1
|
Surowiec RK, Saldivar R, Rai RK, Metzger CE, Jacobson AM, Allen MR, Wallace JM. Ex vivo exposure to calcitonin or raloxifene improves mechanical properties of diseased bone through non-cell mediated mechanisms. Bone 2023; 173:116805. [PMID: 37196853 PMCID: PMC10330631 DOI: 10.1016/j.bone.2023.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Raloxifene (RAL) reduces clinical fracture risk despite modest effects on bone mass and density. This reduction in fracture risk may be due to improved material level-mechanical properties through a non-cell mediated increase in bone hydration. Synthetic salmon calcitonin (CAL) has also demonstrated efficacy in reducing fracture risk with only modest bone mass and density improvements. This study aimed to determine if CAL could modify healthy and diseased bone through cell-independent mechanisms that alter hydration similar to RAL. 26-week-old male C57BL/6 mice induced with chronic kidney disease (CKD) beginning at 16 weeks of age via 0.2 % adenine-laced casein-based (0.9 % P, 0.6 % C) chow, and their non-CKD control littermates (Con), were utilized. Upon sacrifice, right femora were randomly assigned to the following ex vivo experimental groups: RAL (2 μM, n = 10 CKD, n = 10 Con), CAL (100 nM, n = 10 CKD, n = 10 Con), or Vehicle (VEH; n = 9 CKD, n = 9 Con). Bones were incubated in PBS + drug solution at 37 °C for 14 days using an established ex vivo soaking methodology. Cortical geometry (μCT) was used to confirm a CKD bone phenotype, including porosity and cortical thinning, at sacrifice. Femora were assessed for mechanical properties (3-point bending) and bone hydration (via solid state nuclear magnetic resonance spectroscopy with magic angle spinning (ssNMR)). Data were analyzed by two-tailed t-tests (μCT) or 2-way ANOVA for main effects of disease, treatment, and their interaction. Tukey's post hoc analyses followed a significant main effect of treatment to determine the source of the effect. Imaging confirmed a cortical phenotype reflective of CKD, including lower cortical thickness (p < 0.0001) and increased cortical porosity (p = 0.02) compared to Con. In addition, CKD resulted in weaker, less deformable bones. In CKD bones, ex vivo exposure to RAL or CAL improved total work (+120 % and +107 %, respectively; p < 0.05), post-yield work (+143 % and +133 %), total displacement (+197 % and +229 %), total strain (+225 % and +243 %), and toughness (+158 % and +119 %) vs. CKD VEH soaked bones. Ex vivo exposure to RAL or CAL did not impact any mechanical properties in Con bone. Matrix-bound water by ssNMR showed CAL treated bones had significantly higher bound water compared to VEH treated bones in both CKD and Con cohorts (p = 0.001 and p = 0.01, respectively). RAL positively modulated bound water in CKD bone compared to VEH (p = 0.002) but not in Con bone. There were no significant differences between bones soaked with CAL vs. RAL for any outcomes measured. RAL and CAL improve important post-yield properties and toughness in a non-cell mediated manner in CKD bone but not in Con bones. While RAL treated CKD bones had higher matrix-bound water content in line with previous reports, both Con and CKD bones exposed to CAL had higher matrix-bound water. Therapeutic modulation of water, specifically the bound water fraction, represents a novel approach to improving mechanical properties and potentially reducing fracture risk.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Rosario Saldivar
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Epidemiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ratan K Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Corinne E Metzger
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Andrea M Jacobson
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Dwivedi N, Siddiqui MA, Srivastava S, Sinha N. 1 H- 13 C cross-polarization kinetics to probe hydration-dependent organic components of bone extracellular matrix. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:397-406. [PMID: 36946081 DOI: 10.1002/mrc.5347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Bone is a living tissue made up of organic proteins, inorganic minerals, and water. The organic component of bone (mainly made up of Type-I collagen) provides flexibility and tensile strength. Solid-state nuclear magnetic resonance (ssNMR) is one of the few techniques that can provide atomic-level structural insights of such biomaterials in their native state. In the present article, we employed the variable contact time cross-polarization (1 H-13 C CP) kinetics experiments to study the hydration-dependent atomic-level structural changes in the bone extracellular matrix (ECM). The natural abundant 13 C CP intensity of the bone ECM is measured by varying CP contact time and best fitted to the nonclassical kinetic model. Different relaxation parameters were measured by the best-fit equation corresponding to the different hydration conditions of the bone ECM. The associated changes in the measured parameters due to varying levels of hydration observed at different sites of collagen protein have provided its structural arrangements and interaction with water molecules in bone ECM. Overall, the present study reveals a better understanding of the kinetics of the organic part inside the bone ECM that will help in comprehending the disease-associated pathways.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| | - Seema Srivastava
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
3
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
4
|
Dwivedi N, Dubey R, Srivastava S, Sinha N. Unraveling Water-Mediated 31P Relaxation in Bone Mineral. ACS OMEGA 2022; 7:16678-16688. [PMID: 35601291 PMCID: PMC9118412 DOI: 10.1021/acsomega.2c01133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/15/2022] [Indexed: 06/09/2023]
Abstract
Bone is a dynamic tissue composed of organic proteins (mainly type I collagen), inorganic components (hydroxyapatite), lipids, and water that undergoes a continuous rebuilding process over the lifespan of human beings. Bone mineral is mainly composed of a crystalline apatitic core surrounded by an amorphous surface layer. The supramolecular arrangement of different constituents gives rise to its unique mechanical properties, which become altered in various bone-related disease conditions. Many of the interactions among the different components are poorly understood. Recently, solid-state nuclear magnetic resonance (ssNMR) has become a popular spectroscopic tool for studying bone. In this article, we present a study probing the interaction of water molecules with amorphous and crystalline parts of the bone mineral through 31P ssNMR relaxation parameters (T 1 and T 2) and dynamics (correlation time). The method was developed to selectively measure the 31P NMR relaxation parameters and dynamics of the crystalline apatitic core and the amorphous surface layer of the bone mineral. The measured 31P correlation times (in the range of 10-6-10-7 s) indicated the different dynamic behaviors of both the mineral components. Additionally, we observed that dehydration affected the apatitic core region more significantly, while H-D exchange showed changes in the amorphous surface layer to a greater extent. Overall, the present work provides a significant understanding of the relaxation and dynamics of bone mineral components inside the bone matrix.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Richa Dubey
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Seema Srivastava
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Neeraj Sinha
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
5
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
6
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
7
|
Tiwari N, Wi S, Mentink-Vigier F, Sinha N. Mechanistic Insights into the Structural Stability of Collagen-Containing Biomaterials Such as Bones and Cartilage. J Phys Chem B 2021; 125:4757-4766. [PMID: 33929847 PMCID: PMC8151626 DOI: 10.1021/acs.jpcb.1c01431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural stability of various collagen-containing biomaterials such as bones and cartilage is still a mystery. Despite the spectroscopic development of several decades, the detailed mechanism of collagen interaction with citrate in bones and glycosaminoglycans (GAGs) in the cartilage extracellular matrix (ECM) in its native state is unobservable. We present a significant advancement to probe the collagen interactions with citrate and GAGs in the ECM of native bones and cartilage along with specific/non-specific interactions inside the collagen assembly at the nanoscopic level through natural-abundance dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy. The detected molecular-level interactions between citrate-collagen and GAG-collagen inside the native bone and cartilage matrices and other backbone and side-chain interactions in the collagen assembly are responsible for the structural stability and other biomechanical properties of these important classes of biomaterials.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow – 226014, INDIA
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi – 221005, INDIA
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | | | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow – 226014, INDIA
| |
Collapse
|
8
|
Tiwari N, Wegner S, Hassan A, Dwivedi N, Rai R, Sinha N. Probing short and long-range interactions in native collagen inside the bone matrix by BioSolids CryoProbe. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:99-107. [PMID: 32761649 DOI: 10.1002/mrc.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Solid-state nuclear magnetic resonance is a promising technique to probe bone mineralization and interaction of collagen protein in the native state. However, many of the developments are hampered due to the low sensitivity of the technique. In this article, we report solid-state nuclear magnetic resonance (NMR) experiments using the newly developed BioSolids CryoProbe™ to access its applicability for elucidating the atomic-level structural details of collagen protein in native state inside the bone. We report here approximately a fourfold sensitivity enhancement in the natural abundance 13 C spectrum compared with the room temperature conventional solid-state NMR probe. With the advantage of sensitivity enhancement, we have been able to perform natural abundance 15 N cross-polarization magic angle spinning (CPMAS) and two-dimensional (2D) 1 H-13 C heteronuclear correlation (HETCOR) experiments of native collagen within a reasonable timeframe. Due to high sensitivity, 2D 1 H/13 C HETCOR experiments have helped in detecting several short and long-range interactions of native collagen assembly, thus significantly expanding the scope of the method to such challenging biomaterials.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | | | - Alia Hassan
- Bruker BioSpin Corporation, Fällanden, Switzerland
| | - Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - RamaNand Rai
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
9
|
Chow WY, Norman BP, Roberts NB, Ranganath LR, Teutloff C, Bittl R, Duer MJ, Gallagher JA, Oschkinat H. Pigmentierungschemie und radikalbasierter Kollagenabbau bei Alkaptonurie und Arthrose. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wing Ying Chow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch, Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - Brendan P. Norman
- Department of Musculoskeletal Biology Institute of Ageing & Chronic Disease William Henry Duncan Building University of Liverpool Liverpool L7 8TX Vereinigtes Königreich
| | - Norman B. Roberts
- Departments of Clinical Biochemistry and Metabolic Medicine Royal Liverpool and Broadgreen University Hospitals Trust Liverpool L7 8XP Vereinigtes Königreich
| | - Lakshminarayan R. Ranganath
- Department of Musculoskeletal Biology Institute of Ageing & Chronic Disease William Henry Duncan Building University of Liverpool Liverpool L7 8TX Vereinigtes Königreich
- Departments of Clinical Biochemistry and Metabolic Medicine Royal Liverpool and Broadgreen University Hospitals Trust Liverpool L7 8XP Vereinigtes Königreich
| | - Christian Teutloff
- Freie Universität Berlin Fachbereich Physik, Berlin Joint EPR Lab Arnimallee 14 14195 Berlin Deutschland
| | - Robert Bittl
- Freie Universität Berlin Fachbereich Physik, Berlin Joint EPR Lab Arnimallee 14 14195 Berlin Deutschland
| | - Melinda J. Duer
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW Vereinigtes Königreich
| | - James A. Gallagher
- Department of Musculoskeletal Biology Institute of Ageing & Chronic Disease William Henry Duncan Building University of Liverpool Liverpool L7 8TX Vereinigtes Königreich
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch, Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Freie Universität Berlin Fachbereich Biologie, Chemie und Pharmazie Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
10
|
Chow WY, Norman BP, Roberts NB, Ranganath LR, Teutloff C, Bittl R, Duer MJ, Gallagher JA, Oschkinat H. Pigmentation Chemistry and Radical-Based Collagen Degradation in Alkaptonuria and Osteoarthritic Cartilage. Angew Chem Int Ed Engl 2020; 59:11937-11942. [PMID: 32219972 PMCID: PMC7383862 DOI: 10.1002/anie.202000618] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.
Collapse
Affiliation(s)
- Wing Ying Chow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Rössle-Str. 1013125BerlinGermany
| | - Brendan P. Norman
- Department of Musculoskeletal BiologyInstitute of Ageing & Chronic DiseaseWilliam Henry Duncan BuildingUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Norman B. Roberts
- Departments of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolL7 8XPUK
| | - Lakshminarayan R. Ranganath
- Department of Musculoskeletal BiologyInstitute of Ageing & Chronic DiseaseWilliam Henry Duncan BuildingUniversity of LiverpoolLiverpoolL7 8TXUK
- Departments of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolL7 8XPUK
| | - Christian Teutloff
- Freie Universität BerlinFachbereich Physik, Berlin Joint EPR LabArnimallee 1414195BerlinGermany
| | - Robert Bittl
- Freie Universität BerlinFachbereich Physik, Berlin Joint EPR LabArnimallee 1414195BerlinGermany
| | - Melinda J. Duer
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - James A. Gallagher
- Department of Musculoskeletal BiologyInstitute of Ageing & Chronic DiseaseWilliam Henry Duncan BuildingUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Rössle-Str. 1013125BerlinGermany
- Freie Universität BerlinFachbereich Biologie, Chemie und PharmazieTakustraße 314195BerlinGermany
| |
Collapse
|
11
|
Gervais C, Bonhomme C, Laurencin D. Recent directions in the solid-state NMR study of synthetic and natural calcium phosphates. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101663. [PMID: 32325374 DOI: 10.1016/j.ssnmr.2020.101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Materials containing a calcium phosphate component have been the subject of much interest to NMR spectroscopists, especially in view of understanding the structure and properties of mineralized tissues like bone and teeth, and of developing synthetic biomaterials for bone regeneration. Here, we present a selection of recent developments in their structural characterization using advanced solid state NMR experiments, highlighting the level of insight which can now be accessed.
Collapse
Affiliation(s)
- Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, 75005, Paris, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, 75005, Paris, France
| | | |
Collapse
|
12
|
Tiwari N, Rai R, Sinha N. Water-lipid interactions in native bone by high-resolution solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101666. [PMID: 32371298 DOI: 10.1016/j.ssnmr.2020.101666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The study of structural and dynamical properties of lipid and its associated interaction with different components of bone is essential to understand its role at a different level of bone homeostasis such as bone mineralization and bone metabolism. In this article, we present water-dependent dynamical changes observed in lipids (triglycerides) in its absolute native environment inside bone by high-resolution 1H solid-state nuclear magnetic resonance spectroscopy (ssNMR). Relaxation measurement (T2 measurement) ssNMR experiments were performed at different levels of water network induced by dehydration and H/D exchange in native bone. Our measurements reflect the changes in the local environment and dynamical properties of triglyceride due to different hydration levels. The present study explains the role of water in stabilizing the structural properties of triglycerides in bone hence will help understand its pathological role associated with bone physiology and bone disorders.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, 226014, India; Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - RamaNand Rai
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, 226014, India.
| |
Collapse
|
13
|
Zhao W, Fernando LD, Kirui A, Deligey F, Wang T. Solid-state NMR of plant and fungal cell walls: A critical review. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101660. [PMID: 32251983 DOI: 10.1016/j.ssnmr.2020.101660] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 05/22/2023]
Abstract
The cell walls of plants and microbes are a central source for bio-renewable energy and the major targets of antibiotics and antifungal agents. It is highly challenging to determine the molecular structure of complex carbohydrates, protein and lignin, and their supramolecular assembly in intact cell walls. This article selectively highlights the recent breakthroughs that employ 13C/15N solid-state NMR techniques to elucidate the architecture of fungal cell walls in Aspergillus fumigatus and the primary and secondary cell walls in a large variety of plant species such as Arabidopsis, Brachypodium, maize, and spruce. Built upon these pioneering studies, we further summarize the underexplored aspects of fungal and plant cell walls. The new research opportunities introduced by innovative methods, such as the detection of proton and quadrupolar nuclei on ultrahigh-field magnets and under fast magic-angle spinning, paramagnetic probes, natural-abundance DNP, and software development, are also critically discussed.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
14
|
Azaïs T, Von Euw S, Ajili W, Auzoux-Bordenave S, Bertani P, Gajan D, Emsley L, Nassif N, Lesage A. Structural description of surfaces and interfaces in biominerals by DNP SENS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:2-11. [PMID: 31216494 DOI: 10.1016/j.ssnmr.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Biological mineralized tissues are hybrid materials with complex hierarchical architecture composed of biominerals often embedded in an organic matrix. The atomic-scale comprehension of surfaces and organo-mineral interfaces of these biominerals is of paramount importance to understand the ultrastructure, the formation mechanisms as well as the biological functions of the related biomineralized tissue. In this communication we demonstrate the capability of DNP SENS to reveal the fine atomic structure of biominerals, and more specifically their surfaces and interfaces. For this purpose, we studied two key examples belonging to the most significant biominerals family in nature: apatite in bone and aragonite in nacreous shell. As a result, we demonstrate that DNP SENS is a powerful approach for the study of intact biomineralized tissues. Signal enhancement factors are found to be up to 40 and 100, for the organic and the inorganic fractions, respectively, as soon as impregnation time with the radical solution is long enough (between 12 and 24 h) to allow an efficient radical penetration into the calcified tissues. Moreover, ions located at the biomineral surface are readily detected and identified through 31P or 13C HETCOR DNP SENS experiments. Noticeably, we show that protonated anions are preponderant at the biomineral surfaces in the form of HPO42- for bone apatite and HCO32- for nacreous aragonite. Finally, we demonstrate that organo-mineral interactions can be probed at the atomic level with high sensitivity. In particular, reliable 13C-{31P} REDOR experiments are achieved in a few hours, leading to the determination of distances, molar proportion and binding mode of citrate bonded to bone mineral in native compact bone. According to our results, only 80% of the total amount of citrate in bone is directly interacting with bone apatite through two out of three carboxylic groups.
Collapse
Affiliation(s)
- Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France.
| | - Stanislas Von Euw
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Widad Ajili
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Stéphanie Auzoux-Bordenave
- Sorbonne Université, UMR BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, MNHN/CNRS-7208/IRD-207/UPMC, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Place de la Croix 29900 Concarneau, France
| | - Philippe Bertani
- Laboratoire de RMN et Biophysique des Membranes, UMR 7177 Chimie Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - David Gajan
- High Field NMR Center of Lyon, CRNS/ENS Lyon/ UCB Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Anne Lesage
- High Field NMR Center of Lyon, CRNS/ENS Lyon/ UCB Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
15
|
Smith AN, Märker K, Hediger S, De Paëpe G. Natural Isotopic Abundance 13C and 15N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization. J Phys Chem Lett 2019; 10:4652-4662. [PMID: 31361489 DOI: 10.1021/acs.jpclett.8b03874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic nuclear polarization (DNP) has made feasible solid-state NMR experiments that were previously thought impractical due to sensitivity limitations. One such class of experiments is the structural characterization of organic and biological samples at natural isotopic abundance (NA). Herein, we describe the many advantages of DNP-enabled ssNMR at NA, including the extraction of long-range distance constraints using dipolar recoupling pulse sequences without the deleterious effects of dipolar truncation. In addition to the theoretical underpinnings in the analysis of these types of experiments, numerous applications of DNP-enabled ssNMR at NA are discussed.
Collapse
Affiliation(s)
- Adam N Smith
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Katharina Märker
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| |
Collapse
|
16
|
Teotia AK, Raina DB, Singh C, Sinha N, Isaksson H, Tägil M, Lidgren L, Kumar A. Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6816-6828. [PMID: 28171719 DOI: 10.1021/acsami.6b14782] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to synthesize and characterize a nano-hydroxyapatite (nHAP) and calcium sulfate bone substitute (NC) for cranioplasty. The NC was functionalized with low concentrations of bone morphogenetic protein-2 (BMP-2) and zoledronic acid (ZA) and characterized both in vitro and in vivo. In vitro studies included MTT, ALP assays, and fluorescent staining of Saos-2 (human osteoblasts) and MC3T3-E1 (murine preosteoblasts) cells cultured on NC. An in vivo study divided 20 male Wistar rats into four groups: control (defect only), NC, NC + ZA, and NC + ZA + rhBMP-2. The materials were implanted in an 8.5 mm critical size defect in the calvarium for 12 weeks. Micro-CT quantitative analysis was carried out in vivo at 8 weeks and ex vivo after 12 weeks. Mineralization was highest in the NC + ZA + rhBMP-2 group (13.0 ± 2.8 mm3) compared to the NC + ZA group (9.0 ± 3.2 mm3), NC group (6.4 ± 1.9 mm3), and control group (3.4 ± 1.0 mm3) after 12 weeks. Histological and spectroscopic analysis of the defect site provided a qualitative confirmation of neo-bone, which was in agreement with the micro-CT results. In conclusion, NC can be used as a carrier for bioactive molecules, and functionalization with rhBMP-2 and ZA in low doses enhances bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Deepak Bushan Raina
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Chandan Singh
- Center for Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Neeraj Sinha
- Center for Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Hanna Isaksson
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
- Department of Biomedical Engineering, Lund University , Lund 221 00, Sweden
| | - Magnus Tägil
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences Lund, Lund University , Lund 221 85, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
17
|
Forbes CR, Sinha SK, Ganguly HK, Bai S, Yap GPA, Patel S, Zondlo NJ. Insights into Thiol-Aromatic Interactions: A Stereoelectronic Basis for S-H/π Interactions. J Am Chem Soc 2017; 139:1842-1855. [PMID: 28080040 PMCID: PMC5890429 DOI: 10.1021/jacs.6b08415] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thiols can engage favorably with aromatic rings in S-H/π interactions, within abiological systems and within proteins. However, the underlying bases for S-H/π interactions are not well understood. The crystal structure of Boc-l-4-thiolphenylalanine tert-butyl ester revealed crystal organization centered on the interaction of the thiol S-H with the aromatic ring of an adjacent molecule, with a through-space Hthiol···Caromatic distance of 2.71 Å, below the 2.90 Å sum of the van der Waals radii of H and C. The nature of this interaction was further examined by DFT calculations, IR spectroscopy, solid-state NMR spectroscopy, and analysis of the Cambridge Structural Database. The S-H/π interaction was found to be driven significantly by favorable molecular orbital interactions, between an aromatic π donor orbital and the S-H σ* acceptor orbital (a π → σ* interaction). For comparison, a structural analysis of O-H/π interactions and of cation/π interactions of alkali metal cations with aromatic rings was conducted. Na+ and K+ exhibit a significant preference for the centroid of the aromatic ring and distances near the sum of the van der Waals and ionic radii, as expected for predominantly electrostatic interactions. Li+ deviates substantially from Na+ and K+. The S-H/π interaction differs from classical cation/π interactions by the preferential alignment of the S-H σ* toward the ring carbons and an aromatic π orbital rather than toward the aromatic centroid. These results describe a potentially broadly applicable approach to understanding the interactions of weakly polar bonds with π systems.
Collapse
Affiliation(s)
- Christina R. Forbes
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | | | | | - Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| |
Collapse
|
18
|
Singh C, Rai RK, Kayastha AM, Sinha N. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:132-135. [PMID: 26352739 DOI: 10.1002/mrc.4331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.
Collapse
Affiliation(s)
- Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ratan Kumar Rai
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| | - Arvind M Kayastha
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, UP, 226014, India
| |
Collapse
|
19
|
Rai RK, Singh C, Sinha N. Predominant role of water in native collagen assembly inside the bone matrix. J Phys Chem B 2014; 119:201-11. [PMID: 25530228 DOI: 10.1021/jp511288g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone is one of the most intriguing biomaterials found in nature consisting of bundles of collagen helixes, hydroxyapatite, and water, forming an exceptionally tough, yet lightweight material. We present here an experimental tool to map water-dependent subtle changes in triple helical assembly of collagen protein in its absolute native environment. Collagen being the most abundant animal protein has been subject of several structural studies in last few decades, mostly on an extracted, overexpressed, and synthesized form of collagen protein. Our method is based on a (1)H detected solid-state nuclear magnetic resonance (ssNMR) experiment performed on native collagen protein inside intact bone matrix. Recent development in (1)H homonuclear decoupling sequences has made it possible to observe specific atomic resolution in a large complex system. The method consists of observing a natural-abundance two-dimensional (2D) (1)H/(13)C heteronuclear correlation (HETCOR) and(1)H double quantum-single quantum (DQ-SQ) correlation ssNMR experiment. The 2D NMR experiment maps three-dimensional assembly of native collagen protein and shows that extracted form of collagen protein is significantly different from protein in the native state. The method also captures native collagen subtle changes (of the order of ∼1.0 Å) due to dehydration and H/D exchange, giving an experimental tool to map small changes. The method has the potential to be of wide applicability to other collagen containing biomaterials.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Centre of Biomedical Research , SGPGIMS Campus, Raibarelly Road, Lucknow 226014, India
| | | | | |
Collapse
|