface, the extent of enrichment can depend nonlinearly on its mole fraction. A microscopic quantification and rationalization of this behavior are crucial to understand the dependence of properties such as surface tension and evaporation rate of the solution on its composition. Extensive all-atom molecular dynamics simulations of aqueous ethylene glycol (EG) solutions show that the composition of the solution at the l-v interface deviates the most from that in the bulk solution at an EG mole fraction of 0.3. The population of EG molecules with their central C-C dihedral in the gauche conformation was found to be higher at the l-v interface than that in the bulk solution to facilitate the orientation of its hydrophobic methyl groups toward the vapor phase. Free energy calculations reveal that in dilute EG solutions, an EG molecule is most stable at the l-v interface. The behavior of vapor pressure in aqueous EG solutions is ideal and follows Raoult's law, while in contrast, the aqueous solution of dimethyl sulfoxide does not. A rationale for the same is provided through the orientational distribution of interfacial water molecules in the respective solutions.
Collapse
Affiliation(s)
- Anjali Gaur
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
6
|
Ricard TC, Zhu X, Iyengar SS. Capturing Weak Interactions in Surface Adsorbate Systems at Coupled Cluster Accuracy: A Graph-Theoretic Molecular Fragmentation Approach Improved through Machine Learning. J Chem Theory Comput 2023. [PMID: 38019639 DOI: 10.1021/acs.jctc.3c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The accurate and efficient study of the interactions of organic matter with the surface of water is critical to a wide range of applications. For example, environmental studies have found that acidic polyfluorinated alkyl substances, especially perfluorooctanoic acid (PFOA), have spread throughout the environment and bioaccumulate into human populations residing near contaminated watersheds, leading to many systemic maladies. Thus, the study of the interactions of PFOA with water surfaces became important for the mitigation of their activity as pollutants and threats to public health. However, theoretical study of the interactions of such organic adsorbates on the surface of water, and their bulk concerted properties, often necessitates the use of ab initio methods to properly incorporate the long-range electronic properties that govern these extended systems. Notable theoretical treatments of "on-water" reactions thus far have employed hybrid DFT and semilocal DFT, but the interactions involved are weak interactions that may be best described using post-Hartree-Fock theory. Here, we aim to demonstrate the utility of a graph-theoretic approach to molecular fragmentation that accurately captures the critical "weak" interactions while maintaining an efficient ab initio treatment of the long-range periodic interactions that underpin the physics of extended systems. We apply this graph-theoretical treatment to study PFOA on the surface of water as a model system for the study of weak interactions seen in the wide range of surface interactions and reactions. The approach divides a system into a set of vertices, that are then connected through edges, faces, and higher order graph theoretic objects known as simplexes, to represent a collection of locally interacting subsystems. These subsystems are then used to construct ab initio molecular dynamics simulations and for computing multidimensional potential energy surfaces. To further improve the computational efficiency of our graph theoretic fragmentation method, we use a recently developed transfer learning protocol to construct the full system potential energy from a family of neural networks each designed to accurately model the behavior of individual simplexes. We use a unique multidimensional clustering algorithm, based on the k-means clustering methodology, to define our training space for each separate simplex. These models are used to extrapolate the energies for molecular dynamics trajectories at PFOA water interfaces, at less than one-tenth the cost as compared to a regular molecular fragmentation-based dynamics calculation with excellent agreement with couple cluster level of full system potential energies.
Collapse
Affiliation(s)
- Timothy C Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiao Zhu
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Bandyopadhyay D, Bhanja K, Choudhury N. On the Propensity of Excess Hydroxide Ions at the Alcohol Monolayer-Water Interface. J Phys Chem B 2023; 127:783-793. [PMID: 36639623 DOI: 10.1021/acs.jpcb.2c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Atomistic molecular dynamics simulations have been employed to study the self-ion (H+ and OH-) distribution at the interface between long-chain C16-OH alcohol (cetyl alcohol) monolayer and water. It is well known that the free air-water interface is acidic due to accumulation of the hydronium (H3O+) ions at the interface. In the present study, we have observed that contrary to the air-water interface, at the long-chain alcohol monolayer-water interface, it is the hydroxide (OH-) ion, not the hydronium ion (H3O+) that gets accumulated. By calculating the potential of mean forces, it is confirmed that there is extra stabilization for the OH- ions at the interface relative to the bulk, but no such stabilization is observed for the H3O+ ions. By analyzing the interaction of the self-ions with other constituents in the medium, it is clearly shown that the favorable interaction of the OH- ions with the alcoholic -OH groups stabilizes this ion at the interface. By calculating coordination numbers of the self-ions it is observed that around 50% water neighbors are substituted by alcoholic -OH in case of the hydroxide ion at the interface, whereas in the case of hydronium ions, only 15% water neighbors are substituted by the alcoholic -OH. The most interesting observation about the local structure and H-bonding pattern is that the hydroxide ion acts solely as the H-bond acceptor, but the hydronium ion acts only as the H-bond donor.
Collapse
Affiliation(s)
| | - Kalyan Bhanja
- Heavy Water Division, Bhabha Atomic Research Centre, Mumbai400 085, India
| | - Niharendu Choudhury
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai400 085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400 094, India
| |
Collapse
|
8
|
Becker MR, Loche P, Netz RR. Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid-vapor interface. J Chem Phys 2022; 157:240902. [PMID: 36586978 DOI: 10.1063/5.0127869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Although conceptually simple, the air-water interface displays rich behavior and is subject to intense experimental and theoretical investigations. Different definitions of the electrostatic surface potential as well as different calculation methods, each relevant for distinct experimental scenarios, lead to widely varying potential magnitudes and sometimes even different signs. Based on quantum-chemical density-functional-theory molecular dynamics (DFT-MD) simulations, different surface potentials are evaluated and compared to force-field (FF) MD simulations. As well explained in the literature, the laterally averaged electrostatic surface potential, accessible to electron holography, is dominated by the trace of the water molecular quadrupole moment, and using DFT-MD amounts to +4.35 V inside the water phase, very different from results obtained with FF water models which yield negative values of the order of -0.4 to -0.6 V. Thus, when predicting potentials within water molecules, as relevant for photoelectron spectroscopy and non-linear interface-specific spectroscopy, DFT simulations should be used. The electrochemical surface potential, relevant for ion transfer reactions and ion surface adsorption, is much smaller, less than 200 mV in magnitude, and depends specifically on the ion radius. Charge transfer between interfacial water molecules leads to a sizable surface potential as well. However, when probing electrokinetics by explicitly applying a lateral electric field in DFT-MD simulations, the electrokinetic ζ-potential turns out to be negligible, in agreement with predictions using continuous hydrodynamic models. Thus, interfacial polarization charges from intermolecular charge transfer do not lead to significant electrokinetic mobility at the pristine vapor-liquid water interface, even assuming these transfer charges are mobile in an external electric field.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
9
|
Yu CC, Imoto S, Seki T, Chiang KY, Sun S, Bonn M, Nagata Y. Accurate molecular orientation at interfaces determined by multimode polarization-dependent heterodyne-detected sum-frequency generation spectroscopy via multidimensional orientational distribution function. J Chem Phys 2022; 156:094703. [DOI: 10.1063/5.0081209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many essential processes occur at soft interfaces, from chemical reactions on aqueous aerosols in the atmosphere to biochemical recognition and binding at the surface of cell membranes. The spatial arrangement of molecules specifically at these interfaces is crucial for many of such processes. The accurate determination of the interfacial molecular orientation has been challenging due to the low number of molecules at interfaces and the ambiguity of their orientational distribution. Here, we combine phase- and polarization-resolved sum-frequency generation (SFG) spectroscopy to obtain the molecular orientation at the interface. We extend an exponentially decaying orientational distribution to multiple dimensions, which, in conjunction with multiple SFG datasets obtained from the different vibrational modes, allows us to determine the molecular orientation. We apply this new approach to formic acid molecules at the air–water interface. The inferred orientation of formic acid agrees very well with ab initio molecular dynamics data. The phase-resolved SFG multimode analysis scheme using the multidimensional orientational distribution thus provides a universal approach for obtaining the interfacial molecular orientation.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Sho Imoto
- Analysis Technology Center, Fujifilm R&D, 210 Nakanuma, Minamiashigara, Kanagawa 250-0123, Japan
| | - Takakazu Seki
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kuo-Yang Chiang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Shumei Sun
- Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, 100875 Beijing, China
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
10
|
Das B, Chandra A. Effects of Stearyl Alcohol Monolayer on the Structure, Dynamics and Vibrational Sum Frequency Generation Spectroscopy of Interfacial Water. Phys Chem Chem Phys 2022; 24:7374-7386. [DOI: 10.1039/d1cp04944e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure, dynamics and vibrational spectroscopy of water surface covered by a monolayer of stearyl alcohol (STA) are investigated by means of molecular dynamics simulations and vibrational sum frequency generation...
Collapse
|
11
|
Wohlfahrt O, Dellago C, Sega M. Ab initio structure and thermodynamics of the RPBE-D3 water/vapor interface by neural-network molecular dynamics. J Chem Phys 2020; 153:144710. [DOI: 10.1063/5.0021852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Oliver Wohlfahrt
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Christoph Dellago
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Marcello Sega
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Str. 248, D-90429 Nürnberg, Germany
| |
Collapse
|
12
|
Ojha D, Kühne TD. "On-The-Fly" Calculation of the Vibrational Sum-Frequency Generation Spectrum at the Air-Water Interface. Molecules 2020; 25:E3939. [PMID: 32872259 PMCID: PMC7504776 DOI: 10.3390/molecules25173939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
In the present work, we provide an electronic structure based method for the "on-the-fly" determination of vibrational sum frequency generation (v-SFG) spectra. The predictive power of this scheme is demonstrated at the air-water interface. While the instantaneous fluctuations in dipole moment are obtained using the maximally localized Wannier functions, the fluctuations in polarizability are approximated to be proportional to the second moment of Wannier functions. The spectrum henceforth obtained captures the signatures of hydrogen bond stretching, bending, as well as low-frequency librational modes.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany;
| | - Thomas D. Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany;
- Paderborn Center for Parallel Computing and Institute for Lightweight Design, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|
13
|
Budkov YA, Kolesnikov AL. Nonlocal density functional theory of water taking into account many-body dipole correlations: binodal and surface tension of 'liquid-vapour' interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:365001. [PMID: 32272457 DOI: 10.1088/1361-648x/ab884a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
In this paper we formulate a nonlocal density functional theory of inhomogeneous water. We model a water molecule as a couple of oppositely charged sites. The negatively charged sites interact with each other through the Lennard-Jones potential (steric and dispersion interactions), square-well potential (short-range specific interactions due to electron charge transfer), and Coulomb potential, whereas the positively charged sites interact with all types of sites by applying the Coulomb potential only. Taking into account the nonlocal packing effects via the fundamental measure theory, dispersion and specific interactions in the mean-field approximation, and electrostatic interactions at the many-body level through the random phase approximation, we describe the liquid-vapour interface. We demonstrate that our model without explicit account of the association of water molecules due to hydrogen bonding and with explicit account of the electrostatic interactions at the many-body level is able to describe the liquid-vapour coexistence curve and the surface tension at the ambient pressures and temperatures. We obtain very good agreement with available in the literature MD simulation results for density profile of liquid-vapour interface at ambient state parameters. The formulated theory can be used as a theoretical background for describing of the capillary phenomena, occurring in micro- and mesoporous materials.
Collapse
Affiliation(s)
- Yu A Budkov
- School of Applied Mathematics, Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Tallinskaya st. 34, 123458 Moscow, Russia
- G A Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya st., 1, 153045 Ivanovo, Russia
| | - A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 997] [Impact Index Per Article: 249.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
15
|
Elgabarty H, Kühne TD. Tumbling with a limp: local asymmetry in water's hydrogen bond network and its consequences. Phys Chem Chem Phys 2020; 22:10397-10411. [DOI: 10.1039/c9cp06960g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ab initio molecular dynamics simulations of ambient liquid water and energy decomposition analysis have recently shown that water molecules exhibit significant asymmetry between the strengths of the two donor and/or the two acceptor interactions.
Collapse
Affiliation(s)
- Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design
- Chair of Theoretical Chemistry
- University of Paderborn
- Paderborn
- Germany
| | - Thomas D. Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design
- Chair of Theoretical Chemistry
- University of Paderborn
- Paderborn
- Germany
| |
Collapse
|
16
|
Boily JF, Fu L, Tuladhar A, Lu Z, Legg BA, Wang ZM, Wang H. Hydrogen bonding and molecular orientations across thin water films on sapphire. J Colloid Interface Sci 2019; 555:810-817. [PMID: 31425917 DOI: 10.1016/j.jcis.2019.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
HYPOTHESIS Water vapor binding to metal oxide surfaces produces thin water films with properties controlled by interactions with surface hydroxo sites. Hydrogen bonding populations vary across films and induce different molecular orientations than at the surface of liquid water. Identifying these differences can open possibilities for tailoring film-mediated catalytic reactions by choice of the supporting metal oxide substrate. EXPERIMENTS The (0001) face of a single sapphire (α-Al2O3) sample exposed to water vapor and the surface of liquid water were probed by polarization dependent Sum Frequency Generation-Vibration Spectroscopy (SFG-VS). Molecular dynamics (MD) provided insight into the hydrogen bond populations and molecular orientations across films and liquid water. FINDINGS SFG-VS revealed a submonolayer film on sapphire exposed to 43% relative humidity (R.H.), and a multilayer film at 78% R.H. Polarization dependent SFG-VS spectra showed that median tilt angles of free OH bonds on the top of films are at ∼43° from the normal of the (0001) face but at 38° on neat liquid water. These values align with MD simulations, which also show that up to 36% of all OH bonds on films are free. This offers new means for understanding how interfacial reactions on sapphire-supported water films could contrast with those involving liquid water.
Collapse
Affiliation(s)
| | - Li Fu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Aashish Tuladhar
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Zhou Lu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Benjamin A Legg
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Zheming M Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Hongfei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
17
|
Ojha D, Kaliannan NK, Kühne TD. Time-dependent vibrational sum-frequency generation spectroscopy of the air-water interface. Commun Chem 2019. [DOI: 10.1038/s42004-019-0220-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Vibrational sum-frequency generation spectroscopy is a powerful method to study the microscopic structure and dynamics of interfacial systems. Here we demonstrate a simple computational approach to calculate the time-dependent, frequency-resolved vibrational sum-frequency generation spectrum (TD-vSFG) of the air-water interface. Using this approach, we show that at the air-water interface, the transition of water molecules with bonded OH modes to free OH modes occurs at a time scale of $$\sim$$
~
3 ps, whereas water molecules with free OH modes rapidly make a transition to a hydrogen-bonded state within $$\sim$$
~
2 ps. Furthermore, we also elucidate the origin of the observed differential dynamics based on the time-dependent evolution of water molecules in the different local solvent environments.
Collapse
|
18
|
Robalo JR, Streacker LM, Mendes de Oliveira D, Imhof P, Ben-Amotz D, Verde AV. Hydrophobic but Water-Friendly: Favorable Water–Perfluoromethyl Interactions Promote Hydration Shell Defects. J Am Chem Soc 2019; 141:15856-15868. [DOI: 10.1021/jacs.9b06862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- João R. Robalo
- Department of Theory & Bio-systems, Max Planck Institute for Colloids and Interfaces, Science Park, Potsdam 14476, Germany
| | - Louis M. Streacker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Petra Imhof
- Institute for Theoretical Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana Vila Verde
- Department of Theory & Bio-systems, Max Planck Institute for Colloids and Interfaces, Science Park, Potsdam 14476, Germany
| |
Collapse
|
19
|
Ohto T, Dodia M, Xu J, Imoto S, Tang F, Zysk F, Kühne TD, Shigeta Y, Bonn M, Wu X, Nagata Y. Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water-Air Interface. J Phys Chem Lett 2019; 10:4914-4919. [PMID: 31393136 PMCID: PMC6748669 DOI: 10.1021/acs.jpclett.9b01983] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/08/2019] [Indexed: 05/31/2023]
Abstract
Density functional theory-based molecular dynamics simulations are increasingly being used for simulating aqueous interfaces. Nonetheless, the choice of the appropriate density functional, critically affecting the outcome of the simulation, has remained arbitrary. Here, we assess the performance of various exchange-correlation (XC) functionals, based on the metrics relevant to sum-frequency generation spectroscopy. The structure and dynamics of water at the water-air interface are governed by heterogeneous intermolecular interactions, thereby providing a critical benchmark for XC functionals. We find that the XC functionals constrained by exact functional conditions (revPBE and revPBE0) with the dispersion correction show excellent performance. The poor performance of the empirically optimized density functional (M06-L) indicates the importance of satisfying the exact functional condition. Understanding the performance of different XC functionals can aid in resolving the controversial interpretation of the interfacial water structure and direct the design of novel, improved XC functionals better suited to describing the heterogeneous interactions in condensed phases.
Collapse
Affiliation(s)
- Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jianhang Xu
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fujie Tang
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frederik Zysk
- Dynamics
of Condensed Matter and Center for Sustainable Systems Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Thomas D. Kühne
- Dynamics
of Condensed Matter and Center for Sustainable Systems Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Yasuteru Shigeta
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xifan Wu
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
20
|
A Study of the Shock Sensitivity of Energetic Single Crystals by Large-Scale Ab Initio Molecular Dynamics Simulations. NANOMATERIALS 2019; 9:nano9091251. [PMID: 31484358 PMCID: PMC6780424 DOI: 10.3390/nano9091251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
Understanding the reaction initiation of energetic single crystals under external stimuli is a long-term challenge in the field of high energy density materials. Herewith, we developed an ab initio molecular dynamics method based on the multiscale shock technique (MSST) and reported the reaction initiation mechanism by performing large-scale simulations for the sensitive explosive benzotrifuroxan (BTF), insensitive explosive triaminotrinitrobenzene (TATB), four polymorphs of hexanitrohexaazaisowurtzitane (CL-20) pristine crystals and five novel CL-20 cocrystals. A theoretical indicator, tinitiation, the delay of decomposition reaction under shock, was proposed to characterize the shock sensitivity of energetic single crystal, which was proved to be reliable and satisfactorily consistent with experiments. We found that it was the coupling of heat and pressure that drove the shock reaction, wherein the vibrational spectra, the specific heat capacity, as well as the strength of the trigger bonds were the determinants of the shock sensitivity. The intermolecular hydrogen bonds were found to effectively buffer the system from heating, thereby delaying the decomposition reaction and reducing the shock sensitivity of the energetic single crystal. Theoretical rules for synthesizing novel energetic materials with low shock sensitivity were given. Our work is expected to provide a useful reference for the understanding, certifying and adjusting of the shock sensitivity of novel energetic materials.
Collapse
|
21
|
Elgabarty H, Kaliannan NK, Kühne TD. Enhancement of the local asymmetry in the hydrogen bond network of liquid water by an ultrafast electric field pulse. Sci Rep 2019; 9:10002. [PMID: 31292493 PMCID: PMC6620291 DOI: 10.1038/s41598-019-46449-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
Condensed phase electron decomposition analysis based on density functional theory has recently revealed an asymmetry in the hydrogen-bond network in liquid water, in the sense that a significant population of water molecules are simultaneously donating and accepting one strong hydrogen-bond and another substantially weaker one. Here we investigate this asymmetry, as well as broader structural and energetic features of water's hydrogen-bond network, following the application of an intense electric field square pulse that invokes the ultrafast reorientation of water molecules. We find that the necessary field-strength required to invoke an ultrafast alignment in a picosecond time window is on the order of 108 Vm-1. The resulting orientational anisotropy imposes an experimentally measurable signature on the structure and dynamics of the hydrogen-bond network, including its asymmetry, which is strongly enhanced. The dependence of the molecular reorientation dynamics on the field-strength can be understood by relating the magnitude of the water dipole-field interaction to the rotational kinetic energy, as well as the hydrogen-bond energy.
Collapse
Affiliation(s)
- Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Naveen Kumar Kaliannan
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany.
- Paderborn Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany.
| |
Collapse
|
22
|
Dodia M, Ohto T, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water-Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. J Chem Theory Comput 2019; 15:3836-3843. [PMID: 31074989 PMCID: PMC6750744 DOI: 10.1021/acs.jctc.9b00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
van der Waals (vdW) correction schemes
have been recognized to
be essential for an accurate description of liquid water in first-principles
molecular dynamics simulation. The description of the structure and
dynamics of water is governed by the type of the vdW corrections.
So far, two vdW correction schemes have been often used: empirical
vdW corrections and nonlocal vdW corrections. In this paper, we assess
the influence of the empirical vs nonlocal vdW correction schemes
on the structure and dynamics of water at the water–air interface.
Since the structure of water at the water–air interface is
established by a delicate balance of hydrogen bond formation and breaking,
the simulation at the water–air interface provides a unique
platform to testify as to the heterogeneous interaction of water.
We used the metrics [Ohto et al. , 2019, 15, 595−60230468702] which
are directly connected with the sum-frequency generation spectroscopic
measurement. We find that the overall performance of nonlocal vdW
methods is either similar or worse compared to the empirical vdW methods.
We also investigated the performance of the optB88-DRSLL functional,
which showed slightly less accuracy than the revPBE-D3 method. We
conclude that the revPBE-D3 method shows the best performance for
describing the interfacial water.
Collapse
Affiliation(s)
- Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka, Osaka 560-8531 , Japan
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
23
|
Kaliannan NK, Henao Aristizabal A, Wiebeler H, Zysk F, Ohto T, Nagata Y, Kühne TD. Impact of intermolecular vibrational coupling effects on the sum-frequency generation spectra of the water/air interface. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1620358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Naveen Kumar Kaliannan
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Andres Henao Aristizabal
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Hendrik Wiebeler
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Nagata
- Max-Planck Institute for Polymer Research, Mainz, Germany
| | - Thomas D. Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
- Paderborn Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Paderborn, Germany
| |
Collapse
|
24
|
Biswas S, Mallik BS. Heterogeneous Occupancy and Vibrational Dynamics of Spatially Patterned Water Molecules. J Phys Chem B 2019; 123:4278-4290. [PMID: 31018092 DOI: 10.1021/acs.jpcb.9b00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We performed first-principles molecular dynamics simulations of relatively dilute aqueous solutions of sulfate and thiosulfate dianions to analyze the structure, dynamics, and vibrational spectral properties of water molecules around the solute, especially the spatially patterned solvent molecules in the first solvation layer and the extended layers. This study also involves the investigation of dynamics of dangling OH groups in these layers and their role in patterning the water molecules around the dianions. Structural evaluation of the systems is carried out by radial distribution functions, number integrals, and spatial distribution functions. The lifetime of dangling OH groups inside the solvation shell is compared more to that of the bulk. By constructing the O-H groups in three ensembles (S1, S2, and S3) around the anion, we show that the frequency distribution of OH modes in the S1 ensemble show red-shifting for both sulfate and thiosulfate. The O-H groups in the S2 ensemble of the sulfate-water system show red-shifting by 10 cm-1, while in the case of thiosulfate-water, these O-H groups show blue-shifting by 8 cm-1. The water molecules in S1 and S2 subensembles have slower dynamics compared to those in the bulk (S3). The dynamics of various kinds of hydrogen bonds were characterized by hydrogen bond population correlation functions. The spectral diffusion of solvation shell O-H modes was performed through a frequency-time correlation function. We find a significant amount of orientational retardation of water molecules in the S1 layer and moderate retardation in the S2 layer as compared to that in the bulk, S3 layer. All these findings, the red shift of the OH stretching frequency in S1 and S2 layers, slowing down of the orientational dynamics of OH vectors in S1 and S2 layers, and less diffusivity of water in S1 and S2 layers, show the long-range kosmotropic effect of multivalent sulfate and thiosulfate oxyanions. Due to the long-range effect, heterogeneous occupancy of water molecules is observed, and the water molecules are found to arrange in a patterned manner in the vicinity of anions with varied local density.
Collapse
Affiliation(s)
- Sohag Biswas
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285 , Telangana , India
| | - Bhabani S Mallik
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285 , Telangana , India
| |
Collapse
|
25
|
Biswas S, Mallik BS. Vibration Spectral Dynamics of Weakly Coordinating Water Molecules near an Anion: FPMD Simulations of an Aqueous Solution of Tetrafluoroborate. J Phys Chem B 2019; 123:2135-2146. [PMID: 30759344 DOI: 10.1021/acs.jpcb.9b00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extent to which the ions affect the nearby water molecules will decide the structure-making or breaking nature of those ions in aqueous solutions. The effects of a weakly coordinating anion on the structure, dynamics, and vibrational properties of water molecules are not so significant as compared to an anion capable of making strong ion-water hydrogen bonds. The present work deals with the first-principles molecular dynamics study of an aqueous solution of such a weakly coordinating anion, tetrafluoroborate (BF4-), using dispersion-corrected DFT-based first-principles molecular dynamics (FPMD) simulations. Various structural, dynamical, and spectral properties, such as radial distribution functions (RDFs), rotational dynamics, vibrational density of states (VDOS), hydrogen bond as well as dangling OH autocorrelation functions, and residence dynamics, were calculated to investigate the effects of the anion on nearby water molecules. The process of spectral diffusion was assessed through a time series wavelet transformation of trajectories obtained from FPMD simulations. The first ion-water solvation shell extends up to 5.5 Å, containing around 20 water molecules. The lifetime of the ion-water hydrogen bond is found to be 1.19 ps, whereas the water-water hydrogen bond lifetime is found to be 1.13 ps. Inside the solvation shell, the persistence time of dangling OH chromophores and the average frequency of OH modes inside the solvation shell are found to be more compared to bulk. Three time scales are found for solvation shell OH modes from the frequency-frequency correlation function. A very short time scale is found for the intact ion-water interaction; the short time scale is for the ion-water hydrogen bond, and the long time scale is for escape dynamics of water molecules from the ion solvation shell. From the mean squared displacement, it is found that solvation water molecules diffuse slower than the bulk. However, solvation shell water molecules show faster relaxation from the analysis of rotational anisotropy. Within the longer time scale of spectral diffusion, this process (which is related to various dynamics of the molecules) is not yet complete, as compared to fast anisotropic decay. This fact is similar to the experimental finding of spectral diffusion and anisotropy time scales in the aqueous solution of borohydride anion. The calculated results are also compared with available experimental data wherever possible.
Collapse
Affiliation(s)
- Sohag Biswas
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , 502 285 Telangana , India
| | - Bhabani S Mallik
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, Sangareddy , 502 285 Telangana , India
| |
Collapse
|
26
|
Daub CD, Hänninen V, Halonen L. Ab Initio Molecular Dynamics Simulations of the Influence of Lithium Bromide on the Structure of the Aqueous Solution-Air Interface. J Phys Chem B 2019; 123:729-737. [PMID: 30605330 PMCID: PMC6727360 DOI: 10.1021/acs.jpcb.8b10552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present the results of ab initio molecular dynamics simulations
of the solution–air interface of aqueous lithium bromide (LiBr).
We find that, in agreement with the experimental data and previous
simulation results with empirical polarizable force field models,
Br– anions prefer to accumulate just below the first
molecular water layer near the interface, whereas Li+ cations
remain deeply buried several molecular layers from the interface,
even at very high concentration. The separation of ions has a profound
effect on the average orientation of water molecules in the vicinity
of the interface. We also find that the hydration number of Li+ cations in the center of the slab Nc,Li+–H2O ≈ 4.7 ±
0.3, regardless of the salt concentration. This estimate is consistent
with the recent experimental neutron scattering data, confirming that
results from nonpolarizable empirical models, which consistently predict
tetrahedral coordination of Li+ to four solvent molecules,
are incorrect. Consequently, disruption of the hydrogen bond network
caused by Li+ may be overestimated in nonpolarizable empirical
models. Overall, our results suggest that empirical models, in particular
nonpolarizable models, may not capture all of the properties of the
solution–air interface necessary to fully understand the interfacial
chemistry.
Collapse
Affiliation(s)
- Christopher D Daub
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Vesa Hänninen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Lauri Halonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| |
Collapse
|
27
|
Ohto T, Dodia M, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation. J Chem Theory Comput 2018; 15:595-602. [DOI: 10.1021/acs.jctc.8b00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
28
|
Liu Z, Stecher T, Oberhofer H, Reuter K, Scheurer C. Response properties at the dynamic water/dichloroethane liquid–liquid interface. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1504132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zhu Liu
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Thomas Stecher
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Harald Oberhofer
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Karsten Reuter
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Christoph Scheurer
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| |
Collapse
|
29
|
Jeon J, Hsieh CS, Nagata Y, Bonn M, Cho M. Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation. J Chem Phys 2018; 147:044707. [PMID: 28764370 DOI: 10.1063/1.4995437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The air-water interface has been a subject of extensive theoretical and experimental studies due to its ubiquity in nature and its importance as a model system for aqueous hydrophobic interfaces. We report on the structure and vibrational energy transfer dynamics of this interfacial water system studied with equilibrium and non-equilibrium molecular dynamics simulations employing a density functional theory -based description of the system and the kinetic energy spectral density analysis. The interfacial water molecules are found to make fewer and weaker hydrogen (H)-bonds on average compared to those in the bulk. We also find that (i) the H-bonded OH groups conjugate to the free OH exhibit rather low vibrational frequencies (3000-3500 cm-1); (ii) the presence of a significant fraction (>10%) of free and randomly oriented water molecules at the interface ("labile water"), neither of whose OH groups are strong H-bond donors; (iii) the inertial rotation of free OH groups, especially from the labile water, contribute to the population decay of excited free OH groups with comparable rate and magnitude as intramolecular energy transfer between the OH groups. These results suggest that the labile water, which might not be easily detectable by the conventional vibrational sum frequency generation method, plays an important role in the surface water dynamics.
Collapse
Affiliation(s)
- Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Cho-Shuen Hsieh
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Yuki Nagata
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| |
Collapse
|
30
|
Gürbulak O, Cebe E. Molecular dynamics study of 5CB at the air-water interface: From gas to beyond the monolayer collapse. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Sharma B, Chandra A. Born-Oppenheimer Molecular Dynamics Simulations of a Bromate Ion in Water Reveal Its Dual Kosmotropic and Chaotropic Behavior. J Phys Chem B 2018; 122:2090-2101. [PMID: 29376361 DOI: 10.1021/acs.jpcb.7b09300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvation structure and dynamics of a bromate (BrO3-) ion in water are studied by means of Born-Oppenheimer molecular dynamics simulations at two different temperatures using the Becke-Lee-Yang-Parr functional with Grimme D3 dispersion corrections. The bromate ion possesses a pyramidal structure, and it has two types of solvation sites, namely, the bromine and oxygen atoms. We have looked at different radial and orientational distributions of water molecules around the bromate ion and also investigated their hydrogen bonding properties. The solvation structure of the bromate ion is also compared with that of the iodate (IO3-) ion, which is structurally rather similar to the bromate ion and was found to have some unusual solvation properties in water. It is found that the bromate ion follows a similar trend as that followed by the iodate ion as far as the solvation structure is concerned. However, the effect of the former on surrounding water is found to be much weaker than that of the latter. On the dynamical side, we have looked at diffusion, residence dynamics, and also the orientational and hydrogen bond relaxation of water molecules around the BrO3- ion and compared them with those of the bulk. Dynamical results are presented for both H2O and D2O around the BrO3- ion. Interpretation of the dynamical results in terms of structure-making (kosmotropic)/-breaking (chaotropic) properties of the BrO3- ion reveals that the bromine atom of this ion acts as a water structure breaker, whereas the three oxygens act as water structure makers. Thus, in spite of being a single ion, the bromate ion has dual characteristics and the experimentally observed kosmotropic ability of this ion is actually a trade-off between a chaotropic site (the bromine atom) and three kosmotropic sites (three oxygen atoms) that are present in the ion.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
32
|
Roy Choudhuri J, Chandra A. Effects of dispersion interactions on the structure, polarity, and dynamics of liquid-vapor interface of an aqueous NaCl solution: Results of first principles simulations at room temperature. J Chem Phys 2018; 148:024702. [DOI: 10.1063/1.5005951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jyoti Roy Choudhuri
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
33
|
Tang F, Ohto T, Hasegawa T, Xie WJ, Xu L, Bonn M, Nagata Y. Definition of Free O–H Groups of Water at the Air–Water Interface. J Chem Theory Comput 2017; 14:357-364. [DOI: 10.1021/acs.jctc.7b00566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fujie Tang
- International
Center for Quantum Materials, School of Physics, Peking University, 5
Yiheyuan Road, Haidian, Beijing 100871, China
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Taisuke Hasegawa
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Wen Jun Xie
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- College
of Chemistry and Molecular Engineering, Peking University, 5
Yiheyuan Road, Haidian, Beijing 100871, China
| | - Limei Xu
- International
Center for Quantum Materials, School of Physics, Peking University, 5
Yiheyuan Road, Haidian, Beijing 100871, China
- Collaborative Innovation
Center of Quantum Matter, Beijing 100871, China
| | - Mischa Bonn
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
- Institute for
Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
34
|
Gürbulak O, Cebe E. Molecular dynamics simulations on the adsorption of 4-n-octyl-4′-cyanobiphenyl (8CB) at the air/water interface. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1380530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oğuz Gürbulak
- Department of Physics, Faculty of Science, Ege University, Izmir, Turkey
| | - Emine Cebe
- Department of Physics, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
Galib M, Duignan TT, Misteli Y, Baer MD, Schenter GK, Hutter J, Mundy CJ. Mass density fluctuations in quantum and classical descriptions of liquid water. J Chem Phys 2017; 146:244501. [DOI: 10.1063/1.4986284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mirza Galib
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Timothy T. Duignan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Yannick Misteli
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Marcel D. Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Gregory K. Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jürg Hutter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Christopher J. Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
36
|
Giberti F, Hassanali AA. The excess proton at the air-water interface: The role of instantaneous liquid interfaces. J Chem Phys 2017; 146:244703. [DOI: 10.1063/1.4986082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Federico Giberti
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Ali A. Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
37
|
Sharawy M, Consta S. Characterization of "Star" Droplet Morphologies Induced by Charged Macromolecules. J Phys Chem A 2016; 120:8871-8880. [PMID: 27797502 DOI: 10.1021/acs.jpca.6b08486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
"Star" morphologies of charged liquid droplets are distinct droplet conformations that, for a certain charge squared to volume ratio, have lower energy than their spherically shaped analogues. For these shapes to appear, the charge should be carried by a single ionic species. A typical example of a charge carrier that we employ in this study is a fully charged double-stranded oligodeoxynucleotide (dsDNA) in an aqueous and an acetonitrile droplet. We characterize the structure and dynamics of the star-shaped droplets. We find that by increasing the charge squared to volume ratio, the droplet evolves from spherical to "spiky" shapes, by first passing from droplet sizes that undergo enhanced shape fluctuations relative to those of the larger spherical droplets. These fluctuations mark the onset of the instability. We also find that in the spiky droplet, the orientation of the solvent molecules in the first shell about the dsDNA is very close to that in the bulk solution. However, this orientation is substantially different farther away from the dsDNA. With regards to dynamics, the motion of the spikes is reflected in the autocorrelation functions of rotationally invariant order parameters that show a damped oscillator form of decay, indicative of the elastic motion of the spikes. We compare the formation of spikes with that of the ferrofluids and the dielectric materials in an electric field, and we conclude that they represent a different entity that deserves its own characterization. The study provides insight into the manner in which the charge distribution may give rise to well-controlled droplet morphologies and calls for experiments in this direction.
Collapse
Affiliation(s)
- Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario , London, Ontario Canada N6A 5B7
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario , London, Ontario Canada N6A 5B7.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
38
|
Jeyachandran YL, Meyer F, Benkert A, Bär M, Blum M, Yang W, Reinert F, Heske C, Weinhardt L, Zharnikov M. Investigation of the Ionic Hydration in Aqueous Salt Solutions by Soft X-ray Emission Spectroscopy. J Phys Chem B 2016; 120:7687-95. [PMID: 27442708 DOI: 10.1021/acs.jpcb.6b03952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular structure of the hydration shells and their impact on the hydrogen bond (HB) network of water in aqueous salt solutions is a fundamentally important and technically relevant question. In the present work, such hydration effects were studied for a series of representative salt solutions (NaCl, KCl, CaCl2, MgCl2, and KBr) by soft X-ray emission spectroscopy (XES) and resonant inelastic soft X-ray scattering (RIXS). The oxygen K-edge XES spectra could be described with three components, attributed to initial state HB configurations in pure water, water molecules that have undergone an ultrafast dissociation initiated by the X-ray excitation, and water molecules in contact with salt ions. The behavior of the individual components, as well as the spectral shape of the latter component, has been analyzed in detail. In view of the role of ions in such effects as protein denaturation (i.e., the Hofmeister series), we discuss the ion-specific nature of the hydration shells and find that the results point to a predominant role of anions as compared to cations. Furthermore, we observe a concentration-dependent suppression of ultrafast dissociation in all salt solutions, associated with a significant distortion of intact HB configurations of water molecules facilitating such a dissociation.
Collapse
Affiliation(s)
- Y L Jeyachandran
- Angewandte Physikalische Chemie, Universität Heidelberg , Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - F Meyer
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - A Benkert
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) , Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - M Bär
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institute für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg , Platz der Deutschen Einheit 1, 03046 Cottbus, Germany.,Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV) , 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - M Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV) , 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - W Yang
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - F Reinert
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - C Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) , Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV) , 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States.,Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18/20, 76028 Karlsruhe, Germany
| | - L Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) , Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV) , 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States.,Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18/20, 76028 Karlsruhe, Germany
| | - M Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg , Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Tong Y, Kampfrath T, Campen RK. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid. Phys Chem Chem Phys 2016; 18:18424-30. [PMID: 27339861 DOI: 10.1039/c6cp01004k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.
Collapse
Affiliation(s)
- Yujin Tong
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | |
Collapse
|
40
|
Nagata Y, Ohto T, Bonn M, Kühne TD. Surface tension of ab initio liquid water at the water-air interface. J Chem Phys 2016; 144:204705. [DOI: 10.1063/1.4951710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
41
|
Perakis F, De Marco L, Shalit A, Tang F, Kann ZR, Kühne TD, Torre R, Bonn M, Nagata Y. Vibrational Spectroscopy and Dynamics of Water. Chem Rev 2016; 116:7590-607. [DOI: 10.1021/acs.chemrev.5b00640] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fivos Perakis
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrey Shalit
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Fujie Tang
- International Center for Quantum Materials, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Zachary R. Kann
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States,
| | - Thomas D. Kühne
- Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Renato Torre
- European Lab for Nonlinear Spectroscopy and Dipartimento di Fisica e Astronomia, Università di Firenze, Via Nello Carrara 1, Sesto Fiorentino (Firenze) I-50019, Italy
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
42
|
Nagata Y, Ohto T, Backus EHG, Bonn M. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics. J Phys Chem B 2016; 120:3785-96. [DOI: 10.1021/acs.jpcb.6b01012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ellen H. G. Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
43
|
John C, Spura T, Habershon S, Kühne TD. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics. Phys Rev E 2016; 93:043305. [PMID: 27176426 DOI: 10.1103/physreve.93.043305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 06/05/2023]
Abstract
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
Collapse
Affiliation(s)
- Christopher John
- Dynamics of Condensed Matter, Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Thomas Spura
- Dynamics of Condensed Matter, Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Thomas D Kühne
- Dynamics of Condensed Matter, Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany and Paderborn Center for Parallel Computing and Institute for Lightweight Design, Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| |
Collapse
|
44
|
|
45
|
Partanen L, Murdachaew G, Gerber RB, Halonen L. Temperature and collision energy effects on dissociation of hydrochloric acid on water surfaces. Phys Chem Chem Phys 2016; 18:13432-42. [DOI: 10.1039/c6cp00597g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Guevara-Vela JM, Romero-Montalvo E, Mora Gómez VA, Chávez-Calvillo R, García-Revilla M, Francisco E, Pendás ÁM, Rocha-Rinza T. Hydrogen bond cooperativity and anticooperativity within the water hexamer. Phys Chem Chem Phys 2016; 18:19557-66. [DOI: 10.1039/c6cp00763e] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a hierarchy of H-bond strength in terms of the single and double character of the involved donor and acceptors within different structures of (H2O)6.
Collapse
Affiliation(s)
| | - Eduardo Romero-Montalvo
- Institute of Chemistry
- National Autonomous University of Mexico
- Circuito Exterior
- Ciudad Universitaria
- Mexico City
| | - Víctor Arturo Mora Gómez
- Institute of Chemistry
- National Autonomous University of Mexico
- Circuito Exterior
- Ciudad Universitaria
- Mexico City
| | - Rodrigo Chávez-Calvillo
- School of Chemistry
- National Autonomous University of Mexico
- Circuito Exterior
- Ciudad Universitaria
- Mexico City
| | - Marco García-Revilla
- Department of Chemistry
- Division of Natural and Exact Sciences
- University of Guanajuato
- Guanajuato
- Mexico
| | - Evelio Francisco
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Oviedo
- Spain
| | - Ángel Martín Pendás
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Oviedo
- Spain
| | - Tomás Rocha-Rinza
- Institute of Chemistry
- National Autonomous University of Mexico
- Circuito Exterior
- Ciudad Universitaria
- Mexico City
| |
Collapse
|
47
|
Martiniano HFMC, Galamba N. Fast and slow dynamics and the local structure of liquid and supercooled water next to a hydrophobic amino acid. Phys Chem Chem Phys 2016; 18:27639-27647. [DOI: 10.1039/c6cp04532d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study, through molecular dynamics simulations, the structure and orientational dynamics of water next to a blocked hydrophobic amino acid, valine (Val), above and below the freezing point of water.
Collapse
Affiliation(s)
- H. F. M. C. Martiniano
- BioSystems & Integrative Sciences Institute
- Faculdade de Ciências da Universidade de Lisboa
- Campo Grande
- Portugal
| | - N. Galamba
- Centro de Química e Bioquímica
- Faculdade de Ciências da Universidade de Lisboa
- Campo Grande
- Portugal
| |
Collapse
|
48
|
Del Ben M, Hutter J, VandeVondele J. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. J Chem Phys 2015; 143:054506. [PMID: 26254660 DOI: 10.1063/1.4927325] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
Collapse
Affiliation(s)
- Mauro Del Ben
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Joost VandeVondele
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| |
Collapse
|
49
|
Ohto T, Backus EHG, Hsieh CS, Sulpizi M, Bonn M, Nagata Y. Lipid carbonyl groups terminate the hydrogen bond network of membrane-bound water. J Phys Chem Lett 2015; 6:4499-4503. [PMID: 26506078 DOI: 10.1021/acs.jpclett.5b02141] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a combined experimental sum-frequency generation (SFG) spectroscopy and ab initio molecular dynamics simulations study to clarify the structure and orientation of water at zwitterionic phosphatidylcholine (PC) lipid and amine N-oxide (AO) surfactant monolayers. Simulated O-H stretch SFG spectra of water show good agreement with the experimental data. The SFG response at the PC interface exhibits positive peaks, whereas both negative and positive bands are present for the similar zwitterionic AO interface. The positive peaks at the water/PC interface are attributed to water interacting with the lipid carbonyl groups, which act as efficient hydrogen bond acceptors. This allows the water hydrogen bond network to reach, with its (up-oriented) O-H groups, into the headgroup of the lipid, a mechanism not available for water underneath the AO surfactant. This highlights the role of the lipid carbonyl group in the interfacial water structure at the membrane interface, namely, stabilizing the water hydrogen bond network.
Collapse
Affiliation(s)
- Tatsuhiko Ohto
- Max-Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
- Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ellen H G Backus
- Max-Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Cho-Shuen Hsieh
- Max-Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Marialore Sulpizi
- Department of Physics, Johannes-Gutenberg University , Staudinger Weg 7, 55099 Mainz, Germany
| | - Mischa Bonn
- Max-Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
50
|
Ohto T, Usui K, Hasegawa T, Bonn M, Nagata Y. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. J Chem Phys 2015; 143:124702. [DOI: 10.1063/1.4931106] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kota Usui
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Taisuke Hasegawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Mischa Bonn
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|