1
|
Vanneste F, Faure A, Varache M, Menendez-Miranda M, Dyon-Tafani V, Dussurgey S, Errazuriz-Cerda E, La Padula V, Alcouffe P, Carrière M, Gref R, Laurent F, Josse J, Ladavière C. LipoParticles: a lipid membrane coating onto polymer particles to enhance the internalization in osteoblast cells. NANOSCALE 2023; 15:18015-18032. [PMID: 37916389 DOI: 10.1039/d3nr03267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
LipoParticles, core-shell assemblies consisting of a polymer core coated by a lipid membrane, are promising carriers for drug delivery applications with intracellular targets. This is of great interest since it is actually challenging to treat infections involving intracellular bacteria such as bone and joint infections where the bacteria are hidden in osteoblast cells. The present work reports for the first time to the best of our knowledge the proof of enhanced internalization of particles in osteoblast cells thanks to a lipid coating of particles (= LipoParticles). The ca. 300 nm-sized assemblies were elaborated by reorganization of liposomes (composed of DPPC/DPTAP 10/90 mol/mol) onto the surface of poly(lactic-co-glycolic acid) (PLGA) particles, and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zetametry. Optimization of these assemblies was also performed by adding poly(ethylene glycol) (PEG) chains on their surface (corresponding to a final formulation of DPPC/DPTAP/DPPE-PEG5000 8/90/2 mol/mol/mol). Interestingly, this provided them colloidal stability after their 20-fold dilution in PBS or cell culture medium, and made possible their freeze-drying without forming aggregates after their re-hydration. Their non-cytotoxicity towards a human osteoblast cell line (MG63) was also demonstrated. The enhanced internalization of LipoParticles in this MG63 cell line, in comparison with PLGA particles, was proven by observations with a confocal laser scanning microscope, as well as by flow cytometry assays. Finally, this efficient internalization of LipoParticles in MG63 cells was confirmed by TEM on ultrathin sections, which also revealed localization close to intracellular Staphylococcus aureus.
Collapse
Affiliation(s)
- Florian Vanneste
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| | - Allison Faure
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Mathieu Varache
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| | - Mario Menendez-Miranda
- Institut de Sciences Moléculaires d'Orsay (ISMO), Univ. of Paris-Sud, Orsay 91405, France
| | - Virginie Dyon-Tafani
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Sébastien Dussurgey
- Structure Fédérative de Recherche Biosciences, UMS344/US8, Inserm, CNRS, Université Claude Bernard Lyon-1, ENS de Lyon, Lyon, France
| | | | - Veronica La Padula
- Centre Technologique des Microstructures, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Pierre Alcouffe
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| | - Marie Carrière
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay (ISMO), Univ. of Paris-Sud, Orsay 91405, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| | - Catherine Ladavière
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères F-69622 Cedex, France.
| |
Collapse
|
2
|
Xie MH, Fu ZL, Hua AL, Zhou JF, Chen Q, Li JB, Yao S, Cai XJ, Ge M, Zhou L, Wu J. A new core–shell-type nanoparticle loaded with paclitaxel/norcantharidin and modified with APRPG enhances anti-tumor effects in hepatocellular carcinoma. Front Oncol 2022; 12:932156. [PMID: 36185205 PMCID: PMC9515951 DOI: 10.3389/fonc.2022.932156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023] Open
Abstract
Nanoparticle delivery systems have been shown to improve the therapeutic efficacy of anti-cancer drugs, including a variety of drugs for the treatment of hepatocellular carcinoma (HCC). However, the current systems show some limitations, and the delivery of more effective nanoparticle systems for anti-HCC drugs with better targeting ability are needed. Here, we created paclitaxel (PTX)/norcantharidin (NCTD)-loaded core–shell lipid nanoparticles modified with a tumor neovasculature-targeted peptide (Ala-Pro-Arg-Pro-Gly, APRPG) and investigated their anti-tumor effects in HCC. Core–shell-type lipid nanoparticles (PTX/NCTD-APRPG-NPs) were established by combining poly(lactic-co-glycolic acid) (PLGA)-wrapped PTX with phospholipid-wrapped NCTD, followed by modification with APRPG. For comparison, PTX-loaded PLGA nanoparticles (PTX-NPs) and PTX/NCTD-loaded core–shell-type nanoparticles without APRPG (PTX/NCTD-NPs) were prepared. The in vitro and in vivo anti-tumor effects were examined in HepG2 cells and tumor-bearing mice, respectively. Morphological and release characterization showed that PTX/NCTD-APRPG-NPs were prepared successfully and achieved up to 90% release of PTX in a sustained manner. Compared with PTX/NCTD-NPs, PTX/NCTD-APRPG-NPs significantly enhanced the uptake of PTX. Notably, the inhibition of proliferation and migration of hepatoma cells was significantly higher in the PTX/NCTD-APRPG-NP group than those in the PTX-NP and PTX/NCTD-NP groups, which reflected significantly greater anti-tumor properties as well. Furthermore, key molecules in cell proliferation and apoptosis signaling pathways were altered most in the PTX/NCTD-APRPG-NP group, compared with the PTX-NP and PTX/NCTD-NP groups. Collectively, PTX/NCTD-loaded core–shell lipid nanoparticles modified with APRPG enhance the effectiveness of anti-HCC drugs and may be an effective system for the delivery of anti-HCC drugs.
Collapse
Affiliation(s)
- Ming-Hua Xie
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Zai-Lin Fu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Ai-Lian Hua
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Ji-Fang Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Qian Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Jian-Bo Li
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Shen Yao
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Xin-Jun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Min Ge
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Li Zhou
- Department of Oncology, First People’s Hospital of Linping District, Hangzhou, China
| | - Jia Wu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
- *Correspondence: Jia Wu,
| |
Collapse
|
3
|
Arnett LP, Liu J, Zhang Y, Cho H, Lu E, Closson T, Allo B, Winnik MA. Biotinylated Lipid-Coated NaLnF 4 Nanoparticles: Demonstrating the Use of Lanthanide Nanoparticle-Based Reporters in Suspension and Imaging Mass Cytometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2525-2537. [PMID: 35167296 DOI: 10.1021/acs.langmuir.1c03002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide nanoparticles (LnNPs) have the potential to be used as high-sensitivity mass tag reporters in mass cytometry immunoassays. For this application, however, the LnNPs must be made colloidally stable in aqueous buffers, demonstrate minimal non-specific binding to cells, and have functional groups to attach antibodies or other targeting agents. One possible approach to address these requirements is by using lipid coating to modify the surface of the LnNPs. In this work, 39 nm diameter NaYF4:Yb, Er NPs (LnNPs) were coated with a lipid formulation consisting of egg sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium propane, cholesterol-(polyethylene glycol-600), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000]. The resulting biotinylated lipid-coated LnNPs were characterized by dynamic light scattering to determine the hydrodynamic size and stability in phosphate buffered saline, and the composition of the lipid coatings was quantified by liquid chromatography-tandem mass spectrometry. The specific and non-specific binding of the biotinylated lipid-coated LnNPs to a model system of functionalized polystyrene microbeads were then tested by both suspension and imaging mass cytometry. We found that targeted binding with minimal non-specific binding can be achieved with the lipid-coated LnNPs and that the lipid composition of the coating has an impact on the performance of the LnNPs as mass cytometry reporters. These results additionally establish the importance of quantifying the composition of lipid-coated nanomaterials to optimize them more effectively for their desired application.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Jieyi Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Hyungjun Cho
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Elsa Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| | - Taunia Closson
- Fluidigm Canada Inc., 1380 Rodick Road, Markham, Ontario L3R 4G5, Canada
| | - Bedilu Allo
- Fluidigm Canada Inc., 1380 Rodick Road, Markham, Ontario L3R 4G5, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
4
|
Ye R, Zheng Y, Chen Y, Wei X, Shi S, Chen Y, Zhu W, Wang A, Yang L, Xu Y, Peng J. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55902-55912. [PMID: 34793125 DOI: 10.1021/acsami.1c17618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melittin is a potential anticancer candidate with remarkable antitumor activity and ability to overcome tumor drug resistance. However, the clinical applications of melittin are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity after systemic administration. Here, a biocompatible and stable melittin-loaded lipid-coated polymeric nanoparticle (MpG@LPN) formulation that contains a melittin/poly-γ-glutamic acid nanoparticle inner core, a lipid membrane middle layer, and a polyethylene glycol (PEG) and PEG-targeting molecule outer shell was designed. The formulations were prepared by applying a self-assembly procedure based on intermolecular interactions, including electrostatic attraction and hydrophobic effect. The core-shell MpG@LPN presented high efficiency for melittin encapsulation and high stability in physiological conditions. Hemolysis and cell proliferation assays showed that the PEG-modified MpG@LPN had almost no hemolytic activity and nonspecific cytotoxicity even at high concentrations. The modification of targeting molecules on the MpG@LPNs allowed for the selective binding with target tumor cells and cytolytic activity via apoptosis induction. In vivo experiments revealed that MpG@LPNs can remarkably inhibit the growth of tumors without the occurrence of hemolysis and tissue toxicity. Results suggested that the developed MpG@LPN with a core-shell structure can effectively address the main obstacles of melittin in clinical applications and has great potential in cancer treatment.
Collapse
Affiliation(s)
- Ran Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuetan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wanxin Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Anqi Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liuxin Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Pharmacy and Chemistry, Dali University, Dali City 671000, P. R. China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Nasrin SR, Ganser C, Nishikawa S, Kabir AMR, Sada K, Yamashita T, Ikeguchi M, Uchihashi T, Hess H, Kakugo A. Deformation of microtubules regulates translocation dynamics of kinesin. SCIENCE ADVANCES 2021; 7:eabf2211. [PMID: 34644102 PMCID: PMC10763888 DOI: 10.1126/sciadv.abf2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microtubules, the most rigid components of the cytoskeleton, can be key transduction elements between external forces and the cellular environment. Mechanical forces induce microtubule deformation, which is presumed to be critical for the mechanoregulation of cellular events. However, concrete evidence is lacking. In this work, with high-speed atomic force microscopy, we unravel how microtubule deformation regulates the translocation of the microtubule-associated motor protein kinesin-1, responsible for intracellular transport. Our results show that the microtubule deformation by bending impedes the translocation dynamics of kinesins along them. Molecular dynamics simulation shows that the hindered translocation of kinesins can be attributed to an enhanced affinity of kinesins to the microtubule structural units in microtubules deformed by bending. This study advances our understanding of the role of cytoskeletal components in mechanotransduction.
Collapse
Affiliation(s)
| | - Christian Ganser
- Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Seiji Nishikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takayuki Uchihashi
- Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
6
|
Ayad C, Libeau P, Lacroix-Gimon C, Ladavière C, Verrier B. LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced In Vitro mRNA Transfection Compared to Liposomes. Pharmaceutics 2021; 13:377. [PMID: 33809164 PMCID: PMC7999670 DOI: 10.3390/pharmaceutics13030377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The approval of two mRNA vaccines as urgent prophylactic treatments against Covid-19 made them a realistic alternative to conventional vaccination methods. However, naked mRNA is rapidly degraded by the body and cannot effectively penetrate cells. Vectors capable of addressing these issues while allowing endosomal escape are therefore needed. To date, the most widely used vectors for this purpose have been lipid-based vectors. Thus, we have designed an innovative vector called LipoParticles (LP) consisting of poly(lactic) acid (PLA) nanoparticles coated with a 15/85 mol/mol DSPC/DOTAP lipid membrane. An in vitro investigation was carried out to examine whether the incorporation of a solid core offered added value compared to liposomes alone. To that end, a formulation strategy that we have named particulate layer-by-layer (pLbL) was used. This method permitted the adsorption of nucleic acids on the surface of LP (mainly by means of electrostatic interactions through the addition of LAH4-L1 peptide), allowing both cellular penetration and endosomal escape. After a thorough characterization of size, size distribution, and surface charge- and a complexation assessment of each vector-their transfection capacity and cytotoxicity (on antigenic presenting cells, namely DC2.4, and epithelial HeLa cells) were compared. LP have been shown to be significantly better transfecting agents than liposomes through pLbL formulation on both HeLa and DC 2.4 cells. These data illustrate the added value of a solid particulate core inside a lipid membrane, which is expected to rigidify the final assemblies and makes them less prone to early loss of mRNA. In addition, this assembly promoted not only efficient delivery of mRNA, but also of plasmid DNA, making it a versatile nucleic acid carrier that could be used for various vaccine applications. Finally, if the addition of the LAH4-L1 peptide systematically leads to toxicity of the pLbL formulation on DC 2.4 cells, the optimization of the nucleic acid/LAH4-L1 peptide mass ratio becomes an interesting strategy-essentially reducing the peptide intake to limit its cytotoxicity while maintaining a relevant transfection efficiency.
Collapse
Affiliation(s)
- Camille Ayad
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Pierre Libeau
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Céline Lacroix-Gimon
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Catherine Ladavière
- UMR 5223: Ingénierie des Matériaux Polymères, CNRS/Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment POLYTECH, 15 bd André Latarjet, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| |
Collapse
|
7
|
Pucci C, De Pasquale D, Marino A, Martinelli C, Lauciello S, Ciofani G. Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29037-29055. [PMID: 32459082 PMCID: PMC7343532 DOI: 10.1021/acsami.0c05556] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field. The nanovectors are functionalized with the peptide angiopep-2 to induce receptor-mediated transcytosis through the blood-brain barrier and to target a receptor overexpressed by glioma cells. The glioblastoma multiforme targeting efficiency and the blood-brain barrier crossing abilities were tested through in vitro fluidic models, where different human cell lines were placed to mimic the tumor microenvironment. These nanovectors successfully cross the blood-brain barrier model, maintaining their targeting abilities for glioblastoma multiforme with minimal interaction with healthy cells. Moreover, we showed that nanovector-assisted hyperthermia induces a lysosomal membrane permeabilization that not only initiates a caspase-dependent apoptotic pathway, but also enhances the anticancer efficacy of the drug.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola
Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Chiara Martinelli
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Simone Lauciello
- Istituto
Italiano di Tecnologia, Electron Microscopy Facility, Via Morego 30, 16163 Genova, Italy
| | - Gianni Ciofani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
8
|
Ghorbanizamani F, Moulahoum H, Zihnioglu F, Timur S. Nanohybrid carriers: the yin–yang equilibrium between natural and synthetic in biomedicine. Biomater Sci 2020; 8:3237-3247. [DOI: 10.1039/d0bm00401d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanocarriers are key players in biomedicine applications. The development of hybrid nanoparticles stems from the need to enhance their quality by lowering disadvantages and fusing the positive qualities of both natural and synthetic materials.
Collapse
Affiliation(s)
| | - Hichem Moulahoum
- Biochemistry Department
- Faculty of Science
- Ege University
- Bornova
- Turkey
| | - Figen Zihnioglu
- Biochemistry Department
- Faculty of Science
- Ege University
- Bornova
- Turkey
| | - Suna Timur
- Biochemistry Department
- Faculty of Science
- Ege University
- Bornova
- Turkey
| |
Collapse
|
9
|
Yang J, Arya S, Lung P, Lin Q, Huang J, Li Q. Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. NANOSCALE 2019; 11:21782-21789. [PMID: 31709434 DOI: 10.1039/c9nr05475h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For efficient cancer vaccines, the antitumor function largely relies on cytotoxic T cells, whose activation can be effectively induced via antigen-encoding mRNA, making mRNA-based cancer vaccines an attractive approach for personalized cancer therapy. While the liposome-based delivery system enables the systemic delivery and transfection of mRNA, incorporating an adjuvant that is non-lipid like remains challenging, although the co-delivery of mRNA (antigen) and effective adjuvant is key to the activation of the cytotoxic T cells. This is because the presence of an adjuvant is important for dendritic cell maturation-another necessity for cytotoxic T cell activation. In the present work, we designed a poly (lactic-co-glycolic acid) (PLGA)-core/lipid-shell hybrid nanoparticle carrier for the co-delivery of mRNA and gardiquimod (adjuvant that cannot be incorporated into the lipid shell). We demonstrated in the present work that the co-delivery of mRNA and gardiquimod led to the effective antigen expression and DC maturation in vitro. The intravenous administration of the hybrid nanovaccine resulted in the enrichment of mRNA expression in the spleen and a strong immune response in vivo. The simultaneous delivery of the antigen and adjuvant both spatially and temporally via the core/shell nanoparticle carrier is found to be beneficial for tumor growth inhibition.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacokinetics
- Adjuvants, Immunologic/pharmacology
- Aminoquinolines/chemistry
- Aminoquinolines/pharmacokinetics
- Aminoquinolines/pharmacology
- Animals
- Antigen Presentation/drug effects
- Antigen Presentation/immunology
- Cancer Vaccines/chemistry
- Cancer Vaccines/pharmacokinetics
- Cancer Vaccines/pharmacology
- Cell Line, Tumor
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Imidazoles/chemistry
- Imidazoles/pharmacokinetics
- Imidazoles/pharmacology
- Liposomes
- Mice
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Polyglycolic Acid/chemistry
- Polyglycolic Acid/pharmacokinetics
- Polyglycolic Acid/pharmacology
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/pharmacokinetics
- RNA, Neoplasm/pharmacology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jingnan Yang
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | |
Collapse
|
10
|
Hernández-Meza JM, Vélez-Cordero J, Yáñez-Soto B, Ramírez-Saito A, Aranda-Espinoza S, Arauz-Lara J. Interaction of colloidal particles with biologically relevant complex surfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
N’Diaye M, Vergnaud-Gauduchon J, Nicolas V, Faure V, Denis S, Abreu S, Chaminade P, Rosilio V. Hybrid Lipid Polymer Nanoparticles for Combined Chemo- and Photodynamic Therapy. Mol Pharm 2019; 16:4045-4058. [DOI: 10.1021/acs.molpharmaceut.9b00797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marline N’Diaye
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Juliette Vergnaud-Gauduchon
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Valérie Nicolas
- UMS IPSIT, Univ Paris-Sud, US 31 INSERM, UMS 3679 CNRS, Microscopy Facility, 92290 Châtenay-Malabry, France
| | - Victor Faure
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Stéphanie Denis
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Sonia Abreu
- Lip(Sys)2, Chimie Analytique Pharmaceutique, Univ Paris-Sud, Université Paris-Saclay, F-92290 Chistenay-Malabry Cedex, France
| | - Pierre Chaminade
- Lip(Sys)2, Chimie Analytique Pharmaceutique, Univ Paris-Sud, Université Paris-Saclay, F-92290 Chistenay-Malabry Cedex, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| |
Collapse
|
12
|
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160:130-142. [DOI: 10.1016/j.mimet.2019.03.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
|
13
|
N’Diaye M, Michel JP, Rosilio V. Relevance of charges and polymer mechanical stiffness in the mechanism and kinetics of formation of liponanoparticles probed by the supported bilayer model approach. Phys Chem Chem Phys 2019; 21:4306-4319. [DOI: 10.1039/c8cp06955g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parameters controlling the mechanism and kinetics of formation of liponanoparticles are determined using supported lipid bilayer models.
Collapse
Affiliation(s)
- Marline N’Diaye
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Jean-Philippe Michel
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Véronique Rosilio
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
14
|
Bugnicourt L, Peers S, Dalverny C, Ladavière C. Tunable morphology of lipid/chitosan particle assemblies. J Colloid Interface Sci 2019; 534:105-109. [DOI: 10.1016/j.jcis.2018.08.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
|
15
|
Watanabe N, Suga K, Umakoshi H. Comparison of Physicochemical Membrane Properties of Vesicles Modified with Guanidinium Derivatives. J Phys Chem B 2017; 121:9213-9222. [PMID: 28820256 DOI: 10.1021/acs.jpcb.7b04007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bilayer vesicles have garnered considerable research attention as molecular vehicles capable of noncovalent interaction with biomolecules via electrostatic and hydrophobic bonds and van der Waals interactions. Guanidinium strongly interacts with phosphate groups. Thus, guanidinium modification of vesicles helps intensify the interaction between lipid membranes and nucleic acids. Here, two kinds of guanidinium derivatives, stearylguanidinium (SG) and myristoylarginine (MA), were synthesized and incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles. Differences in their membrane properties were evaluated using Fourier transform infrared spectroscopy, Raman spectroscopy, and the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH), 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), and 2-p-toluidinylnaphthalene-6-sulfonate (TNS). The increased SG ratio increased overall hydrophobicity and lipid packing density compared to POPC vesicles, and SG-modified vesicles successfully attracted and then denatured negatively charged tRNAs (tRNAs). In contrast, MA-modified vesicles did not affect the stiffness of POPC membranes, wherein no conformational change in tRNAs was observed in the presence of POPC/MA vesicles. Analyses of the pH-dependent fluorescence emission of TNS suggested that SG and MA molecules render the membrane surfaces cationic and anionic, respectively, which was also revealed by zeta potential measurements. Our results enabled the construction of a model of the headgroup orientation of zwitterionic POPC molecules controlled by modification with guanidinium derivatives. The results also indicate the possibility to regulate the interaction and conformation of biological molecules, such as nucleic acid.
Collapse
Affiliation(s)
- Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
16
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
17
|
Poudel BK, Gupta B, Ramasamy T, Thapa RK, Pathak S, Oh KT, Jeong JH, Choi HG, Yong CS, Kim JO. PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf B Biointerfaces 2017; 160:73-83. [PMID: 28917152 DOI: 10.1016/j.colsurfb.2017.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022]
Abstract
Pancreatic cancer has extremely poor prognosis with an 85% mortality rate that results from aggressive and asymptomatic growth, high metastatic potential, and rapid development of resistance to already ineffective chemotherapy. In this study, plasmonic hollow gold nanoshells (GNS) coated with PEGylated thermosensitive lipids were prepared as an efficient platform to ratiometrically co-deliver two drugs, bortezomib and gemcitabine (GNS-L/GB), for combinational chemotherapy and photothermal therapy of pancreatic cancer. Bortezomib was loaded within the lipid bilayers, while gemcitabine was loaded into the hydrophilic interior of the porous GNS via an ammonium sulfate-driven pH gradient method. Physicochemical characterizations and biological studies of GNS-L/GB were performed, with the latter using cytotoxicity assays, cellular uptake and apoptosis assays, live/dead assays, and western blot analysis of pancreatic cancer cell lines (MIA PaCa-2 and PANC-1). The nanoshells showed remotely controllable drug release when exposed to near-infrared laser for site-specific delivery. GNS-L/GB showed synergistic cytotoxicity and improved internalization by cancer cells. High-powered near-infrared continuous wave laser (λ=808nm) effectively killed cancer cells via the photothermal effect of GNS-L/GB, irrespective of cell type in a power density-, time-, and GNS dose-dependent manner. These results suggest that this method can provide a novel approach to achieve synergistic combinational chemotherapy and photothermal therapy, even with resistant pancreatic cancer.
Collapse
Affiliation(s)
- Bijay Kumar Poudel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
18
|
A study of zwitterionic/cationic vesicle formation and the influence of hyaluronan on this formation. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J Control Release 2017; 256:121-140. [DOI: 10.1016/j.jconrel.2017.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
|
20
|
Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. NANOSCALE 2017; 9:1334-1355. [PMID: 27973629 DOI: 10.1039/c6nr08486a] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Lily Yi Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Azhar Z Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| |
Collapse
|
21
|
Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci 2015; 81:162-71. [PMID: 26517962 DOI: 10.1016/j.ejps.2015.10.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/01/2022]
Abstract
Core-shell type lipid-polymer hybrid nanoparticles (CSLPHNPs) have emerged as a multifunctional drug delivery platform. The delivery system combines mechanical advantages of polymeric core and biomimetic advantages of the phospholipid shell into a single platform. We report the development of CSLPHNPs composed of the lipid monolayer shell and the biodegradable polymeric core for the delivery of erlotinib, an anticancer drug, clinically used to treat non-small cell lung cancer (NSCLC). Erlotinib loaded CSLPHNPs were prepared by previously reported single-step sonication method using polycaprolactone (PCL) as the biodegradable polymeric core and phospholipid-shell composed of hydrogenated soy phosphatidylcholine (HSPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG2000). Erlotinib loaded CSLPHNPs were characterized for physicochemical properties including mean particle size, polydispersity index (PDI), zeta potential, morphology, thermal and infrared spectral analysis, drug loading, in vitro drug release, in vitro serum stability, and storage stability. The effect of critical formulation and process variables on two critical quality attributes (mean particle size and drug entrapment efficiency) of erlotinib loaded CSLPHNPs was studied and optimized. In addition, in vitro cellular uptake, luminescent cell viability assay and colony formation assay were performed to evaluate efficacy of erlotinib loaded CSLPHNPs in A549 cells, a human lung adenocarcinoma cell line. Optimized erlotinib loaded CSLPHNPs were prepared with mean particle size of about 170nm, PDI<0.2, drug entrapment efficiency of about 66% with good serum and storage stability. The evaluation of in vitro cellular efficacy results indicated enhanced uptake and efficacy of erlotinib loaded CSLPHNPs compared to erlotinib solution in A549 cells. Therefore, CSLPHNPs could be a potential delivery system for erlotinib in the therapy of NSCLC.
Collapse
Affiliation(s)
- Bivash Mandal
- Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, 3 N Dunlap Street, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA.
| | - Nivesh K Mittal
- Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, 3 N Dunlap Street, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Pavan Balabathula
- Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, 3 N Dunlap Street, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Laura A Thoma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - George C Wood
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| |
Collapse
|
22
|
Ishigami T, Suga K, Umakoshi H. Chiral Recognition of L-Amino Acids on Liposomes Prepared with L-Phospholipid. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21065-72. [PMID: 26339952 DOI: 10.1021/acsami.5b07198] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, we demonstrated that liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) can recognize several l-amino acids, but not their d-enantiomers, by analyzing their adsorptive behavior and using circular dichroism spectroscopy. Changes in liposomal membrane properties, determined based on fluorescent probe analysis and differential scanning calorimetry, were induced by l-amino acid binding. UV resonance Raman spectroscopy analysis suggested that the chiral recognition was mediated by electrostatic, hydrophobic, and hydrogen bond interactions, where the recognition site could therefore be constructed on the DPPC membrane. Our findings clearly indicate the potential function of liposomes in asymmetric recognition.
Collapse
Affiliation(s)
- Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
23
|
Characterization of temperature induced changes in liposomes coated with poly( N -isopropylacrylamide- co -methacrylic acid). J Colloid Interface Sci 2015; 450:7-16. [DOI: 10.1016/j.jcis.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 02/02/2023]
|
24
|
Stolzoff M, Ekladious I, Colby AH, Colson YL, Porter TM, Grinstaff MW. Synthesis and Characterization of Hybrid Polymer/Lipid Expansile Nanoparticles: Imparting Surface Functionality for Targeting and Stability. Biomacromolecules 2015; 16:1958-66. [PMID: 26053219 DOI: 10.1021/acs.biomac.5b00336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The size, drug loading, drug release kinetics, localization, biodistribution, and stability of a given polymeric nanoparticle (NP) system depend on the composition of the NP core as well as its surface properties. In this study, novel, pH-responsive, and lipid-coated NPs, which expand in size from a diameter of approximately 100 to 1000 nm in the presence of a mildly acidic pH environment, are synthesized and characterized. Specifically, a combined miniemulsion and free-radical polymerization method is used to prepare the NPs in the presence of PEGylated lipids. These PEGylated-lipid expansile NPs (PEG-L-eNPs) combine the swelling behavior of the polymeric core of expansile NPs with the improved colloidal stability and surface functionality of PEGylated liposomes. The surface functionality of PEG-L-eNPs allows for the incorporation of folic acid (FA) and folate receptor-targeting. The resulting hybrid polymer/lipid nanocarriers, FA-PEG-L-eNPs, exhibit greater in vitro uptake and potency when loaded with paclitaxel compared to nontargeted PEG-L-eNPs.
Collapse
Affiliation(s)
| | | | | | - Yolonda L Colson
- §Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
25
|
Krishnamurthy S, Vaiyapuri R, Zhang L, Chan JM. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater Sci 2015. [PMID: 26221931 DOI: 10.1039/c4bm00427b] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymeric nanoparticles and liposomes have been the platform of choice for nanoparticle-based cancer drug delivery applications over the past decade, but extensive research has revealed their limitations as drug delivery carriers. A hybrid class of nanoparticles, aimed at combining the advantages of both polymeric nanoparticles and liposomes, has received attention in recent years. These core/shell type nanoparticles, frequently referred to as lipid-polymer hybrid nanoparticles (LPNs), possess several characteristics that make them highly suitable for drug delivery. This review introduces the formulation methods used to synthesize LPNs and discusses the strategies used to treat cancer, such as by targeting the tumor microenvironment or vasculature. Finally, it discusses the challenges that must be overcome to realize the full potential of LPNs in the clinic.
Collapse
Affiliation(s)
- Sangeetha Krishnamurthy
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
| | | | | | | |
Collapse
|
26
|
Ma S, Yong D, Zhang Y, Wang X, Han X. A Universal Approach for the Reversible Phase Transfer of Hydrophilic Nanoparticles. Chemistry 2014; 20:15580-6. [DOI: 10.1002/chem.201404417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 11/09/2022]
|
27
|
Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:334-49. [PMID: 25237838 DOI: 10.3109/21691401.2014.951721] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The oral route for drug delivery is a widely accepted route. For that reason, many researchers are currently working to develop efficient oral drug delivery systems. Use of polymeric nanoparticles (NPs) and lipid carrier systems, including liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLC), has limitations such as drug leakage and high water content of dispersions. Thus, lipid polymer hybrid nanoparticles (LPNs) have been explored by the researchers to provide a better effect using properties of both polymers and lipids. The present review is focused on the challenges, possibilities, and future perspectives of LPNs for oral delivery.
Collapse
Affiliation(s)
| | - Prabhjot Kaur
- a Nanomedicine Research Centre, I.S.F. College of Pharmacy , Moga , Punjab , India
| | - Veerpal Kaur
- a Nanomedicine Research Centre, I.S.F. College of Pharmacy , Moga , Punjab , India
| | - Neeraj Mishra
- a Nanomedicine Research Centre, I.S.F. College of Pharmacy , Moga , Punjab , India
| | | |
Collapse
|
28
|
Wu FG, Wu RG, Sun HY, Zheng YZ, Yu ZW. Demixing and crystallization of DODAB in DPPC-DODAB binary mixtures. Phys Chem Chem Phys 2014; 16:15307-18. [PMID: 24943895 DOI: 10.1039/c4cp01707b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The crystallization mechanism of one lipid component within multicomponent lipid mixtures remains unclear. To shed light on this issue, we studied the demixing and crystallization behaviors of a binary lipid system using neutral dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DODAB) as model molecules. The results indicate that when DODAB is no more than equimolar (e.g., DPPC/DODAB = 2/1 and 1/1), DPPC is miscible with DODAB and hinders the crystallization of DODAB, and the samples undergo reversible gel-fluid phase transitions upon heating and cooling. However, when DODAB is dominant in the mixture (DPPC/DODAB = 1/2), cooling of the mixed fluid phase results in the formation of a DODAB-rich gel domain and a DPPC-DODAB mixed gel domain. Such phase-separated mixed gels can undergo further demixing and crystallization, producing a DODAB-rich crystalline domain and a DPPC-rich tilted gel domain upon prolonged (or plus low-temperature) incubation. Besides, evidence has been given that the crystallized DODAB-rich domain remains in the same lipid bilayer as the DPPC-rich domain. All the three binary lipid mixtures can hold large amounts of water in the lipid interlamellar regions, allowing the incorporation of a large number of water-soluble substances such as DNA or proteins, which can be used for the fabrication of functional biofilms and biomaterials. Influences of water content and salt concentration on the phase structures (e.g., repeat distances) of the binary mixtures have also been studied.
Collapse
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | |
Collapse
|
29
|
Weingart J, Vabbilisetty P, Sun XL. Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv Colloid Interface Sci 2013; 197-198:68-84. [PMID: 23688632 PMCID: PMC3729609 DOI: 10.1016/j.cis.2013.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regard to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications.
Collapse
Affiliation(s)
- Jacob Weingart
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | | | - Xue-Long Sun
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
- Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
30
|
Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:474-91. [DOI: 10.1016/j.nano.2012.11.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022]
|
31
|
Suga K, Tanabe T, Umakoshi H. Heterogeneous cationic liposomes modified with 3β-{N-[(N',N'-dimethylamino)ethyl]carbamoyl}cholesterol can induce partial conformational changes in messenger RNA and regulate translation in an Escherichia coli cell-free translation system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1899-1907. [PMID: 23323854 DOI: 10.1021/la3050576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of cationic liposomes (CLs) on messenger RNA(mRNA) conformation and translation was studied, focusing on membrane heterogeneity. CLs, composed of 1,2-dioleoyl-sn-glycerol-3-phosphocholine/1,2-dioleoyl-3-timethylammonium propane (DOPC/DOTAP) and DOPC/3β-{N-[(N',N'-dimethylamino)ethyl]carbamoyl}cholesterol (DOPC/DC-Ch), inhibited mRNA translation in an Escherichia coli cell-free translation system. Analysis of the membrane fluidity and polarity indicated a heterogeneous DOPC/DC-Ch (70/30) membrane, while other CLs exhibited homogeneous disordered membranes. mRNA adsorbed onto DOPC/DC-Ch liposomes showed translational activity, while DOPC/DOTAP liposomes inhibited mRNA translation in proportion to its adsorption onto membranes. Dehydration of DOPC/DOTAP (70/30) and DOPC/DC-Ch (70/30) was observed in the presence of mRNA but not in the case of zwitterionic DOPC liposomes, indicating that mRNA binds in regions between the phosphate [-PO(2)(-)-] and carbonyl [-C=O-] moieties of lipids. UV resonance Raman spectroscopy suggests that adenine, cytosine, and guanine interact with DOPC/DOTAP (70/30) and DOPC/DC-Ch (70/30) but not with DOPC. Circular dichroism indicates that DOPC/DOTAP (70/30) extensively denatured the mRNA. In contrast, heterogeneous DOPC/DC-Ch (70/30) induced partial conformational changes but maintained the translational activity of mRNA.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | | | | |
Collapse
|
32
|
Von White G, Chen Y, Roder-Hanna J, Bothun GD, Kitchens CL. Structural and thermal analysis of lipid vesicles encapsulating hydrophobic gold nanoparticles. ACS NANO 2012; 6:4678-85. [PMID: 22632177 DOI: 10.1021/nn2042016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The structure and stability of hybrid lipid vesicles containing bilayer-encapsulated hydrophobic nanoparticles is dependent upon lipid phase behavior. By embedding stearylamine-stabilized gold nanoparticles in dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol vesicles, we show that encapsulation at lipid to nanoparticle ratios from 10,000:1 to 5000:1 leads to bilayer thickening and hydrophobic mismatch, favoring nanoparticle inclusion in gel phase vesicles. High loadings lead to large increases in the gel to fluid melting temperature upon heating and significant hysteresis on cooling, which cannot be attributed solely to excess free ligand. This behavior is due to a cooperative effect of excess free SA ligand and nanoparticle embedment. Nanoparticle clustering was observed during lipid melting and could be reversed upon lipid freezing owing to lateral capillary forces within the bilayer. The impact of nanoparticle embedment on vesicle structure and properties at such low concentrations is reminiscent of hydrophobic proteins, suggesting that the underlying lipid biophysics between proteins and nanoparticle are similar and may provide a predictive design tool for therapeutic applications.
Collapse
Affiliation(s)
- Gregory Von White
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|
33
|
Ahmed S, Savarala S, Chen Y, Bothun G, Wunder SL. Formation of lipid sheaths around nanoparticle-supported lipid bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1740-1751. [PMID: 22434657 DOI: 10.1002/smll.201101833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 10/25/2011] [Indexed: 05/31/2023]
Abstract
High-surface-area nanoparticles often cluster, with unknown effects on their cellular uptake and environmental impact. In the presence of vesicles or cell membranes, lipid adsorption can occur on the nanoparticles, resulting in the formation of supported lipid bilayers (SLBs), which tend to resist cellular uptake. When the amount of lipid available is in excess compared with that required to form a single-SLB, large aggregates of SLBs enclosed by a close-fitting lipid bilayer sheath are shown to form. The proposed mechanism for this process is one where small unilamellar vesicles (SUVs) adsorb to aggregates of SLBs just above the gel-to-liquid phase transition temperature, T(m) , of the lipids (as observed by dynamic light scattering), and then fuse with each other (rather than to the underlying SLBs) upon cooling below T(m) . The sacks of SLB nanoparticles that are formed are encapsulated by the contiguous close-fitting lipid sheath, and precipitate below T(m) , due to reduced hydration repulsion and the absence of undulation/protrusion forces for the lipids attached to the solid support. The single-SLBs can be released above T(m) , where these forces are restored by the free lipid vesicles. This mechanism may be useful for encapsulation/release of drugs/DNA, and has implications for the toxic effects of nanoparticles, which may be mitigated by lipid sequestration.
Collapse
Affiliation(s)
- Selver Ahmed
- Department of Chemistry, Temple University, Philadelphia, PA 19317, USA
| | | | | | | | | |
Collapse
|
34
|
Li B, Xu H, Li Z, Yao M, Xie M, Shen H, Shen S, Wang X, Jin Y. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine 2012; 7:187-97. [PMID: 22275834 PMCID: PMC3263411 DOI: 10.2147/ijn.s27864] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Multidrug resistance (MDR) mediated by the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs), consisting of a dimethyldidodecylammonium bromide (DMAB)-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp. Methods Doxorubicin (DOX), a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF)-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR) cells. Results This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50) value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT) assay, correlated with the strong nuclear retention of the drug. Conclusion The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR.
Collapse
Affiliation(s)
- Bo Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen Y, Bothun GD. Cationic gel-phase liposomes with "decorated" anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8645-8652. [PMID: 21649441 DOI: 10.1021/la2011138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | |
Collapse
|
36
|
Saleem Q, Liu B, Gradinaru CC, Macdonald PM. Lipogels: Single-Lipid-Bilayer-Enclosed Hydrogel Spheres. Biomacromolecules 2011; 12:2364-74. [DOI: 10.1021/bm200266z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Qasim Saleem
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | - Baoxu Liu
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | - Claudiu C. Gradinaru
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | - Peter M. Macdonald
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
37
|
Park Y, Franses EI. Effect of a PEGylated lipid on the dispersion stability and dynamic surface tension of aqueous DPPC and on the interactions with albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6932-6942. [PMID: 20121171 DOI: 10.1021/la904183e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dispersions of dipalmitoylphosphatidylcholine (DPPC) vesicles at 0.1 wt % (1000 ppm) in aqueous isotonic buffer solutions produced by extensive sonication were found to be colloidally stable for hours and days. They also had very low (<10 mN/m) dynamic surface tension minima (DSTM) under pulsating area conditions at 37 degrees C at 20 rpm area pulsation rate. When a 1000 ppm DPPC dispersion was mixed with a stable solution of 1000 ppm bovine serum albumin (BSA), it became colloidally unstable, aggregating within minutes, implying that heterocoagulation between lipid vesicles and albumin takes place. The heterocoagulated dispersion produced high DSTM because the lipid transport rate to the interface became slower. Moreover, the protein may have been transported to the surface faster and adsorbed more than the lipid at the surface. DPPC lipid vesicles were modified for reducing aggregation with other vesicles or with the protein with the addition of a small weight fraction of a neutral "PEGylated" lipid, with a covalently bonded poly(ethylene glycol) (PEG) group. The mixed vesicles were found to be quite more stable than the DPPC vesicles, remaining stable for months, apparently stabilized by steric forces. The colloidal stability at the initial stages of coagulation was evaluated quantitatively from the Fuchs-Smoluchowski stability ratio W. When the modified lipid vesicle dispersion was mixed with the albumin, the vesicles showed no tendency to aggregate with the albumin molecules for days, also probably because of steric repulsion between the PEGylated lipid and the protein. Finally, the mixed lipid dispersions maintained their low DSTM as did the DPPC vesicles without the albumin, and also in the presence of albumin. The results have implications on the use of DPPC or DPPC-based lipids in treating alveolar respiratory diseases without albumin inhibition of their surface tension lowering ability.
Collapse
Affiliation(s)
- Yoonjee Park
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, USA
| | | |
Collapse
|
38
|
Xia Y, Lu W, Jiang L. Fabrication of color changeable polystyrene spheres decorated by gold nanoparticles and their label-free biosensing. NANOTECHNOLOGY 2010; 21:85501. [PMID: 20097982 DOI: 10.1088/0957-4484/21/8/085501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel and simple method for gold nanoshell synthesis with controllable core and shell sizes is reported here. A new 'tree-shape' surfactant bis(amidoethyl-carbamoylethyl) octadecylamine (C18N3) was synthesized and used as the glue for the fast combination of gold nanoparticles and the subsequent gold shell outside. The functionalized polystyrene (PS) cores were covered by a surfactant (PS@C18N3) bilayer. The presence of the surfactant double layer played the role of 'glue' in this method, so that upon controlling the amount of surfactant, it was possible to achieve: the manipulation of gold seed density on the PS@C18N3 spheres, the preparation of PS@Au hybrid structures, and a red-shift in the extinction absorption from 520 to 750 nm. Besides, the as-prepared PS@Au composites supported on a glass substrate exhibited excellent effectiveness in the molecular recognition of human-immunoglobulin G (h-IgG) and goat anti-human-immunoglobulin G (goat anti-h-IgG), showing a rapid response within 20 min with a low detection limit of 10 ng ml(-1). This demonstrates that PS@Au prepared and assembled using our method is potentially useful as a nanosensor platform for immunoassay.
Collapse
Affiliation(s)
- Yuetong Xia
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | |
Collapse
|
39
|
De Geest BG, De Koker S, Demeester J, De Smedt SC, Hennink WE. Self-exploding capsules. Polym Chem 2010. [DOI: 10.1039/b9py00287a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Volodkin D, Skirtach A, Möhwald H. Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805572] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Volodkin D, Skirtach A, Möhwald H. Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angew Chem Int Ed Engl 2009; 48:1807-9. [DOI: 10.1002/anie.200805572] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Bathfield M, Daviot D, D’Agosto F, Spitz R, Ladavière C, Charreyre MT, Delair T. Synthesis of Lipid-α-End-Functionalized Chains by RAFT Polymerization. Stabilization of Lipid/Polymer Particle Assemblies. Macromolecules 2008. [DOI: 10.1021/ma801567c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maël Bathfield
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Delphine Daviot
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Franck D’Agosto
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Roger Spitz
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Catherine Ladavière
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Marie-Thérèse Charreyre
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Thierry Delair
- Unité Mixte CNRS/bioMérieux, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
43
|
Thevenot J, Troutier AL, Putaux JL, Delair T, Ladavière C. Effect of the polymer nature on the structural organization of lipid/polymer particle assemblies. J Phys Chem B 2008; 112:13812-22. [PMID: 18844402 DOI: 10.1021/jp805865r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nano-organized LipoParticle assemblies, consisting of polymer particles coated with lipid layers, are investigated with the aim of evidencing the impact of the particle chemical nature on their physicochemical behavior. To this end, these colloidal systems are elaborated from anionic submicrometer poly(styrene) (P(St)) or poly(lactic acid) (PLA) particles, and lipid mixtures composed of zwitterionic 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and cationic 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP). As revealed by various experimental techniques, such as quasielastic light scattering, zeta potential measurements, transmission electron microscopy, and 1H NMR spectroscopy, the features of both LipoParticle systems are similar when cationic lipid formulations (DPPC/DPTAP mixtures) are used. This result emphasizes the major role of electrostatic interactions as driving forces in the assembly elaboration process. Conversely, the assemblies prepared only with the zwitterionic DPPC lipid are strongly dependent on the particle chemical nature. The structural characteristics of the assemblies based on PLA particles are not controlled and correspond to aggregates, contrary to P(St) particles. To understand this specific phenomenon, and to consequently improve the final organization of these assemblies which are potentially of great interest in biotechnology and biomedicine, numerous investigations are carried out such as the studies of the impact of the ionic strength and the pH of the preparation media, as well as the presence of ethanol (involved in the PLA particle synthesis) or the mean size of the lipid vesicles. From the resulting data and according to the nature of spherical solid support, hydrophobic effects, hydrogen bonds, or dipole-dipole interactions would also appear to influence the LipoParticle elaboration in the case of zwitterionic lipid formulation.
Collapse
Affiliation(s)
- Julie Thevenot
- Systèmes Macromoléculaires et Physiopathologie Humaine, UMR CNRS/bioMérieux 2714, ENSL, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
44
|
Cinelli S, Onori G, Zuzzi S, Bordi F, Cametti C, Sennato S, Diociaiuti M. Properties of Mixed DOTAP−DPPC Bilayer Membranes as Reported by Differential Scanning Calorimetry and Dynamic Light Scattering Measurements. J Phys Chem B 2007; 111:10032-9. [PMID: 17663578 DOI: 10.1021/jp071722g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the effect of a cationic lipid [DOTAP] on both the thermotropic phase behavior and the structural organization of aqueous dispersions of dipalmitoyl-phosphatidylcholine [DPPC] by means of high-sensitivity differential scanning calorimetry and dynamic light scattering measurements. We find that the incorporation of increasing quantities of DOTAP progressively reduces the temperature and the enthalpy of the gel-to-liquid crystalline transition. We are further showing that, in mixed DOTAP-DPPC systems, the reduction of the phase transition temperature is accompanied by a reduction of the average size of the structures present in the aqueous mixtures, whatever the DOTAP concentration is. These results, which extend a previous investigation by Campbell et al. (Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M.; Biochim. Biosphys. Acta 2001, 27, 1512.) limited to a DOTAP concentration below 20 mol %, confirm that the insertion of cationic head groups in zwitterionic phosphatidylcholine bilayers facilitates the formation of stable, relatively small, unilamellar vesicles. This self-assembling restructuring from an aqueous multilamellar structure toward a liposomal phase is favored by decreasing the phospholipid phase transition temperature and by increasing the temperature of the system. This reduction of the average size and the appearance of a stable liposomal phase is also promoted by a heating and cooling thermal treatment.
Collapse
Affiliation(s)
- S Cinelli
- Dipartimento di Fisica, UniversitA di Perugia and CEMIN (Centro Eccellenza Materiali Innovativi Nanostrutturati) Via A. Pascoli, I-06123, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Troutier AL, Ladavière C. An overview of lipid membrane supported by colloidal particles. Adv Colloid Interface Sci 2007; 133:1-21. [PMID: 17397791 DOI: 10.1016/j.cis.2007.02.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/29/2007] [Accepted: 02/19/2007] [Indexed: 12/30/2022]
Abstract
In recent years, original hybrid assemblies composed of a particle core surrounded by a lipid shell emerged as promising entities for various biotechnological applications. Their broadened bio-potentialities, ranging from model membrane systems or biomolecule screening supports, to substance delivery reservoirs or therapeutic vectors, are furthered by their versatility of composition due to the possible wide variation in the particle nature and size, as well as in the lipid formulation. The synthesis, the characteristics, and the uses of these Lipid/Particle assemblies encountered in the literature so far are reviewed, and classified according to the spherical core size in order to highlight general trends. Moreover, several criteria are particularly discussed: i) the interactions involved between the particles and the lipids, and implicitly the assembly elaboration mechanism, ii) the most suited techniques for an accurate characterization of the entities from structural and physicochemical points of view, and iii) the remarkable properties of the solid-supported lipid membrane obtained.
Collapse
Affiliation(s)
- Anne-Lise Troutier
- Laboratoire des Matériaux Inorganiques, UMR 6002-CNRS, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France
| | | |
Collapse
|
46
|
Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, Seijo B, Alonso MJ. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007; 28:1553-64. [PMID: 17169422 DOI: 10.1016/j.biomaterials.2006.11.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 11/18/2006] [Indexed: 11/22/2022]
Abstract
This study evaluated in vitro and in vivo a colloidal nanosystem with the potential to deliver drugs to the ocular surface. This nanosystem, liposome-chitosan nanoparticle complexes (LCS-NP), was created as a complex between liposomes and chitosan nanoparticles (CS-NP). The conjunctival epithelial cell line IOBA-NHC was exposed to several concentrations of three different LCS-NP complex to determine the cytotoxicity. The uptake of LCS-NP by the IOBA-NHC conjunctival cell line and by primary cultured conjunctival epithelial cells was examined by confocal microscopy. Eyeball and lid tissues from LCS-NP-treated rabbits were evaluated for the in vivo uptake and acute tolerance of the nanosystems. The in vitro toxicity of LCS-NP in the IOBA-NHC cells was very low. LCS-NPs were identified inside IOBA-NHC cells after 15 min and inside primary cultures of conjunctival epithelial cells after 30 min. Distribution within the cells had different patterns depending on the LCS-NP formulation. Fluorescence microscopy of the conjunctiva revealed strong cellular uptake of LCS-NP in vivo and less intensive uptake by the corneal epithelium. No alteration was macroscopically observed in vivo after ocular surface exposure to LCS-NP. Taken together, these data demonstrate that LCS-NPs are potentially useful as drug carriers for the ocular surface.
Collapse
Affiliation(s)
- Yolanda Diebold
- IOBA, University of Valladolid, Ramón y Cajal 7, E-47005 Valladolid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|