1
|
Miranda A, Seyer D, Palomino-Durand C, Morakchi-Goudjil H, Massonie M, Agniel R, Rammal H, Pauthe E, Gand A. Poly-L-Lysine and Human Plasmatic Fibronectin Films as Proactive Coatings to Improve Implant Biointegration. Front Bioeng Biotechnol 2022; 9:807697. [PMID: 35111738 PMCID: PMC8801876 DOI: 10.3389/fbioe.2021.807697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.
Collapse
Affiliation(s)
- Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Carla Palomino-Durand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Houda Morakchi-Goudjil
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Mathilde Massonie
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Hassan Rammal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- EFOR Healthcare Paris, Biocompatibility Platform, Levallois-Perret, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| |
Collapse
|
2
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
3
|
Gribova V, Navalikhina A, Lysenko O, Calligaro C, Lebaudy E, Deiber L, Senger B, Lavalle P, Vrana NE. Prediction of coating thickness for polyelectrolyte multilayers via machine learning. Sci Rep 2021; 11:18702. [PMID: 34548560 PMCID: PMC8455527 DOI: 10.1038/s41598-021-98170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Layer-by-layer (LbL) deposition method of polyelectrolytes is a versatile way of developing functional nanoscale coatings. Even though the mechanisms of LbL film development are well-established, currently there are no predictive models that can link film components with their final properties. The current health crisis has shown the importance of accelerated development of biomedical solutions such as antiviral coatings, and the implementation of machine learning methodologies for coating development can enable achieving this. In this work, using literature data and newly generated experimental results, we first analyzed the relative impact of 23 coating parameters on the coating thickness. Next, a predictive model has been developed using aforementioned parameters and molecular descriptors of polymers from the DeepChem library. Model performance was limited because of insufficient number of data points in the training set, due to the scarce availability of data in the literature. Despite this limitation, we demonstrate, for the first time, utilization of machine learning for prediction of LbL coating properties. It can decrease the time necessary to obtain functional coating with desired properties, as well as decrease experimental costs and enable the fast first response to crisis situations (such as pandemics) where coatings can positively contribute. Besides coating thickness, which was selected as an output value in this study, machine learning approach can be potentially used to predict functional properties of multilayer coatings, e.g. biocompatibility, cell adhesive, antibacterial, antiviral or anti-inflammatory properties.
Collapse
Affiliation(s)
- Varvara Gribova
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France
| | | | | | | | - Eloïse Lebaudy
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France
| | | | - Bernard Senger
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France.,SPARTHA Medical, 67100, Strasbourg, France
| | | |
Collapse
|
4
|
Kitagawa IL, Miyazaki CM, Pitol-Palin L, Okamoto R, de Vasconcellos LMR, Constantino CJL, Lisboa-Filho PN. Titanium-Based Alloy Surface Modification with TiO 2 and Poly(sodium 4-styrenesulfonate) Multilayers for Dental Implants. ACS APPLIED BIO MATERIALS 2021; 4:3055-3066. [PMID: 35014394 DOI: 10.1021/acsabm.0c01348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Implant placement is an important repair method in dentistry and orthopedics. Increasing efforts have focused on optimizing the biocompatibility and osseointegration properties of titanium (Ti) and Ti-based alloys. In this work, Ti-based alloys were modified by the layer-by-layer (LbL) technique, which is a simple and versatile method for surface modification. The morphology and chemical structure of LbL films of poly(sodium 4-styrenesulfonate) (PSS) and Ti dioxide (TiO2) nanoparticles were first characterized employing ultraviolet-visible and Fourier-transform infrared spectroscopies as well as atomic force microscopy for further application in Ti-based alloy implants. The changes provoked by the LbL PSS/TiO2 film on the Ti-based alloy surfaces were then investigated by scanning electron microscopy and micro-Raman techniques. Finally, in vivo tests (immunolabeling and biomechanical analysis) performed with screw implants in rats suggested that PSS/TiO2 multilayers promote changes in both topography and chemical surface properties of the screw, providing beneficial effects for osteoblast activity. This simple and relatively low-cost growth process can open up possibilities to improve dental implants and, probably, bone implants in general.
Collapse
Affiliation(s)
- Igor L Kitagawa
- School of Sciences, Department of Physics, UNESP São Paulo State University, Bauru, São Paulo 17033-360, Brazil.,Science and Technology of São Paulo, IFSP Federal Institute of Education, Campus Birigui, Birigui, São Paulo 16201-407, Brazil
| | - Celina M Miyazaki
- CCTS, Federal University of São Carlos, Sorocaba, São Paulo 18052-780, Brazil
| | - Letícia Pitol-Palin
- Araçatuba Dental School, Department of Basic Science, UNESP São Paulo State University, Araçatuba 16018-805, Brazil
| | - Roberta Okamoto
- Araçatuba Dental School, Department of Basic Science, UNESP São Paulo State University, Araçatuba 16018-805, Brazil
| | - Luana M R de Vasconcellos
- Institute of Science and Technology, Department of Biosciences and Oral Diagnosis, UNESP São Paulo State University, São José dos Campos, São Paulo 12245-000, Brazil
| | - Carlos J L Constantino
- School of Technology and Applied Sciences, Department of Physics, UNESP São Paulo State University, Presidente Prudente, São Paulo 19060-900, Brazil
| | - Paulo N Lisboa-Filho
- School of Sciences, Department of Physics, UNESP São Paulo State University, Bauru, São Paulo 17033-360, Brazil
| |
Collapse
|
5
|
Fritz PA, Zhang P, Bruschinski T, Sahin S, de Smet LC, Chan-Park MB, Boom RM, Schroën CG. Steering protein and salt ad- and desorption by an electrical switch applied to polymer-coated electrodes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Vander Straeten A, Bratek-Skicki A, Jonas AM, Fustin CA, Dupont-Gillain C. Integrating Proteins in Layer-by-Layer Assemblies Independently of their Electrical Charge. ACS NANO 2018; 12:8372-8381. [PMID: 29965727 DOI: 10.1021/acsnano.8b03710] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Layer-by-layer (LbL) assembly is an attractive method for protein immobilization at interfaces, a much wanted step for biotechnologies and biomedicine. Integrating proteins in LbL thin films is however very challenging due to their low conformational entropy, heterogeneous spatial distribution of charges, and polyampholyte nature. Protein-polyelectrolyte complexes (PPCs) are promising building blocks for LbL construction owing to their standardized charge and polyelectrolyte (PE) corona. In this work, lysozyme was complexed with poly(styrenesulfonate) (PSS) at different ionic strengths and pH values. The PPCs size and electrical properties were investigated, and the forces driving complexation were elucidated, in the light of computations of polyelectrolyte conformation, with a view to further unravel LbL construction mechanisms. Quartz crystal microbalance and atomic force microscopy were used to monitor the integration of PPCs compared to the one of bare protein molecules in LbL assemblies, and colorimetric assays were performed to determine the protein amount in the thin films. Layers built with PPCs show higher protein contents and hydration levels. Very importantly, the results also show that LbL construction with PPCs mainly relies on standard PE-PE interactions, independent of the charge state of the protein, in contrast to classical bare protein assembly with PEs. This considerably simplifies the incorporation of proteins in multilayers, which will be beneficial for biosensing, heterogeneous biocatalysis, biotechnologies, and medical applications that require active proteins at interfaces.
Collapse
Affiliation(s)
- Aurélien Vander Straeten
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur, 1 bte L4.01.10 , B-1348 Louvain-la-Neuve , Belgium
| | - Anna Bratek-Skicki
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur, 1 bte L4.01.10 , B-1348 Louvain-la-Neuve , Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur, 1 bte L4.01.10 , B-1348 Louvain-la-Neuve , Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur, 1 bte L4.01.10 , B-1348 Louvain-la-Neuve , Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur, 1 bte L4.01.10 , B-1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
7
|
Gand A, Tabuteau M, Chat C, Ladam G, Atmani H, Van Tassel PR, Pauthe E. Fibronectin-based multilayer thin films. Colloids Surf B Biointerfaces 2017; 156:313-319. [DOI: 10.1016/j.colsurfb.2017.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
|
8
|
Cinar S, Möbitz S, Al-Ayoubi S, Seidlhofer BK, Czeslik C. Building Polyelectrolyte Multilayers with Calmodulin: A Neutron and X-ray Reflectivity Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3982-3990. [PMID: 28379700 DOI: 10.1021/acs.langmuir.7b00651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have studied the formation and functional properties of polyelectrolyte multilayers where calmodulin (CaM) is used as a polyanion. CaM is known to populate distinct conformational states upon binding Ca2+ and small ligand molecules. Therefore, we have also probed the effects of Ca2+ ions and trifluoperazine (TFP) as ligand molecule on the interfacial structures. Multilayers with the maximum sequence PEI-(PSS-PAH)x-CaM-PAH-CaM-PAH have been deposited on silicon wafers and characterized by X-ray and neutron reflectometry. From the analysis of all data, several remarkable conclusions can be drawn. When CaM is deposited for the second time, a much thicker sublayer is produced than in the first CaM deposition step. However, upon rinsing with PAH, very thin CaM-PAH sublayers remain. There are no indications that ligand TFP can be involved in the multilayer buildup due to strong CaM-PAH interactions. However, there is a significant increase in the multilayer thickness upon removal of Ca2+ ions from holo-CaM and an equivalent decrease in the multilayer thickness upon subsequent saturation of apo-CaM with Ca2+ ions. Presumably, CaM can still be toggled between an apo and a holo state, when it is embedded in polyelectrolyte multilayers, providing an approach to design bioresponsive interfaces.
Collapse
Affiliation(s)
- Süleyman Cinar
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Simone Möbitz
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Samy Al-Ayoubi
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | | | - Claus Czeslik
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| |
Collapse
|
9
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Lück S, Schubel R, Rüb J, Hahn D, Mathieu E, Zimmermann H, Scharnweber D, Werner C, Pautot S, Jordan R. Tailored and biodegradable poly(2-oxazoline) microbeads as 3D matrices for stem cell culture in regenerative therapies. Biomaterials 2015; 79:1-14. [PMID: 26686977 DOI: 10.1016/j.biomaterials.2015.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/09/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
We present the synthesis of hydrogel microbeads based on telechelic poly(2-oxazoline) (POx) crosslinkers and the methacrylate monomers (HEMA, METAC, SPMA) by inverse emulsion polymerization. While in batch experiments only irregular and ill-defined beads were obtained, the preparation in a microfluidic (MF) device resulted in highly defined hydrogel microbeads. Variation of the MF parameters allowed to control the microbead diameter from 50 to 500 μm. Microbead elasticity could be tuned from 2 to 20 kPa by the POx:monomer composition, the POx chain length, net charge of the hydrogel introduced via the monomer as well as by the organic content of the aqueous phase. The proliferations of human mesenchymal stem cells (hMSCs) on the microbeads were studied. While neutral, hydrophilic POx-PHEMA beads were bioinert, excessive colonization of hMSCs on charged POx-PMETAC and POx-PSPMA was observed. The number of proliferated cells scaled roughly linear with the METAC or SPMA comonomer content. Additional collagen I coating further improved the stem cell proliferation. Finally, a first POx-based system for the preparation of biodegradable hydrogel microcarriers is described and evaluated for stem cell culturing.
Collapse
Affiliation(s)
- Steffen Lück
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Fetcherstr. 105, 01307, Dresden, Germany; Dresden Initiative for Bioactive Interfaces & Materials, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - René Schubel
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Jannick Rüb
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany; Dresden Initiative for Bioactive Interfaces & Materials, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Dominik Hahn
- Dresden Initiative for Bioactive Interfaces & Materials, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany; Max-Bergmann Center of Biomaterials Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Evelien Mathieu
- Center for Regenerative Therapies Dresden (CRTD), Fetcherstr. 105, 01307, Dresden, Germany
| | - Heike Zimmermann
- Max-Bergmann Center of Biomaterials Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Dieter Scharnweber
- Max-Bergmann Center of Biomaterials Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Carsten Werner
- Dresden Initiative for Bioactive Interfaces & Materials, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany; Max-Bergmann Center of Biomaterials Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Sophie Pautot
- Center for Regenerative Therapies Dresden (CRTD), Fetcherstr. 105, 01307, Dresden, Germany.
| | - Rainer Jordan
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Fetcherstr. 105, 01307, Dresden, Germany; Dresden Initiative for Bioactive Interfaces & Materials, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany.
| |
Collapse
|
11
|
Beykal B, Herzberg M, Oren Y, Mauter MS. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes. J Colloid Interface Sci 2015; 460:321-8. [DOI: 10.1016/j.jcis.2015.08.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/15/2015] [Accepted: 08/22/2015] [Indexed: 11/30/2022]
|
12
|
Matsui N, Nozaki K, Ishihara K, Yamashita K, Nagai A. Concentration-dependent effects of fibronectin adsorbed on hydroxyapatite surfaces on osteoblast adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:378-83. [DOI: 10.1016/j.msec.2014.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
|
13
|
Deng J, Sun M, Wang S, Han L, Mao Z, Li D, Chen H, Gao C. Adsorption of Fibronectin on Salt-Etched Polyelectrolyte Multilayers and its Roles in Mediating the Adhesion and Migration of Vascular Smooth Muscle Cells. Macromol Biosci 2014; 15:241-52. [DOI: 10.1002/mabi.201400344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/06/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mingcong Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shasha Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Lulu Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Dan Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Hong Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
14
|
Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polym J 2014. [DOI: 10.1038/pj.2014.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Gaudière F, Morin-Grognet S, Bidault L, Lembré P, Pauthe E, Vannier JP, Atmani H, Ladam G, Labat B. Genipin-Cross-Linked Layer-by-Layer Assemblies: Biocompatible Microenvironments To Direct Bone Cell Fate. Biomacromolecules 2014; 15:1602-11. [DOI: 10.1021/bm401866w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fabien Gaudière
- Laboratoire
de Biophysique et Biomatériaux (La2B), MERCI EA 3829, University of Rouen, Centre Universitaire d’Évreux, 1 rue du 7ème Chasseurs, 27002 Évreux Cedex, France
| | - Sandrine Morin-Grognet
- Laboratoire
de Biophysique et Biomatériaux (La2B), MERCI EA 3829, University of Rouen, Centre Universitaire d’Évreux, 1 rue du 7ème Chasseurs, 27002 Évreux Cedex, France
| | - Laurent Bidault
- ERRMECe EA 1391, University of Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Pierre Lembré
- ERRMECe EA 1391, University of Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Emmanuel Pauthe
- ERRMECe EA 1391, University of Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Jean-Pierre Vannier
- Laboratoire
de Biophysique et Biomatériaux (La2B), MERCI EA 3829, University of Rouen, Centre Universitaire d’Évreux, 1 rue du 7ème Chasseurs, 27002 Évreux Cedex, France
| | - Hassan Atmani
- Laboratoire
de Biophysique et Biomatériaux (La2B), MERCI EA 3829, University of Rouen, Centre Universitaire d’Évreux, 1 rue du 7ème Chasseurs, 27002 Évreux Cedex, France
| | - Guy Ladam
- Laboratoire
de Biophysique et Biomatériaux (La2B), MERCI EA 3829, University of Rouen, Centre Universitaire d’Évreux, 1 rue du 7ème Chasseurs, 27002 Évreux Cedex, France
| | - Béatrice Labat
- Laboratoire
de Biophysique et Biomatériaux (La2B), MERCI EA 3829, University of Rouen, Centre Universitaire d’Évreux, 1 rue du 7ème Chasseurs, 27002 Évreux Cedex, France
| |
Collapse
|
16
|
Martin A, Tabary N, Chai F, Leclercq L, Junthip J, Aubert-Viard F, Neut C, Weltrowski M, Blanchemain N, Martel B. Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue–poly(cyclodextrin) complex. Biomed Mater 2013; 8:065006. [DOI: 10.1088/1748-6041/8/6/065006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Multilayered textile coating based on a β-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydr Polym 2013; 93:718-30. [DOI: 10.1016/j.carbpol.2012.12.055] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 12/30/2022]
|
18
|
Surface treatment of polymeric materials controlling the adhesion of biomolecules. J Funct Biomater 2012; 3:528-43. [PMID: 24955631 PMCID: PMC4030997 DOI: 10.3390/jfb3030528] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/29/2023] Open
Abstract
This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.
Collapse
|
19
|
Fabrication of switchable protein resistant and adhesive multilayer membranes. Colloids Surf B Biointerfaces 2012; 94:118-24. [PMID: 22336095 DOI: 10.1016/j.colsurfb.2012.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
Fabrication of protein adhesive and resistant surfaces based on chitosan/polystyrene sulfonate (CHI/PSS) multilayer membranes is presented. Adsorption behavior of bovine serum albumin (BSA) and lysozyme to CHI/PSS multilayer was studied by simple adsorption method and under pressure driven (ultrafiltration) conditions. The protein incorporated membranes were characterized by FT-IR, UV-vis, SEM and AFM. The loading of proteins to the multilayer was found to be dependent on the nature of protein, pH, number of bilayers, methods of adsorption and time of adsorption. Simple adsorption resulted in BSA adhesive layers with some conformational changes at higher number of bilayers. Ultrafiltration leads to protein repellence at higher number of bilayers which is attributed to the presence of irremovable water. Lysozyme adsorption/sorption varied with pH. Surface coverage dominates at pH close to pI and at pH 5 under ultraflitration condition where as simple adsorption resulted in protein repellence at pI. The secondary structure of adsorbed lysozyme is preserved for a wide pH range (5-11). Desorption study of lysozyme adsorbed membranes at pH 8.8 was carried out to understand the adsorption/sorption of protein. Diffusion of the sorbed lysozyme from the inner layers to the surface is found to take place at lower concentrations of NaCl.
Collapse
|
20
|
Fanizza E, Altomare M, Di Mauro AE, Del Sole T, Corricelli M, Depalo N, Comparelli R, Agostiano A, Striccoli M, Curri ML. Polyelectrolyte multilayers as a platform for luminescent nanocrystal patterned assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5964-5974. [PMID: 22409721 DOI: 10.1021/la300213n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The fabrication of uniform and patterned nanocrystal (NC) assemblies has been investigated by exploiting the possibility of carefully tailoring colloidal NC surface chemistry and the ability of polyelectrolyte (PE) to functionalize substrates through an electrostatic layer-by-layer (LbL) strategy. Appropriate deposition conditions, substrate functionalization, and post-preparative treatments were selected to tailor the substrate surface chemistry to effectively direct the homogeneous electrostatic-induced assembly of NCs. Water-dispersible luminescent NCs, namely, (CdSe)ZnS and CdS, were differently functionalized by (1) ligand-exchange reaction, (2) growth of a hydrophilic silica shell, and (3) formation of a hydrophilic inclusion complex, thus providing functional NCs stable in a defined pH range. The electrostatically charged functional NCs represent a comprehensive selection of examples of surface-functionalized NCs, which enables the systematic investigation of experimental parameters in NC assembly processes carried out by combining LbL procedures with microcontact printing and also exploiting NC emission, relevant for potential applications, as a prompt and effective probe for evaluating assembly quality. Thus, an ample showcase of combinations has been investigated, and the spectroscopic and morphological features of the resulting NC-based structures have been discussed.
Collapse
|
21
|
Nakahara Y, Matsusaki M, Akashi M. Fabrication and enzymatic degradation of fibronectin-based ultrathin films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012. [DOI: 10.1163/156856207794761952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yoshio Nakahara
- a Department of Tissue Engineering and Cell Therapy, Institute of Biomedical Research and Innovation, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Michiya Matsusaki
- b Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan; 21st Century COE Program "Center for Integrated Cell and Tissue Regulation", Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
| | - Mitsuru Akashi
- c Department of Tissue Engineering and Cell Therapy, Institute of Biomedical Research and Innovation, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan; 21st Century COE Program "Center for Integrated Cell and Tissue Regulation", Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
| |
Collapse
|
22
|
Zahn R, Thomasson E, Guillaume-Gentil O, Vörös J, Zambelli T. Ion-induced cell sheet detachment from standard cell culture surfaces coated with polyelectrolytes. Biomaterials 2012; 33:3421-7. [DOI: 10.1016/j.biomaterials.2012.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 12/26/2022]
|
23
|
Matsusaki M, Ajiro H, Kida T, Serizawa T, Akashi M. Layer-by-layer assembly through weak interactions and their biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:454-474. [PMID: 22213201 DOI: 10.1002/adma.201103698] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The surface design and control of substrates with nanometer- or micrometer-sized polymer films are of considerable interest for both fundamental and applied studies in the biomedical field because of the required surface properties. The layer-by-layer (LbL) technique was discovered in 1991 by Decher and co-workers for the fabrication of polymer multilayers constructed mainly through electrostatic interaction. The scope and applicability of this LbL assembly has been extended by introducing molecularly regular conformations of polymers or proteins by employing, for the first time, weak interactions such as van der Waals interactions and biological recognition. Since these weak interactions are the sum of the attractive or repulsive forces between parts of the same molecule, they allow macromolecules to be easily arranged into the most stable conformation in a LbL film. By applying this characteristic feature, the template polymerization of stereoregular polymers, stereoregular control of surface biological properties, drastic morphological control of biodegradable nano materials, and the development of three-dimensional cellular multilayers as a tissue model were successfully achieved. It is expected that LbL assembly using weak interactions will promote further interest into fundamental and applied studies on the design of surface chemistry in the biomedical field.
Collapse
Affiliation(s)
- Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
24
|
Abdelkebir K, Gaudière F, Morin-Grognet S, Coquerel G, Atmani H, Labat B, Ladam G. Protein-triggered instant disassembly of biomimetic Layer-by-Layer films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14370-14379. [PMID: 22007998 DOI: 10.1021/la2033109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed biomineralization, into biomimetic LbL architectures. Two immobilization protocols are attempted, first, using phosvitin as the polyanionic component of phosvitin/poly-(L-lysine) films and, second, adsorbing it onto preformed chondroitin sulfate/poly-(L-lysine) films. Surprisingly, it is neither possible to embed phosvitin as the constitutive polyanion of the LbL architectures nor to adsorb it atop preformed films. Instead, phosvitin triggers instant massive film disassembly. This unexpected, incidentally detected behavior constitutes the first example of destructive interactions between LbL films and a third polyelectrolyte, a fortiori a protein, which might open a route toward new stimuli-responsive films for biosensing or drug delivery applications. Interestingly, additional preliminary results still indicate a promotive effect of phosvitin-containing remnant films on calcium phosphate deposition.
Collapse
Affiliation(s)
- Khalil Abdelkebir
- Laboratoire de Biophysique et Biomatériaux (La2B), SMS EA 3233, IMR FED 4114, Université de Rouen, Centre Universitaire d'Evreux, 1 rue du 7ème Chasseurs, BP 281, 27002 Evreux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Chien HW, Tan SF, Wei KL, Tsai WB. Modulation of the functions of osteoblast-like cells on poly(allylamine hydrochloride) and poly(acrylic acid) multilayer films. Colloids Surf B Biointerfaces 2011; 88:297-303. [PMID: 21798725 DOI: 10.1016/j.colsurfb.2011.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/17/2011] [Accepted: 07/04/2011] [Indexed: 01/02/2023]
Abstract
Deposition of layer-by-layer polyelectrolyte multilayer (PEM) films has been a widely applied surface modification technique to improve the biocompatibility of biomaterials. The objective of this study was to investigate the impact of the deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) multilayer films on adhesion, growth and differentiation of osteoblasts-like MG63 cells. PAH and PAA were deposited sequentially onto tissue culture polystyrene at either pH 2.0 or pH 6.5 with 4-21 layers. While the MG63 cells attached poorly on the PAH/PAA multilayer films deposited at pH 2.0, while the cells adhered to the PEM films deposited at pH 6.5, depending on layer numbers. Cell adhesion, proliferation and osteogenic activities (alkaline phosphatase activity, expression of osteogenic marker genes and mineralization) were highest on the 4-layer PAH/PAA film and decreased with increasing layer numbers. On the other hand, the behavior of MG63 cells did not show any difference on the adjacent even and odd layers, except PEM4 and PEM5, i.e. the surface charges of the PAH/PAA multilayer films with over ten layers seem indifferent to osteoblastic functions. The results in this study suggested that the mechanical properties of PEM films may play a critical role in modulating the behavior of osteoblasts, providing guidance for application of PEM films to osteopaedic implants.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan
| | | | | | | |
Collapse
|
26
|
Liao T, Moussallem MD, Kim J, Schlenoff JB, Ma T. N-isopropylacrylamide-based thermoresponsive polyelectrolyte multilayer films for human mesenchymal stem cell expansion. Biotechnol Prog 2011; 26:1705-13. [PMID: 20574992 DOI: 10.1002/btpr.471] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are colony-forming unit fibroblasts (CFU-F) derived from adult bone marrow and have significant potential for many cell-based tissue-engineering applications. Their therapeutic potential, however, is restricted by their diminishing plasticity as they are expanded in culture. In this study, we used N-isopropylacrylamide (NIPAM)-based thermoresponsive polyelectrolyte multilayer (N-PEMU) films as culture substrates to support hMSC expansion and evaluated their effects on cell properties. The N-PEMU films were made via layer-by-layer adsorption of thermoresponsive monomers copolymerized with charged monomers, positively charged allylamine hydrochloride (PAH), or negatively charged styrene sulfonic acid (PSS) and compared to fetal bovine serum (FBS) coated surfaces. Surface charges were shown to alter the extracellular matrix (ECM) structure and subsequently regulate hMSC responses including adhesion, proliferation, integrin expression, detachment, and colony forming ability. The positively charged thermal responsive surfaces improved cell adhesion and growth in a range comparable to control surfaces while maintaining significantly higher CFU-F forming ability. Immunostaining and Western blot results indicate that the improved cell adhesion and growth on the positively charged surfaces resulted from the elevated adhesion of ECM proteins such as fibronectin on the positively charge surfaces. These results demonstrate that the layer-by-layer approach is an efficient way to form PNIPAM-based thermal responsive surfaces for hMSC growth and removal without enzymatic treatment. The results also show that surface charge regulates ECM adhesion, which in turn influences not only cell adhesion but also CFU-forming ability and their multi-lineage differentiation potential.
Collapse
Affiliation(s)
- Tianqing Liao
- Dept. of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Controlling Fibroblast Adhesion with Ph Modified Polyelectrolyte Multilayers. Int J Artif Organs 2011; 34:185-91. [DOI: 10.5301/ijao.2011.6395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 11/20/2022]
Abstract
Tissue cells need to adhere to a biomaterial surface to promote their growth and differentiation and, thus, foster the integration of implants. As a result, surface features and their modification play an important role in biomedical applications. In this study, the layer-by-layer (LbL) technique was used to design self-assembled polyelectrolyte multilayer (PEM) coatings of polyethyleneimine (PEI) and heparin (HEP) on glass, which will control the adhesion of primary human dermal fibroblasts in a model system. The study showed that, among other surface features, the wettability of surfaces can be controlled by changing the conditions during multilayer self-assembly. Here, the pH value of the HEP solution was adjusted to acidic or alkaline values for terminal layers, which also led to a change in multilayer growth. Further, the study revealed that plain terminal layers were rather cytophobic. Upon pre-adsorption of fibronectin (FN), a clear effect on cell adhesion and morphology in dependence on the pH setup was evident. Proliferation studies clearly showed that terminal layers, which impaired cell adhesion, also inhibited growth of human fibroblasts under serum-conditions. On the other hand, on layers with pronounced cell adhesion an elevated cell growth was also observed. As a result, HEP terminated multilayers are interesting for applications requiring cell repellent properties, whereas PEI terminated multilayers could be used to promote cell adhesion and growth on implant surfaces.
Collapse
|
29
|
Nelea V, Kaartinen MT. Periodic beaded-filament assembly of fibronectin on negatively charged surface. J Struct Biol 2010; 170:50-9. [PMID: 20109553 DOI: 10.1016/j.jsb.2010.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Fibronectin (FN) is an extracellular glycoprotein with critical roles in many fundamental biological processes. A hallmark of FN function is its characteristic assembly into filaments and fibers to form an insoluble matrix which functions as a scaffolding onto which cells attach, migrate, and deposit other matrix constituents. In this study, we have investigated the effects of differently charged and functionalized surfaces on FN conformations using atomic force microscopy. We demonstrate that a negatively charged polysulfonated surface promotes the formation of highly periodic, micrometer-long FN filaments having a "bead-on-a-string" structure with a bead periodicity of about 60 nm. Beaded filaments were observed when FN was adsorbed to polysulfonate surface in water; higher ionic strength allowed formation of filamentous structures but altered the regularity of the beads. FN did not form filaments when adsorbed onto the polysulfonate surface in the presence of soluble polysulfonates emphasizing the role of negatively charged, solid-phase elements on FN assembly. This charge-driven assembly likely derives from the negative surface promoting extension and opening of the protein, and we suggest a model where this assembly pattern is further stabilized by known self-assembly regions. Our results give insight into how FN fibrillogenesis might be promoted in vivo at cell surfaces by the negatively charged and sulfonated environment created by cell-surface, transmembrane proteoglycans.
Collapse
Affiliation(s)
- Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
30
|
Ting J, Haas M, Valenzuela S, Martin D. Terminating polyelectrolyte in multilayer films influences growth and morphology of adhering cells. IET Nanobiotechnol 2010; 4:77-90. [DOI: 10.1049/iet-nbt.2009.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. MODERN TECHNIQUES FOR NANO- AND MICROREACTORS/-REACTIONS 2010. [DOI: 10.1007/12_2009_42] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A 2009; 15:2001-13. [PMID: 19292684 DOI: 10.1089/ten.tea.2008.0251] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal keratocytes have been reported to be able to form spheroids that can preserve their phenotypes after being seeded back onto tissue culture plate in specific culture media. In this study, we found that keratocytes could also form spheroids on a bioengineered material, chitosan-coated surface, with 10% horse serum and Dulbecco's modified Eagle's medium. Under scanning electron microscopy observation, the cells in the spheroids were found to adhere each other tightly, and the cellular boundary could not be distinguished. They could return to a dendritic (keratocyte) morphology and proliferate after they were seeded back onto tissue culture plate. Immunocytochemistry was used to characterize these cells. Reverse transcription-polymerase chain reaction revealed that keratocytes in the spheroids were not from the PAX-6-positive progenitor cells. Further, the results of the seeding density and the number of spheroids formation, cell viability (MTT) assays, negative staining of Ki-67, and Live/Dead assay suggested that the spheroids were from cell aggregation instead of cell proliferation. Cells in the spheroids maintained phenotypes and functions characteristic of keratocytes, as seen by reverse transcription-polymerase chain reaction, collagen gel contraction assay, and challenges of keratocytes with transforming growth factor-beta1. Our results showed that corneal keratocytes could form spheroids on a chitosan-coated surface and maintain a keratocyte phenotype. However, such keratocyte spheroids do not proliferate and cannot withstand transforming growth factor-beta from myofibroblast differentiation.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University , Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Tristán F, Palestino G, Menchaca JL, Pérez E, Atmani H, Cuisinier F, Ladam G. Tunable protein-resistance of polycation-terminated polyelectrolyte multilayers. Biomacromolecules 2009; 10:2275-83. [PMID: 19618907 DOI: 10.1021/bm900453s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prevention of nonspecific protein adsorption is a crucial prerequisite for many biomedical and biotechnological applications. Therefore, the design of robust and versatile methods conferring optimal protein-resistance properties to surfaces has become a challenging issue. Here we report the unexpected case of polycation-ending polyelectrolyte multilayers (PEM) that efficiently prevented the adsorption of a negatively charged model protein, glucose oxidase (GOX). PEM films were based on two typical weak poyelectrolytes: poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). No chemical modification of the polyelectrolytes was required and tunable GOX adsorption was possible by simply changing the buildup pH conditions. Protein-resistance properties are attributed to high film hydration becoming the predominant factor over electrostatic interactions. We explain this effect by oscillations of the internal PAA ionization state throughout the buildup, which results in an excess of carboxylic acid groups within the film. This excess acts as a reservoir of potential carboxylate groups compensating the outer PAH positive charges. Partial results indicated that the system was also resistant to the adsorption of a positively charged protein, lysozyme. Control of the internal ionization of weak polyelectrolyte multilayers might open a route toward simple tuning of protein adsorption. These results should help to rationalize the design of biomaterials, biosensors, or protein separation devices.
Collapse
|
34
|
Semenov OV, Malek A, Bittermann AG, Vörös J, Zisch AH. Engineered Polyelectrolyte Multilayer Substrates for Adhesion, Proliferation, and Differentiation of Human Mesenchymal Stem Cells. Tissue Eng Part A 2009; 15:2977-90. [DOI: 10.1089/ten.tea.2008.0602] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Oleg V. Semenov
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Antoine Malek
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
| | | | - Janos Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andreas H. Zisch
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Department of Materials Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
35
|
Wilson CG, Sisco PN, Gadala-Maria FA, Murphy CJ, Goldsmith EC. Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials 2009; 30:5639-48. [PMID: 19646751 DOI: 10.1016/j.biomaterials.2009.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/08/2009] [Indexed: 11/17/2022]
Abstract
Gold nanorods (AuNRs) have unique optical properties for numerous biomedical applications, but the interactions between AuNRs and proteins, particularly those of the extracellular matrix (ECM), are poorly understood. Here the effects of AuNRs on the self-assembly, mechanics, and remodeling of type I collagen gels were examined in vitro. AuNRs were modified with polyelectrolyte multilayers (PEMs) to minimize cytotoxicity, and AuNRs with different terminal polymer chemistries were examined for their interactions with collagen by turbidity assays, rheological tests, and microscopy. Gel contraction assays were used to examine the effects of the PEM-coated AuNRs on cell-mediated collagen remodeling. Polyanion-terminated AuNRs significantly reduced the lag (nucleation) phase of collagen self-assembly and significantly increased the dynamic shear modulus of the polymerized gels, whereas polycation-terminated AuNRs had no effect on the mechanical properties of the collagen. Both polyanion- and polycation-terminated AuNRs significantly inhibited collagen gel contraction by cardiac fibroblasts, and the nanoparticles were localized in intra-, peri-, and extracellular compartments, suggesting that PEM-coated AuNRs influence cell behavior via multiple mechanisms. These results demonstrate the significance of nanoparticle-ECM interactions in determining the bioactivity of nanoparticles.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
36
|
Niepel MS, Peschel D, Sisquella X, Planell JA, Groth T. pH-dependent modulation of fibroblast adhesion on multilayers composed of poly(ethylene imine) and heparin. Biomaterials 2009; 30:4939-47. [PMID: 19573910 DOI: 10.1016/j.biomaterials.2009.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Adhesion of tissue cells is a prerequisite for their growth and differentiation but prevents also apoptosis. Here the layer-by-layer technique (LbL) was used to design multilayer structures of poly(ethylene imine) (PEI) and heparin (HEP) on glass as model biomaterial to control the adhesion of primary human dermal fibroblasts. Distinct surface features like wettability, charge and lateral structures were controlled by changing the pH value of the HEP solution during multilayer assembly to acidic, neutral or alkaline values. While plain terminal layers were rather cytophobic, the pre-adsorption of serum or fibronectin (FN) caused a distinct change in cell morphology in dependence on the pH setup. The effect of serum was more prominent on PEI layers probably due to their positive surface charge, whereas the effect of FN was more pronounced on HEP terminated multilayers possibly due to its ability to bind FN specifically. Those layers which hampered cell adhesion also inhibited growth of human fibroblasts under serum conditions. Conversely, on layers where cell adhesion was increased also an elevated growth and, thus, metabolic activity was observed.
Collapse
Affiliation(s)
- Marcus S Niepel
- Biomedical Materials Group, Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
37
|
Fraser SA, Ting YH, Mallon KS, Wendt AE, Murphy CJ, Nealey PF. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media. J Biomed Mater Res A 2008; 86:725-35. [PMID: 18041718 DOI: 10.1002/jbm.a.31519] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features.
Collapse
Affiliation(s)
- Sarah A Fraser
- Department of Chemical Engineering, School of Engineering, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hollmann O, Steitz R, Czeslik C. Structure and dynamics of α-lactalbumin adsorbed at a charged brush interface. Phys Chem Chem Phys 2008; 10:1448-56. [DOI: 10.1039/b716264b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Desroches MJ, Omanovic S. Adsorption of fibrinogen on a biomedical-grade stainless steel 316LVM surface: a PM-IRRAS study of the adsorption thermodynamics, kinetics and secondary structure changes. Phys Chem Chem Phys 2008; 10:2502-12. [DOI: 10.1039/b719371h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Vallières K, Chevallier P, Sarra-Bournet C, Turgeon S, Laroche G. AFM imaging of immobilized fibronectin: does the surface conjugation scheme affect the protein orientation/conformation? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:9745-51. [PMID: 17705411 DOI: 10.1021/la701323q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Covalent grafting of biomolecules could potentially improve the biocompatibility of materials. However, these molecules have to be grafted in an active conformation to play their biological roles. The present work aims at verifying if the surface conjugation scheme of fibronectin (FN) affects the protein orientation/conformation and activity. FN was grafted onto plasma-treated fused silica using two different crosslinkers, glutaric anhydride (GA) or sulfosuccinimidyl 4-(p-maleimidophenyl)butyrate (SMPB). Fused silica was chosen as a model surface material because it presents a roughness well below the dimensions of FN, therefore allowing AFM analyses with appropriate depth resolution. Cell adhesion assays were performed to evaluate the bioactivity of grafted FN. Cell adhesion was found to be higher on GA-FN than on SMPB-FN. Since FN-radiolabeling assays allowed us to rule out a surface concentration effect (approximately 80 ng/cm2 of FN on both crosslinkers), it was hypothesized that FN adopted a more active conformation when grafted via GA. In this context, the FN conformation on both crosslinkers was investigated through AFM and contact angle analyses. Before FN grafting, GA- and SMPB-modified surfaces had a similar water contact angle, topography, and roughness. However, water contact angles of GA-FN and SMPB-FN surfaces clearly show differences in surface hydrophilicity, therefore indicating a dependence of protein organization toward the conjugation strategy. Furthermore, AFM results demonstrated that surface topography and roughness of both FN-conjugated surfaces were significantly different. Distribution analysis of FN height and diameter confirmed this observation as the protein dimensions were significantly larger on GA than SMPB. This study confirmed that the covalent immobilization scheme of biomolecules influences their conformation and, hence, their activity. Consequently, selecting the appropriate conjugation strategy is of paramount importance in retaining molecule bioactivity.
Collapse
Affiliation(s)
- Karine Vallières
- Unité de Biotechnologie et de Bioingénierie, Centre de recherche du CHUQ, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Qué., Canada G1L 3L5
| | | | | | | | | |
Collapse
|
41
|
Desroches MJ, Chaudhary N, Omanovic S. PM-IRRAS Investigation of the Interaction of Serum Albumin and Fibrinogen with a Biomedical-Grade Stainless Steel 316LVM Surface. Biomacromolecules 2007; 8:2836-44. [PMID: 17715960 DOI: 10.1021/bm070289d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was applied to investigate the interaction of bovine serum albumin (BSA) and fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics and adsorption-induced secondary structure changes of the proteins. Highly negative apparent Gibbs energy of adsorption values revealed a spontaneous adsorption of both proteins onto the surface, accompanied by significant changes in their secondary structure. It was determined that, at saturated surface coverages, lateral interactions between the adsorbed BSA molecules induced rather extensive secondary structure changes. Fibrinogen's two coiled coils appeared to undergo negligible secondary structure changes upon adsorption of the protein, while large structural rearrangements of the protein's globular domains occurred upon adsorption. The secondary structure of adsorbed fibrinogen was not influenced by lateral interactions between the adsorbed fibrinogen molecules. PM-IRRAS was deemed to be viable for investigating protein adsorption and for obtaining information on adsorption-induced changes in their secondary structures.
Collapse
Affiliation(s)
- Marie J Desroches
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 2B2, Canada
| | | | | |
Collapse
|
42
|
Hollmann O, Gutberlet T, Czeslik C. Structure and protein binding capacity of a planar PAA brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1347-53. [PMID: 17241057 DOI: 10.1021/la061881b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We performed neutron reflectometry (NR) and total internal reflection fluorescence (TIRF) spectroscopy to characterize the structure and the protein binding capacity of a planar poly(acrylic acid) (PAA) brush at different temperatures. A PAA brush was prepared by spin-coating planar quartz or silicon wafers with a thin film of poly(styrene). Then, the diblock copolymer poly(styrene)-poly(acrylic acid) was deposited on these modified wafers using the Langmuir-Schäfer or Langmuir-Blodgett technique. PAA grafting densities of about 0.1 chains per nm2 were obtained. The NR experiments indicate a remarkable swelling of the PAA brush in contact with a buffer solution, when it is heated to 40 degrees C for several hours. The swollen brush structure remains upon cooling back to 20 degrees C suggesting a disentanglement of the initially formed PAA brush by the temporary heating. At pD = 6.7, the protein bovine serum albumin (BSA) with a negative net charge is strongly adsorbed to the swollen PAA brush. From the scattering length density profiles obtained from the NR curves, an almost homogeneous filling of the whole PAA brush space with BSA molecules can be deduced corresponding to an average BSA volume fraction of about 7-10% and an adsorbed protein mass of about 1.4 mg m-2. By analyzing the TIRF experiments, it is found that BSA adsorption is enhanced when increasing the temperature which represents an evidence for an entropic driving force for protein adsorption. However, the mechanism of BSA adsorption at a PAA brush appears to be different at 20 and 40 degrees C.
Collapse
Affiliation(s)
- Oliver Hollmann
- Universität Dortmund, Fachbereich Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | |
Collapse
|
43
|
Banquy X, Rabanel JM, Hildgen P, Giasson S. Direct Measurement of Mechanical and Adhesive Properties of Living Cells Using Surface Forces Apparatus. Aust J Chem 2007. [DOI: 10.1071/ch07144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The adhesive and mechanical properties of living cells assembled into a monolayer on two different substrates were investigated using the surface forces apparatus (SFA) technique. The force measurements allowed elastic and bending moduli of the cells plated on substrates to be determined. The moduli are in good agreement with data reported in the literature for single cells determined using atomic force microscopy. Results confirm that the nature of the cell–substrate interactions can mediate cell mechanical and adhesive properties.
Collapse
|
44
|
Mohanta K, Pal AJ, Roy S, Das PK. A control over accessibility of immobilized enzymes through porous coating layer. J Colloid Interface Sci 2006; 304:329-34. [PMID: 17010362 DOI: 10.1016/j.jcis.2006.08.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 11/18/2022]
Abstract
We report immobilization of an enzyme by layer-by-layer (LbL) film deposition technique. All the enzyme layers, including the inner ones, contributed to the activity. We put-forwarded additional coating layers to protect the enzymes. To control the accessibility of the enzymes beneath the coating layer, pores have been introduced. Our results show controlled accessibility of immobilized enzymes in solid-state matrices.
Collapse
Affiliation(s)
- Kallol Mohanta
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | | | | | | |
Collapse
|
45
|
Wittmer CR, Phelps JA, Saltzman WM, Van Tassel PR. Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials 2006; 28:851-60. [PMID: 17056106 PMCID: PMC1773012 DOI: 10.1016/j.biomaterials.2006.09.037] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/27/2006] [Indexed: 12/11/2022]
Abstract
Electrostatically driven layer-by-layer (LbL) assembly is a simple and robust method for producing structurally tailored thin film biomaterials, of thickness ca. 10nm, containing biofunctional ligands. We investigate the LbL formation of multilayer films composed of polymers of biological origin (poly(L-lysine) (PLL) and dextran sulfate (DS)), the adsorption of fibronectin (Fn)--a matrix protein known to promote cell adhesion--onto these films, and the subsequent spreading behavior of human umbilical vein endothelial cells (HUVEC). We employ optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microgravimetry with dissipation (QCMD) to characterize multilayer assembly in situ, and find adsorbed Fn mass on PLL-terminated films to exceed that on DS terminated films by 40%, correlating with the positive charge and lower degree of hydration of PLL terminated films. The extent and initial rate of Fn adsorption to both PLL and DS-terminated films exceed those onto the bare substrate, indicating the important role of electrostatic complexation between negatively charged protein and positively charged PLL at or near the film surface. We use phase-contrast optical microscopy to investigate the time-dependent morphological changes of HUVEC as a function of layer number, charge of terminal layer, and the presence of Fn. We observe HUVEC to attach, spread, and lose circularity on all surfaces. Positively charged PLL-terminated films exhibit a greater extent of cell spreading than do (negatively charged) DS-terminated films, and spreading is enhanced while circularity loss is suppressed by the presence of adsorbed Fn. The number of layers plays a significant role only for DS-terminated films with Fn, where spreading on a bilayer greatly exceeds that on a multilayer, and PLL-terminated films without Fn, where initial spreading is significantly higher on a monolayer. We observe initial cell spreading to be followed by retraction (i.e. decreased cell area and circularity with time) for films without Fn, and for DS-terminated films with Fn. Overall, the Fn-coated PLL monolayer and the Fn-coated PLL-terminated multilayer are the best performing films in promoting cell spreading. We conclude the presence of Fn to be an important factor (more so than film charge or layer number) in controlling the interaction between multilayer films and living cells, and thus to represent a promising strategy toward in vivo applications such as tissue engineering.
Collapse
Affiliation(s)
- Corinne R Wittmer
- Department of Chemical Engineering, Yale University, P.O. Box 208286, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
46
|
Shutava TG, Kommireddy DS, Lvov YM. Layer-by-Layer Enzyme/Polyelectrolyte Films as a Functional Protective Barrier in Oxidizing Media. J Am Chem Soc 2006; 128:9926-34. [PMID: 16866552 DOI: 10.1021/ja062318i] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of a catalase (Cat) layer located at different depths in the layer-by-layer hemoglobin/polystyrene sulfonate films with an (Hb/PSS)(20)(-)(x)/(Cat/PSS)/(Hb/PSS)(x) (x = 0-20) architecture on kinetics of hemoglobin degradation under treatment with hydrogen peroxide solutions of different concentrations and features of H(2)O(2) decay in surrounding solutions has been studied. While assembled on the top of the multilayers, the catalase layer shows the highest activity in hydrogen peroxide decomposition. Hemoglobin in such films retains its nativity for a longer period of time. The effect of catalase layers is compared with that of protamine, horseradish peroxidase, and inactivated catalase. Positioning an active layer with catalytic properties as an outer layer is the best protection strategy for layer-by-layer assembled films in aggressive media.
Collapse
Affiliation(s)
- Tatsiana G Shutava
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, USA.
| | | | | |
Collapse
|
47
|
Thompson MT, Berg MC, Tobias IS, Lichter JA, Rubner MF, Van Vliet KJ. Biochemical Functionalization of Polymeric Cell Substrata Can Alter Mechanical Compliance. Biomacromolecules 2006; 7:1990-5. [PMID: 16768424 DOI: 10.1021/bm060146b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biochemical functionalization of surfaces is an increasingly utilized mechanism to promote or inhibit adhesion of cells. To promote mammalian cell adhesion, one common functionalization approach is surface conjugation of adhesion peptide sequences such as Arg-Gly-Asp (RGD), a ligand of transmembrane integrin molecules. It is generally assumed that such functionalization does not alter the local mechanical properties of the functionalized surface, as is important to interpretations of macromolecular mechanotransduction in cells. Here, we examine this assumption systematically, through nanomechanical measurement of the nominal elastic modulus of polymer multilayer films of nanoscale thickness, functionalized with RGD through different processing routes. We find that the method of biochemical functionalization can significantly alter mechanical compliance of polymeric substrata such as weak polyelectrolyte multilayers (PEMs), increasingly utilized materials for such studies. In particular, immersed adsorption of intermediate functionalization reagents significantly decreases compliance of the PEMs considered herein, whereas polymer-on-polymer stamping of these same reagents does not alter compliance of weak PEMs. This finding points to the potential unintended alteration of mechanical properties via surface functionalization and also suggests functionalization methods by which chemical and mechanical properties of cell substrata can be controlled independently.
Collapse
Affiliation(s)
- M Todd Thompson
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hollmann O, Czeslik C. Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3300-5. [PMID: 16548592 DOI: 10.1021/la053110y] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The adsorption of two different proteins at a planar poly(acrylic acid) (PAA) brush was studied as a function of the ionic strength of the protein solutions applying total internal reflection fluorescence (TIRF) spectroscopy. Planar PAA brushes were prepared with a grafting density of 0.11 nm(-2) and were characterized using X-ray reflectometry. Hen egg-white lysozyme and bovine serum albumin (BSA) were used as model proteins, which have a net positive and negative charge at neutral pH-values, respectively. It has been found that both proteins adsorb strongly at a planar PAA brush at low ionic strength. Whereas lysozyme interacts with a PAA brush under electrostatic attraction at neutral pH-values, BSA binds under electrostatic repulsion at pH > 5. Even at pH = 8, significant amounts of BSA are adsorbed to a planar PAA brush. In addition, the reversibility of BSA adsorption has been characterized. Dilution of a BSA solution leads to an almost complete desorption of BSA from a PAA brush at short contact times. When the ionic strength of the protein solutions is increased to about 100-200 mM, a planar PAA brush appears largely protein-resistant, regardless of the protein net charge. The results of this study indicate that the salt-dependent protein affinity of a PAA brush represents a unique effect that must be explained by a novel protein-binding mechanism. On the basis of a recent model, it is suggested that a release of counterions is the most probable driving force for protein adsorption at a PAA brush. In a general view, this study characterizes a planar PAA brush as a new materials coating for the controlled immobilization of proteins whose use in biotechnological applications appears to be rewarding.
Collapse
Affiliation(s)
- Oliver Hollmann
- Universität Dortmund, Fachbereich Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | |
Collapse
|
49
|
Haynie DT, Zhang L, Rudra JS, Zhao W, Zhong Y, Palath N. Polypeptide multilayer films. Biomacromolecules 2006; 6:2895-913. [PMID: 16283705 DOI: 10.1021/bm050525p] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research on polypeptide multilayer films, coatings, and microcapsules is located at the intersection of several disciplines: synthetic polymer chemistry and physics, biomaterials science, and nanoscale engineering. The past few years have witnessed considerable growth in each of these areas. Unexplored territory has been found at the borders, and new possibilities for technology development are taking form from technological advances in polypeptide production, sequencing of the human genome, and the nature of peptides themselves. Most envisioned applications of polypeptide multilayers have a biomedical bent. Prospects seem no less positive, however, in fields ranging from food technology to environmental science. This review of the present state of polypeptide multilayer film research covers key points of polypeptides as materials, means of polymer production and film preparation, film characterization methods, focal points of current research in basic science, and the outlook for a few specific applications. In addition, it discusses how the study of polypeptide multilayer films could help to clarify the physical basis of assembly and stability of polyelectrolyte multilayers, and mention is made of similarities to protein folding studies.
Collapse
Affiliation(s)
- Donald T Haynie
- Bionanosystems Engineering Laboratory, Center for Applied Physics Studies, College of Engineering & Science, Louisiana Tech University, PO Box 10348, Ruston, Louisiana 71272, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Olenych SG, Moussallem MD, Salloum DS, Schlenoff JB, Keller TCS. Fibronectin and cell attachment to cell and protein resistant polyelectrolyte surfaces. Biomacromolecules 2006; 6:3252-8. [PMID: 16283753 DOI: 10.1021/bm050298r] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Culture of A7r5 smooth muscle cells on a polyelectrolyte multilayer film (PEMU) can influence various cell properties, including adhesion, motility, and cytoskeletal organization, that are modulated by the extracellular matrix (ECM) in vivo. ECM contribution to cell behavior on PEMUs was investigated by determining the amount of fibronectin (FN) bound to charged and hydrophobic PEMUs by optical waveguide lightmode spectroscopy and immunofluorescence microscopy. FN bound best to poly(allylamine hydrochloride) (PAH)-terminated and Nafion-terminated PEMUs. FN bound poorly to PEMUs terminated with a copolymer of poly(acrylic acid) (PAA) and 3-[2-(acrylamido)-ethyl dimethylammonio] propane sulfonate (PAA-co-AEDAPS). Cells adhered and spread well on the Nafion-terminated PEMU surfaces. In contrast, cells spread less and migrated more on both FN-coated and uncoated PAH-terminated PEMU surfaces. Both cells and FN interacted much better with Nafion than with PAA-co-PAEDAPS in a micropatterned PEMU. These results indicate that A7r5 cell adhesion, spreading, and motility on PEMUs can be independent of FN binding to the surfaces.
Collapse
Affiliation(s)
- Scott G Olenych
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | |
Collapse
|