1
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
2
|
Chandran A, Camden JP. Exploring Excited State Landscapes with Surface Enhanced Hyper-Raman Spectroscopy. ACS NANO 2024. [PMID: 39088723 DOI: 10.1021/acsnano.4c06429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In this Perspective, we provide a historical overview of the surface-enhanced hyper-Raman scattering (SEHRS) effect, describe its essential components, highlight the close connection between theory and experiment in several vignettes, and discuss recent analytical applications. SEHRS, the two-photon analog of surface-enhanced Raman scattering (SERS), is a spontaneous nonlinear scattering exhibited by molecules in a plasmonic field. Hyper Raman provides distinctive information on the molecular vibrations and electronic excited states of analytes. A 40-year old mystery surrounding the SEHRS spectra of R6G is used to illustrate the power of SEHRS to explore excited electronic states, revealing how non-Condon effects can influence the two-photon molecular properties. The exceptionally large enhancement factors (>1013) obtained from SEHRS enable the analysis of single molecules and molecules at very low concentrations. This high sensitivity is further augmented by an increased sensitivity to chemical effects, allowing SEHRS to probe changes in the local environment and the orientation of surface ligands. As most SEHRS experiments employ near-infrared (NIR) and short-wave infrared (SWIR) light, it also holds promise for bioimaging studies. Before concluding, we discuss future directions and challenges for the field as it moves forward.
Collapse
Affiliation(s)
- Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Warkentin CL, Frontiera RR. Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic photocatalyst. Proc Natl Acad Sci U S A 2023; 120:e2305932120. [PMID: 37874859 PMCID: PMC10623017 DOI: 10.1073/pnas.2305932120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from [Formula: see text]3.1 to [Formula: see text]4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material-molecule interactions for efficient plasmon-driven photocatalysis.
Collapse
|
5
|
Kozisek J, Slouf M, Sloufova I. Factor analysis of the time series of SERS spectra reveals water arrangement and surface plasmon changes in Ag nanoparticle systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122454. [PMID: 36780740 DOI: 10.1016/j.saa.2023.122454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of Raman signals of molecules localized in the vicinity of plasmonic nanoparticles, known as surface-enhanced Raman scattering (SERS) effect, is strongly influenced by the selected excitation wavelength. The optimal excitation wavelength in SERS measurements is given by the position of the surface plasmon extinction (SPE) band of the studied system. Even a small change of the SPE band intensity, position and/or shape during the measurement may influence the SERS signal significantly. In this work, we prepared several systems of Ag nanoparticles, which were used for the demonstration how the information about SPE changes can be obtained by multivariate statistical analysis (factor analysis; FA) from SERS spectral sets, and employed in more precise and more comprehensive interpretation of the results. In non-aggregated Ag colloidal systems measured at the excitation wavelength of 445 nm, SPE band changes could be monitored by the analysis of water stretching vibration together with the vibrations in the fingerprint region. The FA of the water stretching band region was shown to provide unique information on both arrangement and disarrangement of water molecules in the vicinity of Ag NPs during the time evolution of these SERS active systems. In addition, the FA of the fingerprint region helped to monitor a rapid metalation of meso-tetrakis(N-methyl-4-pyridyl)porphine in etched SERS systems with Ag+ ions released from the NPs surface. In aggregated Ag colloidal systems measured at the excitation wavelength of 785 nm, the FA of SERS spectral sets enabled us to reveal the contribution of the 2nd electromagnetic enhancement to the overall SERS signal. The reliability of our conclusions was verified by comparing the results obtained from FA of SERS spectral sets with the data obtained from the parallel SPE measurements of the studied systems.
Collapse
Affiliation(s)
- Jan Kozisek
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ivana Sloufova
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
6
|
Kumar P, Kuramochi H, Takeuchi S, Tahara T. Photoexcited Plasmon-Driven Ultrafast Dynamics of the Adsorbate Probed by Femtosecond Time-Resolved Surface-Enhanced Time-Domain Raman Spectroscopy. J Phys Chem Lett 2023; 14:2845-2853. [PMID: 36916655 PMCID: PMC10042161 DOI: 10.1021/acs.jpclett.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles have high potential in light-harvesting applications by transferring absorbed photon energy to the adsorbates. However, photoexcited plasmon-driven ultrafast dynamics of the adsorbate on metal nanoparticles have not been clearly understood. We studied ultrafast plasmon-driven processes of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on gold nanoparticle assemblies (GNAs) using time-resolved surface-enhanced impulsive stimulated Raman spectroscopy (TR-SE-ISRS). After photoexciting the localized surface plasmon resonance (LSPR) band of the GNAs, we measured femtosecond time-resolved surface-enhanced Raman spectra of the adsorbate, which exhibited transient bleach in the Raman signal and following biphasic recovery that proceeds on the time scale of a few tens of picoseconds. The TR-SE-ISRS data were analyzed with singular value decomposition, and the obtained species-associated Raman spectra indicated that photoexcitation of the LSPR band alters chemical interaction between BPE and the GNAs on an ultrafast time scale; initial steady-state BPE is recovered through a precursor state that has weaker interaction with the GNAs.
Collapse
Affiliation(s)
- Pardeep Kumar
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
7
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
8
|
Abedin S, Li Y, Sifat AA, Roy K, Potma EO. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas. NANO LETTERS 2022; 22:6685-6691. [PMID: 35960899 PMCID: PMC11168587 DOI: 10.1021/acs.nanolett.2c02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) takes advantage of surface plasmon resonances supported on metallic nanostructures to amplify the coherent Raman response of target molecules. While these metallic antennas have found significant success in SE-CARS studies, photoinduced morphological changes to the nanoantenna under ultrafast excitation introduce significant hurdles in terms of stability and reproducilibty. These hurdles need to be overcome in order to establish SE-CARS as a reliable tool for rapid biomolecular sensing. Here, we address this challenge by performing molecular CARS measurements enhanced by nanoantennas made from high-index dielectric particles with more favorable thermal properties. We present the first experimental demonstration of enhanced molecular CARS signals observed at Si nanoantennas, which offer much improved thermal stability compared to their metallic counterparts.
Collapse
Affiliation(s)
- Shamsul Abedin
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Yong Li
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Abid Anjum Sifat
- Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, United States
| | - Khokan Roy
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, United States
| |
Collapse
|
9
|
Chen Z, Cai Z, Liu W, Yan Z. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 2022; 157:050901. [DOI: 10.1063/5.0086328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects of sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Collapse
Affiliation(s)
- Zhenzhen Chen
- The University of North Carolina at Chapel Hill, United States of America
| | - Zhewei Cai
- Clarkson University, United States of America
| | - Wenbo Liu
- The University of North Carolina at Chapel Hill, United States of America
| | - Zijie Yan
- University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
10
|
Dobryakov AL, Krohn OA, Quick M, Ioffe I, Kovalenko SA. Positive and Negative Signal and Line-Shape in Stimulated Raman Spectroscopy: Resonance Femtosecond Raman Spectra of Diphenylbutadiene. J Chem Phys 2022; 156:084304. [DOI: 10.1063/5.0075116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Grumich R, Griggs-Demmin T, Glover M, Negru B. Fabrication of Stabilized Gold Nanoparticle Oligomers for Surface-Enhanced Spectroscopies. ACS OMEGA 2021; 6:31818-31821. [PMID: 34870004 PMCID: PMC8638002 DOI: 10.1021/acsomega.1c04503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Various time-resolved spectroscopies that take advantage of surface-enhancement have been developed. Only the most robust substrates can withstand the high-intensity laser pulses used by time-resolved methods. We present a simple and reliable stabilization procedure that uses polyvinyl alcohol for the formation of robust gold nanoparticle oligomers that can withstand different hydration and temperature levels. This procedure can be used to produce oligomers with varying and reproducible plasmon resonance conditions. Results show that gold nanoparticle oligomers stabilized in this way are sufficiently sturdy to be used in 3D printing, opening the door for easy production and integration of plasmonic substrates.
Collapse
Affiliation(s)
- Ryan Grumich
- Department of Chemistry, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, California 94928, United States
| | - Trevor Griggs-Demmin
- Department of Chemistry, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, California 94928, United States
| | - Megan Glover
- Department of Chemistry, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, California 94928, United States
| | - Bogdan Negru
- Department of Chemistry, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, California 94928, United States
| |
Collapse
|
12
|
Mandal A, Ziegler LD. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies. J Chem Phys 2021; 155:194701. [PMID: 34800946 DOI: 10.1063/5.0067301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A density matrix treatment of plasmon-enhanced (PE) stimulated Raman spectroscopies is developed. Specifically, PE stimulated Raman Gain/Loss (PE-SRG/L) and coherent anti-Stokes Raman scattering (PE-CARS) due to monochromatic excitation and PE femtosecond stimulated Raman spectroscopy (PE-FSRS) are considered. A Lorentz oscillator model is used to explicitly describe the time dependence of plasmon-enhanced optical fields. These temporal characteristics are required for a density matrix based description of all plasmon-enhanced nonlinear molecular spectroscopies. Dispersive vibrational line shapes in PE-SRG/L and PE-FSRS spectra are shown to result primarily from terms proportional to the square of the complex optical field enhancement factor. The dependence on the plasmon resonance, picosecond and femtosecond pulse characteristics, and molecular vibrational properties are evident in the density matrix derived PE-FSRS intensity expression. The difference in signal detection mechanisms accounts for the lack of dispersive line shapes in PE spontaneous Raman spectroscopy. This density matrix treatment of PE-FSRS line shapes is compared with prior coupled wave results.
Collapse
Affiliation(s)
- Aritra Mandal
- Intel Corporation, 2501 NW 229th Ave., Hillsboro, Oregon 97124, USA
| | - L D Ziegler
- Department of Chemistry, Photonics Center Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
Wang HL, You EM, Panneerselvam R, Ding SY, Tian ZQ. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. LIGHT, SCIENCE & APPLICATIONS 2021; 10:161. [PMID: 34349103 PMCID: PMC8338991 DOI: 10.1038/s41377-021-00599-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.
Collapse
Affiliation(s)
- Hai-Long Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | | | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
14
|
Warkentin CL, Yu Z, Sarkar A, Frontiera RR. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies. Acc Chem Res 2021; 54:2457-2466. [PMID: 33957039 DOI: 10.1021/acs.accounts.1c00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to mitigate the advancing effects of environmental pollution and climate change, immediate action is needed on social, political, and industrial fronts. One segment of industry that contributes significantly to this current crisis is bulk chemical production, where fossil fuels are primarily used to drive reactions at high temperatures and pressures. Toward mitigating the environmental impact of these processes, solar energy has shown promise as a clean and renewable alternative for the photocatalytic synthesis of chemicals. In recent decades, plasmonic materials have emerged as candidates for making this a reality. Because of their unique and tunable interactions with light, plasmonic materials can be used to create energy-rich nanoscale environments. In fact, there is a growing library of chemical reactions that can utilize this plasmonic energy to drive industrially relevant chemistries under standard ambient conditions. However, the efficiency of these reactions is typically low, and a lack of mechanistic understanding of how energy is transferred from plasmons to molecules hinders reaction optimization for use on large scales.To decode the complex chemical and physical processes involved in plasmon-driven photocatalytic reactions, we use surface-enhanced Raman spectroscopy (SERS). In this Account, we detail SERS techniques that we have used and are developing to study molecular transformations, charge transfer, and plasmonic heating in dynamic plasmon-molecule systems on time scales ranging from seconds to femtoseconds. SERS is an ideal analytical tool for understanding plasmon-molecule interactions, as it gives highly specific information about molecular vibrations with high sensitivity, down to the single-molecule level. Importantly, SERS allows for simultaneous pumping of a plasmonic resonance and probing of the enhanced Raman signal from nearby molecules. We have already used these techniques to study a plasmon-driven methyl migration with nanoscale spatial specificity and to understand the charge transfer mechanism and role of heating in the plasmon-mediated dimerization of 4-nitrobenzenethiol. Importantly, from this work we conclude that direct charge transfer, not heating, may play a significant role in driving many plasmon-driven reactions. Despite these recent insights, more work is needed in order to obtain a comprehensive understanding of the broad range of chemistries accessible in plasmon-molecule systems. In the future, our continued development of these SERS-based techniques shows promise in answering questions regarding direct charge transfer, resonance energy transfer, and excitation conditions in plasmon-mediated chemistries.
Collapse
Affiliation(s)
| | - Ziwei Yu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Arghya Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Reynkens K, Clemmen S, Zhao H, Raza A, Vanackere T, Stassen A, Van Daele M, Dendooven J, Baets R. Gold-induced photothermal background in on-chip surface enhanced stimulated Raman spectroscopy. OPTICS LETTERS 2021; 46:953-956. [PMID: 33649629 DOI: 10.1364/ol.418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) and stimulated Raman spectroscopy (SRS) are well established techniques capable of boosting the strength of Raman scattering. The combination of both techniques (surface enhanced stimulated Raman spectroscopy, or SE-SRS) has been reported using plasmonic nanoparticles. In parallel, waveguide enhanced Raman spectroscopy has been developed using nanophotonic and nanoplasmonic waveguides. Here, we explore SE-SRS in nanoplasmonic waveguides. We demonstrate that a combined photothermal and thermo-optic effect in the gold material induces a strong background signal that limits the detection limit for the analyte. The experimental results are in line with theoretical estimates. We propose several methods to reduce or counteract this background.
Collapse
|
16
|
Filipczak P, Pastorczak M, Kardaś T, Nejbauer M, Radzewicz C, Kozanecki M. Spontaneous versus Stimulated Surface-Enhanced Raman Scattering of Liquid Water. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:1999-2004. [PMID: 33584935 PMCID: PMC7874264 DOI: 10.1021/acs.jpcc.0c06937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Indexed: 05/29/2023]
Abstract
We have observed for the first time the surface-enhanced (SE) signal of water in an aqueous dispersion of silver nanoparticles in spontaneous (SERS) and femtosecond stimulated Raman (SE-FSRS) processes with different wavelengths of the Raman pump (515, 715, and 755 nm). By estimating the fraction of water molecules that interact with the metal surface, we have calculated enhancement factors (EF): 4.8 × 106 for SERS and (3.6-3.7) × 106 for SE-FSRS. Furthermore, we have tested the role of simultaneous plasmon resonance and Raman resonance conditions for the aν 1 + bν3 overtone mode of water (755 nm) in SE-FSRS signal amplification. When the wavelength of the Raman pump is within the plasmon resonance of the metal nanoparticles, the Raman resonance has a negligible effect on the EF. However, the Raman resonance with the aν 1 + bν3 mode strongly enhances the signal of the fundamental OH stretching mode of water.
Collapse
Affiliation(s)
- Paulina Filipczak
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Pastorczak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Kardaś
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Nejbauer
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Czesław Radzewicz
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Kozanecki
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
17
|
Zong C, Xie Y, Zhang M, Huang Y, Yang C, Cheng JX. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor. J Chem Phys 2021; 154:034201. [PMID: 33499625 PMCID: PMC7816769 DOI: 10.1063/5.0035163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmon-enhanced coherent Raman scattering microscopy has reached single-molecule detection sensitivity. Due to the different driven fields, there are significant differences between a coherent Raman scattering process and its plasmon-enhanced derivative. The commonly accepted line shapes for coherent anti-Stokes Raman scattering and stimulated Raman scattering do not hold for the plasmon-enhanced condition. Here, we present a theoretical model that describes the spectral line shapes in plasmon-enhanced coherent anti-Stokes Raman scattering (PECARS). Experimentally, we measured PECARS and plasmon-enhanced stimulated Raman scattering (PESRS) spectra of 4-mercaptopyridine adsorbed on the self-assembled Au nanoparticle (NP) substrate and aggregated Au NP colloids. The PECARS spectra show a nondispersive line shape, while the PESRS spectra exhibit a dispersive line shape. PECARS shows a higher signal to noise ratio and a larger enhancement factor than PESRS from the same specimen. It is verified that the nonresonant background in PECARS originates from the photoluminescence of nanostructures. The decoupling of background and the vibrational resonance component results in the nondispersive line shape in PECARS. More local electric field enhancements are involved in the PECARS process than in PESRS, which results in a higher enhancement factor in PECARS. The current work provides new insight into the mechanism of plasmon-enhanced coherent Raman scattering and helps to optimize the experimental design for ultrasensitive chemical imaging.
Collapse
Affiliation(s)
- Cheng Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Yurun Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Yimin Huang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | | - Ji-Xin Cheng
- Author to whom correspondence should be addressed:
| |
Collapse
|
18
|
Koike K, Bando K, Ando J, Yamakoshi H, Terayama N, Dodo K, Smith NI, Sodeoka M, Fujita K. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy. ACS NANO 2020; 14:15032-15041. [PMID: 33079538 DOI: 10.1021/acsnano.0c05010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Visualizing live-cell uptake of small-molecule drugs is paramount for drug development and pharmaceutical sciences. Bioorthogonal imaging with click chemistry has made significant contributions to the field, visualizing small molecules in cells. Furthermore, recent developments in Raman microscopy, including stimulated Raman scattering (SRS) microscopy, have realized direct visualization of alkyne-tagged small-molecule drugs in live cells. However, Raman and SRS microscopy still suffer from limited detection sensitivity with low concentration molecules for observing temporal dynamics of drug uptake. Here, we demonstrate the combination of alkyne-tag and surface-enhanced Raman scattering (SERS) microscopy for the real-time monitoring of drug uptake in live cells. Gold nanoparticles are introduced into lysosomes of live cells by endocytosis and work as SERS probes. Raman signals of alkynes can be boosted by enhanced electric fields generated by plasmon resonance of gold nanoparticles when alkyne-tagged small molecules are colocalized with the nanoparticles. With time-lapse 3D SERS imaging, this technique allows us to investigate drug uptake by live cells with different chemical and physical conditions. We also perform quantitative evaluation of the uptake speed at the single-cell level using digital SERS counting under different quantities of drug molecules and temperature conditions. Our results illustrate that alkyne-tag SERS microscopy has a potential to be an alternative bioorthogonal imaging technique to investigate temporal dynamics of small-molecule uptake of live cells for pharmaceutical research.
Collapse
Affiliation(s)
- Kota Koike
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Bando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Ando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Terayama
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nicholas Isaac Smith
- Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Sartin MM, Su HS, Wang X, Ren B. Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J Chem Phys 2020; 153:170901. [PMID: 33167627 DOI: 10.1063/5.0027917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dynamics are fundamental to all aspects of chemistry and play a central role in the mechanism and product distribution of a chemical reaction. All dynamic processes are influenced by the local environment, so it is of fundamental and practical value to understand the structure of the environment and the dynamics with nanoscale resolution. Most techniques for measuring dynamic processes have microscopic spatial resolution and can only measure the average behavior of a large ensemble of sites within their sampling volumes. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for overcoming this limitation due to its combination of high chemical specificity and spatial resolution that is on the nanometer scale. Adapting it for the study of dynamic systems remains a work in progress, but the increasing sophistication of TERS is making such studies more routine, and there are now growing efforts to use TERS to examine more complex processes. This Perspective aims to promote development in this area of research by highlighting recent progress in using TERS to understand reacting and dynamic systems, ranging from simple model reactions to complex processes with practical applications. We discuss the unique challenges and opportunities that TERS presents for future studies.
Collapse
Affiliation(s)
- Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Fung AA, Shi L. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1501. [PMID: 32686297 PMCID: PMC7554227 DOI: 10.1002/wsbm.1501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Direct imaging of metabolism in cells or multicellular organisms is important for understanding many biological processes. Raman scattering (RS) microscopy, particularly, coherent Raman scattering (CRS) such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), has emerged as a powerful platform for cellular imaging due to its high chemical selectivity, sensitivity, and imaging speed. RS microscopy has been extensively used for the identification of subcellular structures, metabolic observation, and phenotypic characterization. Conjugating RS modalities with other techniques such as fluorescence or infrared (IR) spectroscopy, flow cytometry, and RNA-sequencing can further extend the applications of RS imaging in microbiology, system biology, neurology, tumor biology and more. Here we overview RS modalities and techniques for mammalian cell and tissue imaging, with a focus on the advances and applications of CARS and SRS microscopy, for a better understanding of the metabolism and dynamics of lipids, protein, glucose, and nucleic acids in mammalian cells and tissues. This article is categorized under: Laboratory Methods and Technologies > Imaging Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Kumar P, Kuramochi H, Takeuchi S, Tahara T. Time-Domain Observation of Surface-Enhanced Coherent Raman Scattering with 10 5-10 6 Enhancement. J Phys Chem Lett 2020; 11:6305-6311. [PMID: 32700538 DOI: 10.1021/acs.jpclett.0c01411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining surface-enhanced Raman scattering (SERS) with the coherent nonlinear Raman technique is a promising route for achieving higher sensitivity and time-resolved SERS measurements, yet such attempts have just been started. Here, we report time-domain Raman measurements of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on gold nanoparticle assemblies (GNAs), which were carried out with impulsive stimulated Raman spectroscopy using sub-8 fs pulses. We observe coherent nuclear wavepacket motion of BPE on GNAs with drastic enhancement through the surface plasmon resonance, which provides information on the Raman-active vibrations in the time domain. Through Fourier transform of the measured time-domain Raman data, we obtained SERS spectra of BPE on GNAs with enhancement factors as high as 105-106. The present study not only demonstrates applicability of time-domain nonlinear Raman techniques in SERS, i.e., surface-enhanced impulsive stimulated Raman spectroscopy (SE-ISRS), but also provides a technical basis for femtosecond time-resolved SE-ISRS experiments to track ultrafast dynamics of the adsorbates.
Collapse
Affiliation(s)
- Pardeep Kumar
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
22
|
Burns KH, Srivastava P, Elles CG. Absolute Cross Sections of Liquids from Broadband Stimulated Raman Scattering with Femtosecond and Picosecond Pulses. Anal Chem 2020; 92:10686-10692. [PMID: 32598135 DOI: 10.1021/acs.analchem.0c01785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Broadband stimulated Raman scattering (SRS) is often observed in applications that use nonlinear spectroscopy to probe the composition or dynamics of complex systems. Whether the SRS response is measured intentionally or unintentionally, as a background signal, the relative scattering intensities provide a quantitative measure of the population profile of target molecules. Solvent scattering is a valuable internal reference for determining absolute concentrations in these applications, but accurate cross sections have been reported for only a limited number of transitions in select solvents and were measured using spontaneous Raman scattering with narrowband continuous wave or nanosecond light sources. This work reports the measurement and analysis of absolute Raman scattering cross sections spanning the frequency range of 500-4000 cm-1 for cyclohexane, DMSO, acetonitrile, methanol, water, benzene, and toluene using broadband SRS with femtosecond and picosecond Raman pump pulses at 488 nm. Varying the duration of the Raman pump pulses from ∼80 fs to >1 ps confirms that the cross sections are independent of the spectral bandwidth across the range of ∼250 to <20 cm-1. The cross sections and depolarization ratios measured using broadband SRS agree with the limited number of previously reported values, after accounting for overlapping transitions in the lower-resolution femtosecond and picosecond spectra. The SRS cross sections reported here can be used with confidence as internal reference standards for a wide range of applications, including nonlinear spectroscopy and coherent microscopy measurements using ultrafast lasers.
Collapse
Affiliation(s)
- Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Prasenjit Srivastava
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
23
|
Yi J, You EM, Ding SY, Tian ZQ. Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl Sci Rev 2020; 7:1228-1238. [PMID: 34692147 PMCID: PMC8288858 DOI: 10.1093/nsr/nwaa054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/12/2022] Open
Abstract
Nanostructure-based surface-enhanced infrared absorption (SEIRA) spectroscopy has attracted tremendous interest as an ultrasensitive detection tool that supplies chemical-fingerprint information. The interactions between molecular vibrations and plasmons lead to not only the enhancement of spectral intensity, but also the distortion of spectral Lorentzian lineshapes into asymmetric Fano-type or more complicated lineshapes in the SEIRA spectra; this effect hampers the correct readout of vibrational frequencies and intensities for an accurate interpretation of the measured spectra and quantitative analysis. In this work, we investigate the Fano interference between molecular vibrations and plasmons based on exact electrodynamic simulations and theoretical models. We report that, even if the molecular vibrational energy is equal to the plasmon resonant energy, the molecule–nanostructure distance-dependent dipole–dipole interactions, the plasmon-mediated coherent intermolecular interactions and the decay rates of plasmons have a significant impact on the SEIRA lineshapes. This study paves the way for controllable Fano interference at the nanoscale and more studies on plasmon-dressed molecular electronic or vibrational excited states.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Haynes CL, Schatz GC, Weiss PS. Virtual Issue in Honor of Prof. Richard Van Duyne (1945-2019). Anal Chem 2020; 92:4165-4166. [PMID: 32105059 DOI: 10.1021/acs.analchem.0c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
26
|
Zong C, Premasiri R, Lin H, Huang Y, Zhang C, Yang C, Ren B, Ziegler LD, Cheng JX. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat Commun 2019; 10:5318. [PMID: 31754221 PMCID: PMC6872561 DOI: 10.1038/s41467-019-13230-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
Stimulated Raman scattering (SRS) microscopy allows for high-speed label-free chemical imaging of biomedical systems. The imaging sensitivity of SRS microscopy is limited to ~10 mM for endogenous biomolecules. Electronic pre-resonant SRS allows detection of sub-micromolar chromophores. However, label-free SRS detection of single biomolecules having extremely small Raman cross-sections (~10-30 cm2 sr-1) remains unreachable. Here, we demonstrate plasmon-enhanced stimulated Raman scattering (PESRS) microscopy with single-molecule detection sensitivity. Incorporating pico-Joule laser excitation, background subtraction, and a denoising algorithm, we obtain robust single-pixel SRS spectra exhibiting single-molecule events, verified by using two isotopologues of adenine and further confirmed by digital blinking and bleaching in the temporal domain. To demonstrate the capability of PESRS for biological applications, we utilize PESRS to map adenine released from bacteria due to starvation stress. PESRS microscopy holds the promise for ultrasensitive detection and rapid mapping of molecular events in chemical and biomedical systems.
Collapse
Affiliation(s)
- Cheng Zong
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Ranjith Premasiri
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.,Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Haonan Lin
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Yimin Huang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Chi Zhang
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.,Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lawrence D Ziegler
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.,Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Department of Chemistry, Boston University, Boston, MA, 02215, USA. .,Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
27
|
Lee SA, Biteen JS. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. J Phys Chem Lett 2019; 10:5764-5769. [PMID: 31508965 DOI: 10.1021/acs.jpclett.9b02480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescent molecules are highly susceptible to their local environment. Thus, a fluorescent molecule near a plasmonic nanoparticle can experience changes in local electric field and local density of states that reshape its intrinsic emission spectrum. By avoiding ensemble averaging while simultaneously measuring the super-resolved position of the fluorophore and its emission spectrum, single-molecule hyperspectral imaging is uniquely suited to differentiate changes in the spectrum from heterogeneous ensemble effects. Thus, we uncover for the first time single-molecule fluorescence emission spectrum reshaping upon near-field coupling to individual gold nanoparticles using hyperspectral super-resolution fluorescence imaging, and we resolve this spectral reshaping as a function of the nanoparticle/dye spectral overlap and separation distance. We find that dyes bluer than the plasmon resonance maximum are red-shifted and redder dyes are blue-shifted. The primary vibronic peak transition probabilities shift to favor secondary vibronic peaks, leading to effective emission maxima shifts in excess of 50 nm, and we understand these light-matter interactions by combining super-resolution hyperspectral imaging and full-field electromagnetic simulations.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Julie S Biteen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
28
|
Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods 2019; 16:830-842. [PMID: 31471618 DOI: 10.1038/s41592-019-0538-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
All molecules consist of chemical bonds, and much can be learned from mapping the spatiotemporal dynamics of these bonds. Since its invention a decade ago, stimulated Raman scattering (SRS) microscopy has become a powerful modality for imaging chemical bonds with high sensitivity, resolution, speed and specificity. We introduce the fundamentals of SRS microscopy and review innovations in SRS microscopes and imaging probes. We highlight examples of exciting biological applications, and share our vision for potential future breakthroughs for this technology.
Collapse
Affiliation(s)
- Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Lixue Shi
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA. .,Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
29
|
Continuous-Wave Coherent Raman Spectroscopy via Plasmonic Enhancement. Sci Rep 2019; 9:12092. [PMID: 31431666 PMCID: PMC6702195 DOI: 10.1038/s41598-019-48573-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 11/27/2022] Open
Abstract
In this paper, we report a successful combination of stimulated Raman spectroscopy (SRS) and surface-enhanced Raman scattering (SERS) using cw laser sources and gold/silica nanoparticles with embedded reporter molecules. We describe the preparation method for our gold/silica nanoparticles as well as the effect of probe wavelength, pump and probe power, polarization and sample concentration on the cwSESRS signal. Altogether, a stable ~12 orders of magnitude enhancement in the stimulated Raman signal is achieved because of the amplification of both pump and probe beams, leading to the detection of pico-molar nanoparticle concentrations, comparable to those of SERS. The coherent Raman spectra matches the incoherent conventional Raman spectra of the reporter molecules. Unlike conventional incoherent SERS this approach generates a coherent stimulated signal of microwatt intensities, opening the field to applications requiring a coherent beam, such as Molecular Holography.
Collapse
|
30
|
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. BIOSENSORS 2019; 9:E57. [PMID: 30999661 PMCID: PMC6627380 DOI: 10.3390/bios9020057] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Collapse
Affiliation(s)
- Roberto Pilot
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Raffaella Signorini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Manjari Bhamidipati
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
Lee CLD, Hewitt KC. First demonstration of surface enhanced-stimulated Raman spectroscopy (SE-SRS) using low-power CW sources. Faraday Discuss 2019; 205:227-232. [PMID: 28967938 DOI: 10.1039/c7fd00137a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using commercially available nanoparticles, continuous wave Surface-Enhanced Stimulated Raman spectroscopy (CW SE-SRS) is demonstrated for the first time using two Ti:Sapphire lasers producing a pump beam (785 nm, 100 mW) and appropriately varying probe/Stokes beams (860-870 nm, 120 mW). The Ti-Sapphire lasers are co-pumped by a 10 W low noise 532 nm Spectra Physics Millennia laser. Pulsed SE-SRS is also demonstrated using a Coherent Chameleon Ultra laser for the Stokes/probe (863-871 nm) beam and a Coherent Ultra II as the pump laser (785 nm). In both cases lock-in techniques are used to extract the small signal (1 in 109) successfully. These experiments convincingly demonstrate that SRS with CW sources is possible using appropriate nanoparticles, and this realization creates opportunities for a wider range of stimulated Raman spectroscopy applications.
Collapse
Affiliation(s)
- C L D Lee
- Dalhousie University, Department of Physics and Atmospheric Sciences, 6310 Coburg Road, B3H 4R2, Halifax, NS, Canada.
| | | |
Collapse
|
32
|
Henry AI, Ueltschi TW, McAnally MO, Van Duyne RP. Spiers Memorial Lecture. Surface-enhanced Raman spectroscopy: from single particle/molecule spectroscopy to ångstrom-scale spatial resolution and femtosecond time resolution. Faraday Discuss 2019; 205:9-30. [PMID: 28906524 DOI: 10.1039/c7fd00181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four decades on, surface-enhanced Raman spectroscopy (SERS) continues to be a vibrant field of research that is growing (approximately) exponentially in scope and applicability while pushing at the ultimate limits of sensitivity, spatial resolution, and time resolution. This introductory paper discusses some aspects related to all four of the themes for this Faraday Discussion. First, the wavelength-scanned SERS excitation spectroscopy (WS-SERES) of single nanosphere oligomers (viz., dimers, trimers, etc.), the distance dependence of SERS, the magnitude of the chemical enhancement mechanism, and the progress toward developing surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) are discussed. Second, our efforts to develop a continuous, minimally invasive, in vivo glucose sensor based on SERS are highlighted. Third, some aspects of our recent work in single molecule SERS and the translation of that effort to ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) and single molecule electrochemistry using electrochemical (EC)-TERS will be presented. Finally, we provide an overview of analytical SERS with our viewpoints on SERS substrates, approaches to address the analyte generality problem (i.e. target molecules that do not spontaneously adsorb and/or have Raman cross sections <10-29 cm2 sr-1), SERS for catalysis, and deep UV-SERS.
Collapse
Affiliation(s)
- Anne-Isabelle Henry
- Departments of Chemistry, Biomedical Engineering, and Applied Physics, Northwestern University, Evanston, IL 60208-3113, USA.
| | | | | | | |
Collapse
|
33
|
Subramanian S, Wu HY, Constant T, Xavier J, Vollmer F. Label-Free Optical Single-Molecule Micro- and Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801246. [PMID: 30073717 DOI: 10.1002/adma.201801246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Indexed: 05/12/2023]
Abstract
Label-free optical sensor systems have emerged that exhibit extraordinary sensitivity for detecting physical, chemical, and biological entities at the micro/nanoscale. Particularly exciting is the detection and analysis of molecules, on miniature optical devices that have many possible applications in health, environment, and security. These micro- and nanosensors have now reached a sensitivity level that allows for the detection and analysis of even single molecules. Their small size enables an exceedingly high sensitivity, and the application of quantum optical measurement techniques can allow the classical limits of detection to be approached or surpassed. The new class of label-free micro- and nanosensors allows dynamic processes at the single-molecule level to be observed directly with light. By virtue of their small interaction length, these micro- and nanosensors probe light-matter interactions over a dynamic range often inaccessible by other optical techniques. For researchers entering this rapidly advancing field of single-molecule micro- and nanosensors, there is an urgent need for a timely review that covers the most recent developments and that identifies the most exciting opportunities. The focus here is to provide a summary of the recent techniques that have either demonstrated label-free single-molecule detection or claim single-molecule sensitivity.
Collapse
Affiliation(s)
- Sivaraman Subramanian
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Hsin-Yu Wu
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Tom Constant
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Jolly Xavier
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Frank Vollmer
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
34
|
Crampton KT, Fast A, Potma EO, Apkarian VA. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study. NANO LETTERS 2018; 18:5791-5796. [PMID: 30064221 DOI: 10.1021/acs.nanolett.8b02438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular surface-enhanced Raman spectra recorded at single plasmonic nanojunctions using a 7 ps pulse train exhibit vibrational up-pumping and population inversion. The process is assigned to plasmon-driven, dark, impulsive electron-vibration (e-v) excitation. Both optical (Raman) pumping and hot-electron mediated excitation can be rejected by the characteristic spectra, which allow the simultaneous measurement of vibrational temperature of the molecules and electronic temperature of the metal. Vibrational populations are determined from anti-Stokes to Stokes intensity ratios, while the electron temperature is obtained from the anti-Stokes branch of the electronic Raman scattering continuum. Population inversion survives in high-frequency vibrations that effectively decouple from the metal.
Collapse
Affiliation(s)
- Kevin T Crampton
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Alexander Fast
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Eric O Potma
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - V Ara Apkarian
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| |
Collapse
|
35
|
Sprague-Klein EA, Negru B, Madison LR, Coste SC, Rugg BK, Felts AM, McAnally MO, Banik M, Apkarian VA, Wasielewski MR, Ratner MA, Seideman T, Schatz GC, Van Duyne RP. Photoinduced Plasmon-Driven Chemistry in trans-1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. J Am Chem Soc 2018; 140:10583-10592. [DOI: 10.1021/jacs.8b06347] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | - Alanna M. Felts
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Mayukh Banik
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vartkess A. Apkarian
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | | | | | | |
Collapse
|
36
|
Ashner MN, Tisdale WA. High repetition-rate femtosecond stimulated Raman spectroscopy with fast acquisition. OPTICS EXPRESS 2018; 26:18331-18340. [PMID: 30114014 DOI: 10.1364/oe.26.018331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Time-resolved femtosecond stimulated Raman spectroscopy (FSRS) is a powerful tool for investigating ultrafast structural and vibrational dynamics in light absorbing systems. However, the technique generally requires exposing a sample to high laser pulse fluences and long acquisition times to achieve adequate signal-to-noise ratios. Here, we describe a time-resolved FSRS instrument built around a Yb ultrafast amplifier operating at 200 kHz, and address some of the unique challenges that arise at high repetition-rates. The setup includes detection with a 9 kHz CMOS camera and an improved dual-chopping scheme to reject scattering artifacts that occur in the 3-pulse configuration. The instrument demonstrates good signal-to-noise performance while simultaneously achieving a 3-6 fold reduction in pulse energy and a 5-10 fold reduction in acquisition time relative to comparable 1 kHz instruments.
Collapse
|
37
|
Jang H, Dhakal KP, Joo KI, Yun WS, Shinde SM, Chen X, Jeong SM, Lee SW, Lee Z, Lee J, Ahn JH, Kim H. Transient SHG Imaging on Ultrafast Carrier Dynamics of MoS 2 Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705190. [PMID: 29436068 DOI: 10.1002/adma.201705190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/10/2017] [Indexed: 05/17/2023]
Abstract
Understanding the collaborative behaviors of the excitons and phonons that result from light-matter interactions is important for interpreting and optimizing the underlying fundamental physics at work in devices made from atomically thin materials. In this study, the generation of exciton-coupled phonon vibration from molybdenum disulfide (MoS2 ) nanosheets in a pre-excitonic resonance condition is reported. A strong rise-to-decay profile for the transient second-harmonic generation (TSHG) of the probe pulse is achieved by applying substantial (20%) beam polarization normal to the nanosheet plane, and tuning the wavelength of the pump beam to the absorption of the A-exciton. The time-dependent TSHG signals clearly exhibit acoustic phonon generation at vibration modes below 10 cm-1 (close to the Γ point) after the photoinduced energy is transferred from exciton to phonon in a nonradiative fashion. Interestingly, by observing the TSHG signal oscillation period from MoS2 samples of varying thicknesses, the speed of the supersonic waves generated in the out-of-plane direction (Mach 8.6) is generated. Additionally, TSHG microscopy reveals critical information about the phase and amplitude of the acoustic phonons from different edge chiralities (armchair and zigzag) of the MoS2 monolayers. This suggests that the technique could be used more broadly to study ultrafast physics and chemistry in low-dimensional materials and their hybrids with ultrahigh fidelity.
Collapse
Affiliation(s)
- Houk Jang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Krishna P Dhakal
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-Il Joo
- School of Electronics and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Seok Yun
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Sachin M Shinde
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Xiang Chen
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soon Moon Jeong
- Smart Textile Convergence Research Group, DGIST, Daegu, 42988, Republic of Korea
| | - Suk Woo Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Zonghoon Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - JaeDong Lee
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunmin Kim
- Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
38
|
Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel Biosensors for the Rapid Detection of Toxicants in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:57-102. [PMID: 29555073 DOI: 10.1016/bs.afnr.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modern environmental and food analysis requires sensitive, accurate, and rapid methods. The growing field of biosensors represents an answer to this demand. Unfortunately, most biosensor systems have been tested only on distilled water or buffered solutions, although applications to real samples are increasingly appearing in recent years. In this context, biosensors for potential food applications continue to show advances in areas such as genetic modification of enzymes and microorganisms, improvement of recognition element immobilization, and sensor interfaces. This chapter investigates the progress in the development of biosensors for the rapid detection of food toxicants for online applications. Recent progress in nanotechnology has produced affordable, mass-produced devices, and to integrate these into components and systems (including portable ones) for mass market applications for food toxicants monitoring. Sensing includes chemical and microbiological food toxicants, such as toxins, insecticides, pesticides, herbicides, microorganisms, bacteria, viruses and other microorganisms, phenolic compounds, allergens, genetically modified foods, hormones, dioxins, etc. Therefore, the state of the art of recent advances and future targets in the development of biosensors for food monitoring is summarized as follows: biosensors for food analysis will be highly sensitive, selective, rapidly responding, real time, massively parallel, with no or minimum sample preparation, and platform suited to portable and handheld nanosensors for the rapid detection of food toxicants for online uses even by nonskilled personnel.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | | | - Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, School of Maritime and Industry, University of Piraeus, Piraeus, Greece
| | - Stephanos Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | - Theo Varzakas
- Laboratory of Inorganic Chemistry, University of Athens, Athens, Greece; Technological Educational Institute of Peloponnese, Kalamata, Greece
| |
Collapse
|
39
|
Panneerselvam R, Liu GK, Wang YH, Liu JY, Ding SY, Li JF, Wu DY, Tian ZQ. Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun (Camb) 2018; 54:10-25. [DOI: 10.1039/c7cc05979e] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This feature article discusses developmental bottleneck issues in surface Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades and future perspectives.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Guo-Kun Liu
- Department of the Environment & Ecology
- State Key Laboratory of Marine Environmental Science
- Xiamen University
- Xiamen 361102
- China
| | - Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- Xiamen University
- Xiamen 361005
- China
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
40
|
Hu SW, Qiao S, Pan JB, Kang B, Xu JJ, Chen HY. A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta 2017; 179:9-14. [PMID: 29310319 DOI: 10.1016/j.talanta.2017.10.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022]
Abstract
A paper-based SERS test strip combining strengths of paper chip and Raman active substrate was demonstrated to overcome challenges in spectroscopic sensing of complicated samples and realize quantitative detection of disease markers in whole blood. The precisely controlled Au NPs were not only capable of generating condensed hot spots on the fibers, but also enhanced the size exclusion effect of paper, resulting in the novel performance on both SERS detection and sample pretreatment. A biosensor for Mucin-1 is developed by equipping the Au NPs with aptamer. Combining all these merits, this small, cheap and portable test strip might find wide application in clinical diagnosis and health evaluation.
Collapse
Affiliation(s)
- Shan-Wen Hu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu Qiao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Sprague-Klein EA, McAnally MO, Zhdanov DV, Zrimsek AB, Apkarian VA, Seideman T, Schatz GC, Van Duyne RP. Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. J Am Chem Soc 2017; 139:15212-15221. [DOI: 10.1021/jacs.7b08868] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | | | - Vartkess A. Apkarian
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | | |
Collapse
|
42
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
43
|
Buchanan LE, McAnally MO, Gruenke NL, Schatz GC, Van Duyne RP. Studying Stimulated Raman Activity in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy by Varying the Excitation Wavelength. J Phys Chem Lett 2017; 8:3328-3333. [PMID: 28679047 DOI: 10.1021/acs.jpclett.7b01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the first multiwavelength surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) study, as well as the first observation of anti-Stokes vibrational features in SE-FSRS spectra. We compare stimulated Raman loss (SRL) and stimulated Raman gain (SRG) signals at three pump wavelengths chosen to sample different portions of nanoparticle aggregate localized surface plasmon resonances. The SE-FSRS signals exhibit similar signal magnitudes in the SRL or SRG regions of the spectra regardless of Raman pump or probe wavelength. The spectral lineshapes, however, differ dramatically with excitation wavelengths. The observed trends in spectral line shape show a strong dependence on the relative position of the excitation fields with respect to the plasmon resonance but do not match predictions from any existing SE-FSRS theory. These results suggest the need for further theoretical efforts with complementary experimental studies of individual aggregates to remove the effects of inherent ensemble averaging.
Collapse
Affiliation(s)
- Lauren E Buchanan
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael O McAnally
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Natalie L Gruenke
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Gandman A, Mackin R, Cohn B, Rubtsov IV, Chuntonov L. Two-Dimensional Fano Lineshapes in Ultrafast Vibrational Spectroscopy of Thin Molecular Layers on Plasmonic Arrays. J Phys Chem Lett 2017; 8:3341-3346. [PMID: 28677974 DOI: 10.1021/acs.jpclett.7b01490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional femtosecond infrared (2DIR) spectroscopy routinely provides insights into molecular structure and ultrafast dynamics in 1-100 μm thick bulk samples. Confinement of molecules to surfaces, gaps, crevices, and other topographic features, frequently encountered on the nanometer length scale, significantly alters their structure and dynamics, affecting physical and chemical properties. Amplification of 2DIR signals by the plasmon-enhanced fields around metal nanostructures can permit structural and dynamics measurements of the confined molecules. Fano resonances, induced by the interaction between laser pulses, plasmon, and vibrational modes significantly distort 2D lineshapes. For different detuning from plasmon resonance, the interference between multiple signal components leads to different line shape asymmetry, which we demonstrate on a set of linear absorption, transient absorption, and 2DIR spectra. An intuitive model used to describe experimental data points to the interference's origin. Our results will facilitate the application of surface-enhanced 2DIR spectroscopy for studies of molecular structure and dynamics in a nanoconfined environment.
Collapse
Affiliation(s)
- Andrey Gandman
- Solid State Institute, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | - Robert Mackin
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Bar Cohn
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Lev Chuntonov
- Solid State Institute, Technion - Israel Institute of Technology , Haifa 32000, Israel
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology , Haifa 32000, Israel
| |
Collapse
|
45
|
Madzharova F, Heiner Z, Kneipp J. Surface enhanced hyper Raman scattering (SEHRS) and its applications. Chem Soc Rev 2017; 46:3980-3999. [PMID: 28530726 DOI: 10.1039/c7cs00137a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface enhanced hyper Raman scattering (SEHRS) is the spontaneous, two-photon excited Raman scattering that occurs for molecules residing in high local optical fields of plasmonic nanostructures. Being regarded as a non-linear analogue of surface enhanced Raman scattering (SERS), SEHRS shares most of its properties, but also has additional characteristics. They include complementary spectroscopic information resulting from different selection rules and a stronger enhancement due to the non-linearity in excitation. In practical spectroscopy, this can translate to advantages, which include a high selectivity when probing molecule-surface interactions, the possibility of probing molecules at low concentrations due to the strong enhancement, and the advantages that come with excitation in the near-infrared. In this review, we give examples of the wealth of vibrational spectroscopic information that can be obtained by SEHRS and discuss work that has contributed to understanding the effect and that therefore provides directions for SEHRS spectroscopy. Future applications could range from biophotonics to materials research.
Collapse
Affiliation(s)
- Fani Madzharova
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Zsuzsanna Heiner
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
46
|
McAnally MO, McMahon JM, Van Duyne RP, Schatz GC. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering. J Chem Phys 2017; 145:094106. [PMID: 27608988 DOI: 10.1063/1.4961749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.
Collapse
Affiliation(s)
- Michael O McAnally
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jeffrey M McMahon
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 USA
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
47
|
Kawata S, Ichimura T, Taguchi A, Kumamoto Y. Nano-Raman Scattering Microscopy: Resolution and Enhancement. Chem Rev 2017; 117:4983-5001. [PMID: 28337915 DOI: 10.1021/acs.chemrev.6b00560] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Raman scattering microscopy is becoming one of the hot topics in analytical microscopy as a tool for analyzing advanced nanomaterials, such as biomolecules in a live cell for the study of cellular dynamics, semiconductor devices for characterizing strain distribution and contamination, and nanocarbons and nano-2D materials. In this paper, we review the recent progress in the development of Raman scattering microscopy from the viewpoint of spatial resolution and scattering efficiency. To overcome the extremely small cross section of Raman scattering, we discuss three approaches for the enhancement of scattering efficiency and show that the scattering enhancement synergistically increases the spatial resolution. We discuss the mechanisms of tip-enhanced Raman scattering, deep-UV resonant Raman scattering, and coherent nonlinear Raman scattering for micro- and nanoscope applications. The combinations of these three approaches are also shown as nanometer-resolution Raman scattering microscopy. The critical issues of the structures, materials, and reproducibility of tips and three-dimensionality for TERS; photodegradation for resonant Raman scattering; and laser availability for coherent nonlinear Raman scattering are also discussed.
Collapse
Affiliation(s)
- Satoshi Kawata
- Department of Applied Physics, Osaka University , Osaka 565-0871, Japan
| | - Taro Ichimura
- Quantitative Biology Center, RIKEN , Osaka 565-0874, Japan
| | - Atsushi Taguchi
- Department of Applied Physics, Osaka University , Osaka 565-0871, Japan
| | - Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine , Kyoto 602-8566, Japan
| |
Collapse
|
48
|
Ding SY, You EM, Tian ZQ, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 2017; 46:4042-4076. [DOI: 10.1039/c7cs00238f] [Citation(s) in RCA: 734] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A fundamental theoretical understanding of SERS, and SERS hotspots, leads to new design principles for SERS substrates and new applications in nanomaterials and chemical analysis.
Collapse
Affiliation(s)
- Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Martin Moskovits
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- California
- USA
| |
Collapse
|
49
|
Pozzi EA, Goubert G, Chiang N, Jiang N, Chapman CT, McAnally MO, Henry AI, Seideman T, Schatz GC, Hersam MC, Duyne RPV. Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chem Rev 2016; 117:4961-4982. [DOI: 10.1021/acs.chemrev.6b00343] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Nan Jiang
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|