1
|
van Elburg B, Lassus A, Cherkaoui S, Lajoinie G, Versluis M, Segers T. Controlling the stability of monodisperse phospholipid-coated microbubbles by tuning their buckling pressure. J Colloid Interface Sci 2025; 685:449-457. [PMID: 39855090 DOI: 10.1016/j.jcis.2025.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
HYPOTHESIS Monodisperse phospholipid-coated microbubbles, with a size and resonance frequency tuned to the ultrasound driving frequency, have strong potential to enhance sensitivity, efficiency, and control in emerging diagnostic and therapeutic applications involving bubbles and ultrasound. A key requirement is that they retain their gas volume and shell material during physiologic pressure changes and withstand the overpressure during intravenous injection. The shell typically comprises a mixture of a phospholipid (e.g., DSPC) mixed with a PEGylated phospholipid (e.g., DPPE-PEG5000). We hypothesize that (i) lipid-coated microbubbles destabilize when shell buckling occurs under pressurization, (ii) the overpressure at which buckling occurs (buckling pressure) is linked to the molar fraction of PEGylated lipid in the shell, and (iii) PEGylated lipid can be selectively expelled from the shell by fluidizing it at elevated temperatures. EXPERIMENTS The buckling pressure was measured using ultrasound attenuation spectroscopy while the ambient pressure was varied. When the ambient pressure increased, the microbubble resonance frequency dropped sharply due to shell buckling and the associated loss of elasticity. The buckling pressure Pb was obtained for monodisperse microbubbles formed by microfluidic flow-focusing, with DPPE-PEG5000 mixed with DSPC at molar fractions from 1.5% to 10%. Additionally, Pb was quantified for microbubbles containing 10 mol% PEG after heating at temperatures ranging from 40∘C to 70∘C. The molar PEG content of the microbubbles was analyzed using high-performance liquid chromatography. FINDINGS Quasi-static compression of a microbubble above its buckling pressure leads to its destabilization. Lowering the PEG molar fraction from 10 to 1.5% increased the buckling pressure from 3 kPa to 27 kPa. Similarly, heating the 10 mol% bubble suspension at 60∘C for one hour raised the buckling pressure by 20 kPa, due to the selective loss of PEGylated lipid from the shell, without affecting the monodispersity of the bubbles. The higher buckling pressure significantly improved microbubble stability, allowing them to withstand pressurization cycles of up to 45 kPa, nearly three times the systolic blood pressure in vivo.
Collapse
Affiliation(s)
- Benjamin van Elburg
- Physics of Fluids Group, TechMed Centre, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
| | - Anne Lassus
- Bracco Suisse S.A., Route de la Galaise 31, Geneva, 1228, Switzerland
| | - Samir Cherkaoui
- Bracco Suisse S.A., Route de la Galaise 31, Geneva, 1228, Switzerland
| | - Guillaume Lajoinie
- Physics of Fluids Group, TechMed Centre, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands
| | - Tim Segers
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, Enschede, 7500 AE, the Netherlands.
| |
Collapse
|
2
|
Maji S, Aliabouzar M, Quesada C, Chiravuri A, Macpherson A, Pinch A, Kazyak K, Emara Z, Abeid BA, Kent RN, Midekssa FS, Zhang M, Baker BM, Franceschi RT, Fabiilli ML. Ultrasound-generated bubbles enhance osteogenic differentiation of mesenchymal stromal cells in composite collagen hydrogels. Bioact Mater 2025; 43:82-97. [PMID: 39345992 PMCID: PMC11439547 DOI: 10.1016/j.bioactmat.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Hydrogels can improve the delivery of mesenchymal stromal cells (MSCs) by providing crucial biophysical cues that mimic the extracellular matrix. The differentiation of MSCs is dependent on biophysical cues like stiffness and viscoelasticity, yet conventional hydrogels cannot be dynamically altered after fabrication and implantation to actively direct differentiation. We developed a composite hydrogel, consisting of type I collagen and phase-shift emulsion, where osteogenic differentiation of MSCs can be non-invasively modulated using ultrasound. When exposed to ultrasound, the emulsion within the hydrogel was non-thermally vaporized into bubbles, which locally compacted and stiffened the collagen matrix surrounding each bubble. Bubble growth and matrix compaction were correlated, with collagen regions proximal (i.e., ≤ ∼60 μm) to the bubble displaying a 2.5-fold increase in Young's modulus compared to distal regions (i.e., > ∼60 μm). The viability and proliferation of MSCs, which were encapsulated within the composite hydrogel, were not impacted by bubble formation. In vitro and in vivo studies revealed encapsulated MSCs exhibited significantly elevated levels of RUNX2 and osteocalcin, markers of osteogenic differentiation, in collagen regions proximal to the bubble compared to distal regions. Additionally, alkaline phosphatase activity and calcium deposition were enhanced adjacent to the bubble. An opposite trend was observed for CD90, a marker of MSC stemness. Following subcutaneous implantation, bubbles persisted in the hydrogels for two weeks, which led to localized collagen alignment and increases in nuclear asymmetry. These results are a significant step toward controlling the 3D differentiation of MSCs in a non-invasive and on-demand manner.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Chiravuri
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aidan Macpherson
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abigail Pinch
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Karsyn Kazyak
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ziyad Emara
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Bachir A Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Firaol S Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Yang SH, Song WL, Fan LL, Deng CF, Xie R, Wang W, Liu Z, Pan DW, Ju XJ, Chu LY. Microfluidic fabrication of monodisperse microcapsules with gas cores. LAB ON A CHIP 2024; 24:3556-3567. [PMID: 38949110 DOI: 10.1039/d4lc00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A facile strategy for efficient and continuous fabrication of monodisperse gas-core microcapsules with controllable sizes and excellent ultrasound-induced burst performances is developed based on droplet microfluidics and interfacial polymerization. Monodisperse gas-in-oil-in-water (G/O/W) double emulsion droplets with a gas core and monomer-contained oil layer are fabricated in the upstream of a microfluidic device as templates, and then water-soluble monomers are added into the aqueous continuous phase in the downstream to initiate rapid interfacial polymerization at the O/W interfaces to prepare monodisperse gas-in-oil-in-solid (G/O/S) microcapsules with gas cores. The sizes of both microbubbles and G/O/W droplet templates can be precisely controlled by adjusting the gas supply pressure and the fluid flow rates. Due to the very thin shells of G/O/S microcapsules fabricated via interfacial polymerization, the sizes of the resultant G/O/S microcapsules are almost the same as those of the G/O/W droplet templates, and the microcapsules exhibit excellent deformable properties and ultrasound-induced burst performances. The proposed strategy provides a facile and efficient route for controllably and continuously fabricating monodisperse microcapsules with gas cores, which are highly desired for biomedical applications.
Collapse
Affiliation(s)
- Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Wan-Lu Song
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Lin-Ling Fan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
4
|
Paknahad AA, Zalloum IO, Karshafian R, Kolios MC, Tsai SSH. High throughput microfluidic nanobubble generation by microporous membrane integration and controlled bubble shrinkage. J Colloid Interface Sci 2024; 653:277-284. [PMID: 37716307 DOI: 10.1016/j.jcis.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Microfluidics has recently been proposed as a viable method for producing bulk nanobubbles for use in various applications. The portability, compact size, and capacity to precisely control fluids on a small scale are a few of the benefits of microfluidics that may be exploited to create customized bulk nanobubbles. However, despite the potential of microfluidic nanobubble generation, low throughput and limited nanobubble concentration remain challenging for microfluidics. Here, we integrate a microporous silicon membrane into a polydimethylsiloxane microfluidic chip to generate bulk nanobubbles in the 100-140 nm diameter range with a concentration of up to 108 mL-1. We investigate the nanobubble size and morphology using several characterisation techniques, including transmission electron microscopy, resonance mass measurement, dynamic light scattering, and the Tyndall effect. This new nanobubble generation technique can increase nanobubble concentration by ∼ 23 times compared to earlier microfluidic nanobubble generation platforms, which should increase the feasibility of translation to medical applications.
Collapse
Affiliation(s)
- Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Intesar O Zalloum
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Raffi Karshafian
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada; Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada; Graduate Program in Biomedical Engineering, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| |
Collapse
|
5
|
Zhang M, Wang X, Zhang Y, Fan Y. Integrated sample processing and counting microfluidic device for microplastics analysis. Anal Chim Acta 2023; 1261:341237. [PMID: 37147054 DOI: 10.1016/j.aca.2023.341237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The presence of microplastics is widespread in the ocean, freshwater, soil, or even in the human body. The current microplastics analysis method involves a relatively complicated sieving, digestion filtration, and manual counting process, which is both time-consuming and requires experienced operation personnel. RESULT This study proposed an integrated microfluidic approach for the quantification of microplastics from river water sediment and biosamples. The proposed two-layer PMMA-based microfluidic device is able to conduct the sample digestion, filtration and counting processes inside the microfluidic chip with the preprogrammed sequence. For demonstration, samples from river water sediment and fish gastrointestinal tract were analyzed, result indicate the proposed microfluidic device is able to perform the quantification of microplastics from river water and biosamples. SIGNIFICANCE AND NOVELTY Compared with the conventional approach, the proposed microfluidic-based sample processing and quantification method for microplastics are simple, low-cost and with low demand for laboratory equipments, the self-contained system also has the application potential for the continuous on-site inspection of microplastics.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yajun Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiqiang Fan
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Goncin U, Curiel L, Geyer CR, Machtaler S. Aptamer-Functionalized Microbubbles Targeted to P-selectin for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Mol Imaging Biol 2023; 25:283-293. [PMID: 35851673 DOI: 10.1007/s11307-022-01755-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Our objectives were to develop a targeted microbubble with an anti-P-selectin aptamer and assess its ability to detect bowel inflammation in two murine models of acute colitis. PROCEDURES Lipid-shelled microbubbles were prepared using mechanical agitation. A rapid copper-free click chemistry approach (azide-DBCO) was used to conjugate the fluorescent anti-P-selectin aptamer (Fluor-P-Ap) to the microbubble surface. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in both Balb/C and interleukin-10-deficient (IL-10 KO) mice. Mouse bowels were imaged using non-linear contrast mode following an i.v. bolus of 1 × 108 microbubbles. Each mouse received a bolus of aptamer-functionalized and non-targeted microbubbles. Mouse phenotypes and the presence of P-selectin were validated using histology and immunostaining, respectively. RESULTS Microbubble labelling of Fluor-P-Ap was complete after 20 min at 37 ̊C. We estimate approximately 300,000 Fluor-P-Ap per microbubble and confirmed fluorescence using confocal microscopy. There was a significant increase in ultrasound molecular imaging signal from both Balb/C (p = 0.003) and IL-10 KO (p = 0.02) mice with inflamed bowels using aptamer-functionalized microbubbles in comparison to non-targeted microbubbles. There was no signal in healthy mice (p = 0.4051) using either microbubble. CONCLUSIONS We constructed an aptamer-functionalized microbubble specific for P-selectin using a clinically relevant azide-DBCO click reaction, which could detect bowel inflammation in vivo. Aptamers have potential as a next generation targeting agent for developing cost-efficient and clinically translatable targeted microbubbles.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 4V8, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Goncin U, Bernhard W, Curiel L, Geyer CR, Machtaler S. Rapid Copper-free Click Conjugation to Lipid-Shelled Microbubbles for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Bioconjug Chem 2022; 33:848-857. [DOI: 10.1021/acs.bioconjchem.2c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 4V8, Canada
| | - C. Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
8
|
Paknahad AA, Kerr L, Wong DA, Kolios MC, Tsai SSH. Biomedical nanobubbles and opportunities for microfluidics. RSC Adv 2021; 11:32750-32774. [PMID: 35493576 PMCID: PMC9042222 DOI: 10.1039/d1ra04890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022] Open
Abstract
The use of bulk nanobubbles in biomedicine is increasing in recent years, which is attributable to the array of therapeutic and diagnostic tools promised by developing bulk nanobubble technologies. From cancer drug delivery and ultrasound contrast enhancement to malaria detection and the diagnosis of acute donor tissue rejection, the potential applications of bulk nanobubbles are broad and diverse. Developing these technologies to the point of clinical use may significantly impact the quality of patient care. This review compiles and summarizes a representative collection of the current applications, fabrication techniques, and characterization methods of bulk nanobubbles in biomedicine. Current state-of-the-art generation methods are not designed to create nanobubbles of high concentration and low polydispersity, both characteristics of which are important for several bulk nanobubble applications. To date, microfluidics has not been widely considered as a tool for generating nanobubbles, even though the small-scale precision and real-time control offered by microfluidics may overcome the challenges mentioned above. We suggest possible uses of microfluidics for improving the quality of bulk nanobubble populations and propose ways of leveraging existing microfluidic technologies, such as organ-on-a-chip platforms, to expand the experimental toolbox of researchers working to develop biomedical nanobubbles. The use of bulk nanobubbles in biomedicine is increasing in recent years. This translates into new opportunities for microfluidics, which may enable the generation of higher quality nanobubbles that lead to advances in diagnostics and therapeutics.![]()
Collapse
Affiliation(s)
- Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Liam Kerr
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Daniel A Wong
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Electrical, Computer, and Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Physics, Ryerson University Toronto Ontario M5B 2K3 Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Graduate Program in Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| |
Collapse
|
9
|
Abou-Saleh RH, Armistead FJ, Batchelor DVB, Johnson BRG, Peyman SA, Evans SD. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:074105. [PMID: 34340422 DOI: 10.1063/5.0040213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Microbubbles (MBs) have a multitude of applications including as contrast agents in ultrasound imaging and as therapeutic drug delivery vehicles, with further scope for combining their diagnostic and therapeutic properties (known as theranostics). MBs used clinically are commonly made by mechanical agitation or sonication methods, which offer little control over population size and dispersity. Furthermore, clinically used MBs are yet to be used therapeutically and further research is needed to develop these theranostic agents. In this paper, we present our MB production instrument "Horizon," which is a robust, portable, and user-friendly instrument, integrating the key components for producing MBs using microfluidic flow-focusing devices. In addition, we present the system design and specifications of Horizon and the optimized protocols that have so far been used to produce MBs with specific properties. These include MBs with tailored size and low dispersity (monodisperse); MBs with a diameter of ∼2 μm, which are more disperse but also produced in higher concentration; nanobubbles with diameters of 100-600 nm; and therapeutic MBs with drug payloads for targeted delivery. Multiplexed chips were able to improve production rates up to 16-fold while maintaining production stability. This work shows that Horizon is a versatile instrument with potential for mass production and use across many research facilities, which could begin to bridge the gap between therapeutic MB research and clinical use.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Fern J Armistead
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Damien V B Batchelor
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Benjamin R G Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
10
|
Ferri S, Wu Q, De Grazia A, Polydorou A, May JP, Stride E, Evans ND, Carugo D. Tailoring the size of ultrasound responsive lipid-shelled nanodroplets by varying production parameters and environmental conditions. ULTRASONICS SONOCHEMISTRY 2021; 73:105482. [PMID: 33588208 PMCID: PMC7901031 DOI: 10.1016/j.ultsonch.2021.105482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 05/06/2023]
Abstract
Liquid perfluorocarbon nanodroplets (NDs) are an attractive alternative to microbubbles (MBs) for ultrasound-mediated therapeutic and diagnostic applications. ND size and size distribution have a strong influence on their behaviour in vivo, including extravasation efficiency, circulation time, and response to ultrasound stimulation. Thus, it is desirable to identify ways to tailor the ND size and size distribution during manufacturing. In this study phospholipid-coated NDs, comprising a perfluoro-n-pentane (PFP) core stabilised by a DSPC/PEG40s (1,2-distearoyl-sn-glycero-3-phosphocholine and polyoxyethylene(40)stearate, 9:1 molar ratio) shell, were produced in phosphate-buffered saline (PBS) by sonication. The effect of the following production-related parameters on ND size was investigated: PFP concentration, power and duration of sonication, and incorporation of a lipophilic fluorescent dye. ND stability was also assessed at both 4 °C and 37 °C. When a sonication pulse of 6 s and 15% duty cycle was employed, increasing the volumetric concentration of PFP from 5% to 15% v/v in PBS resulted in an increase in ND diameter from 215.8 ± 16.8 nm to 408.9 ± 171.2 nm. An increase in the intensity of sonication from 48 to 72 W (with 10% PFP v/v in PBS) led to a decrease in ND size from 354.6 ± 127.2 nm to 315.0 ± 100.5 nm. Increasing the sonication time from 20 s to 40 s (using a pulsed sonication with 30% duty cycle) did not result in a significant change in ND size (in the range 278-314 nm); however, when it was increased to 60 s, the average ND diameter reduced to 249.7 ± 9.7 nm, which also presented a significantly lower standard deviation compared to the other experimental conditions investigated (i.e., 9.7 nm vs. > 49.4 nm). The addition of the fluorescent dye DiI at different molar ratios did not affect the ND size distribution. NDs were stable at 4 °C for up to 6 days and at 37 °C for up to 110 min; however, some evidence of ND-to-MB phase transition was observed after 40 min at 37 °C. Finally, phase transition of NDs into MBs was demonstrated using a tissue-mimicking flow phantom under therapeutic ultrasound exposure conditions (ultrasound frequency: 0.5 MHz, acoustic pressure: 2-4 MPa, and pulse repetition frequency: 100 Hz).
Collapse
Affiliation(s)
- Sara Ferri
- Faculty of Engineering and Physical Sciences, Department of Mechanical Engineering, University of Southampton, UK; Centre for Human Development, Stem Cells and Regeneration, Bioengineering Sciences, Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences (IfLS), University of Southampton, UK
| | - Qiang Wu
- Department of Engineering Science, University of Oxford, UK
| | - Antonio De Grazia
- Faculty of Engineering and Physical Sciences, Department of Mechanical Engineering, University of Southampton, UK
| | - Anastasia Polydorou
- Faculty of Engineering and Physical Sciences, Department of Mechanical Engineering, University of Southampton, UK; Centre for Human Development, Stem Cells and Regeneration, Bioengineering Sciences, Faculty of Medicine, University of Southampton, UK
| | - Jonathan P May
- Faculty of Engineering and Physical Sciences, Department of Mechanical Engineering, University of Southampton, UK; Centre for Human Development, Stem Cells and Regeneration, Bioengineering Sciences, Faculty of Medicine, University of Southampton, UK
| | - Eleanor Stride
- Department of Engineering Science, University of Oxford, UK
| | - Nicholas D Evans
- Faculty of Engineering and Physical Sciences, Department of Mechanical Engineering, University of Southampton, UK; Centre for Human Development, Stem Cells and Regeneration, Bioengineering Sciences, Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences (IfLS), University of Southampton, UK
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London (UCL), UK.
| |
Collapse
|
11
|
Helbert A, Gaud E, Segers T, Botteron C, Frinking P, Jeannot V. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3339-3352. [PMID: 33008649 DOI: 10.1016/j.ultrasmedbio.2020.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/21/2023]
Abstract
Recent advances in the field of monodisperse microbubble synthesis by flow focusing allow for the production of foam-free, highly concentrated and monodisperse lipid-coated microbubble suspensions. It has been found that in vitro, such monodisperse ultrasound contrast agents (UCAs) improve the sensitivity of contrast-enhanced ultrasound imaging. Here, we present the first in vivo study in the left ventricle of rat and pig with this new monodisperse bubble agent. We systematically characterize the acoustic sensitivity and safety of the agent at an imaging frequency of 2.5 MHz as compared with three commercial polydisperse UCAs (SonoVue/Lumason, Definity/Luminity and Optison) and one research-grade polydisperse agent with the same shell composition as the monodisperse bubbles. The monodisperse microbubbles, which had a diameter of 4.2 μm, crossed the pulmonary vasculature, and their echo signal could be measured at least as long as that of the polydisperse UCAs, indicating that microfluidically formed monodisperse microbubbles are stable in vivo. Furthermore, it was found that the sensitivity of the monodisperse agent, expressed as the mean echo power per injected bubble, was at least 10 times higher than that of the polydisperse UCAs. Finally, the safety profile of the monodisperse microbubble suspension was evaluated by injecting 400 and 2000 times the imaging dose, and neither physiologic nor pathologic changes were found, which is a first indication that monodisperse lipid-coated microbubbles formed by flow focusing are safe for in vivo use. The more uniform acoustic response and corresponding increased imaging sensitivity of the monodisperse agent may boost emerging applications of microbubbles and ultrasound such as molecular imaging and therapy.
Collapse
Affiliation(s)
- Alexandre Helbert
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland
| | - Emmanuel Gaud
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland
| | - Tim Segers
- Physics of Fluids Group, MESA + Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands; Former employee of Bracco Suisse S.A
| | | | | | - Victor Jeannot
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland.
| |
Collapse
|
12
|
Abou-Saleh RH, McLaughlan JR, Bushby RJ, Johnson BR, Freear S, Evans SD, Thomson NH. Molecular Effects of Glycerol on Lipid Monolayers at the Gas-Liquid Interface: Impact on Microbubble Physical and Mechanical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10097-10105. [PMID: 30901226 DOI: 10.1021/acs.langmuir.8b04130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The production and stability of microbubbles (MBs) is enhanced by increasing the viscosity of both the formation and storage solution, respectively. Glycerol is a good candidate for biomedical applications of MBs, since it is biocompatible, although the exact molecular mechanisms of its action is not fully understood. Here, we investigate the influence glycerol has on lipid-shelled MB properties, using a range of techniques. Population lifetime and single bubble stability were studied using optical microscopy. Bubble stiffness measured by AFM compression is compared with lipid monolayer behavior in a Langmuir-Blodgett trough. We deduce that increasing glycerol concentrations enhances stability of MB populations through a 3-fold mechanism. First, binding of glycerol to lipid headgroups in the interfacial monolayer up to 10% glycerol increases MB stiffness but has limited impact on shell resistance to gas permeation and corresponding MB lifetime. Second, increased solution viscosity above 10% glycerol slows down the kinetics of gas transfer, markedly increasing MB stability. Third, above 10%, glycerol induces water structuring around the lipid monolayer, forming a glassy layer which also increases MB stiffness and resistance to gas loss. At 30% glycerol, the glassy layer is ablated, lowering the MB stiffness, but MB stability is further augmented. Although the molecular interactions of glycerol with the lipid monolayer modulate the MB lipid shell properties, MB lifetime continually increases from 0 to 30% glycerol, indicating that its viscosity is the dominant effect on MB solution stability. This three-fold action and biocompatibility makes glycerol ideal for therapeutic MB formation and storage and gives new insight into the action of glycerol on lipid monolayers at the gas-liquid interface.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Biophysics Group, Department of Physics, Faculty of Science , Mansoura University , Mansoura , Egypt
| | - James R McLaughlan
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
- Leeds Institute of Medical Research , University of Leeds, St. James's University Hospital , Leeds LS9 7TF , United Kingdom
| | - Richard J Bushby
- School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Benjamin R Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Neil H Thomson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Division of Oral Biology, School of Dentistry , University of Leeds , Leeds LS2 9LU , United Kingdom
| |
Collapse
|
13
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
14
|
Helfield B. A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:282-300. [PMID: 30413335 DOI: 10.1016/j.ultrasmedbio.2018.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/11/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound contrast agent microbubbles have expanded the utility of biomedical ultrasound from anatomic imaging to the assessment of microvascular blood flow characteristics and ultrasound-assisted therapeutic applications. Central to their effectiveness in these applications is their resonant and non-linear oscillation behaviour. This article reviews the salient physics of an oscillating microbubble in an ultrasound field, with particular emphasis on phospholipid-coated agents. Both the theoretical underpinnings of bubble vibration and the experimental evidence of non-linear encapsulated bubble dynamics and scattering are discussed and placed within the context of current and emerging applications.
Collapse
Affiliation(s)
- Brandon Helfield
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Pulsipher KW, Hammer DA, Lee D, Sehgal CM. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2441-2460. [PMID: 30241729 PMCID: PMC6643280 DOI: 10.1016/j.ultrasmedbio.2018.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 05/05/2023]
Abstract
Microbubbles interact with ultrasound in various ways to enable their applications in ultrasound imaging and diagnosis. To generate high contrast and maximize therapeutic efficacy, microbubbles of high uniformity are required. Microfluidic technology, which enables precise control of small volumes of fluid at the sub-millimeter scale, has provided a versatile platform on which to produce highly uniform microbubbles for potential applications in ultrasound imaging and diagnosis. Here, we describe fundamental microfluidic principles and the most common types of microfluidic devices used to produce sub-10 μm microbubbles, appropriate for biomedical ultrasound. Bubbles can be engineered for specific applications by tailoring the bubble size, inner gas and shell composition and by functionalizing for additional imaging modalities, therapeutics or targeting ligands. To translate the laboratory-scale discoveries to widespread clinical use of these microfluidic-based microbubbles, increased bubble production is needed. We present various strategies recently developed to improve scale-up. We conclude this review by describing some outstanding problems in the field and presenting areas for future use of microfluidics in ultrasound.
Collapse
Affiliation(s)
- Katherine W Pulsipher
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics. MICROMACHINES 2018; 9:mi9100497. [PMID: 30424430 PMCID: PMC6215214 DOI: 10.3390/mi9100497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
Microbubbles generated by microfluidic techniques have gained substantial interest in various industries such as cosmetics, food engineering, and the biomedical field. The microfluidic T-junction provides exquisite control over processing parameters, however, it relies on pressure driven flows only; therefore, bubble size variation is limited especially for viscous solutions. A novel set-up to superimpose an alternating current (AC) oscillation onto a direct current (DC) field is invented in this work, capitalising on the possibility to excite bubble resonance phenomenon and properties, and introducing relevant parameters such as frequency, AC voltage, and waveform to further control bubble size. A capillary embedded T-junction microfluidic device fitted with a stainless-steel capillary was utilised for microbubble formation. Furthermore, a numerical model of the T-junction was developed by integrating the volume of fluid (VOF) method with the electric module; simulation results were attained for the formation of the microbubbles with a particular focus on the flow fields along the detachment of the emerging bubble. Two main types of experiments were conducted in this framework: the first was to test the effect of applied AC voltage magnitude and the second was to vary the applied frequency. Experimental results indicated that higher frequencies have a pronounced effect on the bubble diameter within the 100 Hz and 2.2 kHz range, whereas elevated AC voltages tend to promote bubble elongation and growth. Computational results suggest there is a uniform velocity field distribution along the bubble upon application of a superimposed field and that microbubble detachment is facilitated by the recirculation of the dispersed phase. Furthermore, an ideal range of parameters exists to tailor monodisperse bubble size for specific applications.
Collapse
|
17
|
Segers T, Lohse D, Versluis M, Frinking P. Universal Equations for the Coalescence Probability and Long-Term Size Stability of Phospholipid-Coated Monodisperse Microbubbles Formed by Flow Focusing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10329-10339. [PMID: 28872315 DOI: 10.1021/acs.langmuir.7b02547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resonantly driven monodisperse phospholipid-coated microbubbles are expected to substantially increase the sensitivity and efficiency in contrast-enhanced ultrasound imaging and therapy. They can be produced in a microfluidic flow-focusing device, but questions remain as to the role of the device geometry, the liquid and gas flow, and the phospholipid formulation on bubble stability. Here, we develop a model based on simple continuum mechanics equations that reveals the scaling of the coalescence probability with the key physical parameters. It is used to characterize short-term coalescence behavior and long-term size stability as a function of flow-focusing geometry, bulk viscosity, lipid cosolvent mass fraction, lipid concentration, lipopolymer molecular weight, and lipopolymer molar fraction. All collected data collapse on two master curves given by universal equations for the coalescence probability and the long-term size stability. This work is therefore a route to a more fundamental understanding of the physicochemical monolayer properties of microfluidically formed bubbles and their coalescence behavior in a flow-focusing device.
Collapse
Affiliation(s)
- Tim Segers
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Geneva, Switzerland
| | - Detlef Lohse
- Physics of Fluids group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente , Postbus 217, 7500 AE Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente , Postbus 217, 7500 AE Enschede, The Netherlands
| | - Peter Frinking
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Geneva, Switzerland
| |
Collapse
|
18
|
Black KJ, Lock AT, Thomson LM, Cole AR, Tang X, Polizzotti BD, Kheir JN. Hemodynamic Effects of Lipid-Based Oxygen Microbubbles via Rapid Intravenous Injection in Rodents. Pharm Res 2017; 34:2156-2162. [DOI: 10.1007/s11095-017-2222-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
|
19
|
Ma X, Bussonniere A, Liu Q. A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut's reagent. ULTRASONICS SONOCHEMISTRY 2017; 36:454-465. [PMID: 28069233 DOI: 10.1016/j.ultsonch.2016.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/24/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
The short lifetime of proteinaceous microbubbles produced using conventional sonication method has hindered their applications in drug delivery and metal removal from wastewater. In this study, we aimed to synthesize stable proteinaceous microbubbles and to demonstrate their reactivity. Our model protein, bovine serum albumin (BSA) was treated with 2-iminothiolane hydrochloride (Traut's reagent) to convert primary amines to thiols before the synthesis of microbubbles. Microbubbles produced with the Traut's reagent-treated BSA (BSA-SH MBs) were initially concentrated at median sizes of 0.5 and 2.5μm. The 0.5μm portion quickly vanished, and the 2.5μm portion gradually shrank to ∼850nm in ∼3days and became stabilized afterward for several months under 4°C. Characterizations of BSA-SH MBs by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated the presence of free unbound thiols and primary amines on their surface, implying the possibility of further surface modification. Based on the zeta potential measurement, the isoelectric point (IEP) of BSA-SH MBs was determined to be 4.5. The attachments of BSA-SH MBs on alumina, silica, and gold surfaces in different pH environments were carried out with a quartz crystal microbalance with dissipation monitoring (QCM-D), demonstrating the reactivities of BSA-SH MBs. At pH 6, the negatively charged BSA-SH MBs were adsorbed onto the alumina surface by electrostatic interaction. Analogously, at pH 4, the adsorption of the positively charged BSA-SH MBs on the silica surface was confirmed. Compared with the electrostatic interaction, the adsorption of BSA-SH MBs on the gold surface is attributed to the strong gold-thiol bonding effect. This is the first time that a universal approach for stabilizing protein-shelled microbubbles was reported using only one single step of surface treatment of proteins with the Traut's reagent.
Collapse
Affiliation(s)
- Xiaochen Ma
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211 - 116 St NW, Edmonton T6G 1H9, Canada
| | - Adrien Bussonniere
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211 - 116 St NW, Edmonton T6G 1H9, Canada
| | - Qingxia Liu
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211 - 116 St NW, Edmonton T6G 1H9, Canada.
| |
Collapse
|
20
|
Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G. Complex interfaces in "phase-change" contrast agents. Phys Chem Chem Phys 2017; 18:8378-88. [PMID: 26931337 DOI: 10.1039/c5cp07538f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report on the study of the interface of hybrid shell droplets encapsulating decafluoropentane (DFP), which exhibit interesting potentialities for ultrasound (US) imaging. The fabrication of the droplets is based on the deposition of a dextran methacrylate layer onto the surface of surfactants. The droplets have been stabilized against coalescence by UV curing, introducing crosslinks in the polymer layer and transforming the shell into an elastomeric membrane with a thickness of about 300 nm with viscoelastic behaviour. US irradiation induces the evaporation of the DFP core of the droplets transforming the particles into microbubbles (MBs). The presence of a robust crosslinked polymer shell introduces an unusual stability of the droplets also during the core phase transition and allows the recovery of the initial droplet state after a few minutes from switching off US. The interfacial tension of the droplets has been investigated by two approaches, the pendant drop method and an indirect method, based on the determination of the liquid ↔ gas transition point of DFP confined in the droplet core. The re-condensation process has been followed by capturing images of single MBs by confocal microscopy. The time evolution of MB relaxation to droplets was analysed in terms of a modified Church model to account for the structural complexity of the MB shell, i.e. a crosslinked polymer layer over a layer of surfactants. In this way the microrheology parameters of the shell were determined. In a previous paper (Chem. Commun., 2013, 49, 5763-5765) we showed that these systems could be used as ultrasound contrast agents (UCAs). In this work we substantiate this view assessing some key features offered by the viscoelastic nature of the droplet shell.
Collapse
Affiliation(s)
- Sabrina Capece
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy. and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Brasili
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Angelico Bedini
- INAIL - Settore Ricerca Certificazione e Verifica - DITSIPIA, Via Fontana Candida, 1 Monteporzio Catone, 00040 Italy
| | - Federico Bordi
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
21
|
Abstract
A continuous supply of oxygen to tissues is vital to life and interruptions in its delivery are poorly tolerated. The treatment of low-blood oxygen tensions requires restoration of functional airways and lungs. Unfortunately, severe oxygen deprivation carries a high mortality rate and can make otherwise-survivable illnesses unsurvivable. Thus, an effective and rapid treatment for hypoxemia would be revolutionary. The i.v. injection of oxygen bubbles has recently emerged as a potential strategy to rapidly raise arterial oxygen tensions. In this report, we describe the fabrication of a polymer-based intravascular oxygen delivery agent. Polymer hollow microparticles (PHMs) are thin-walled, hollow polymer microcapsules with tunable nanoporous shells. We show that PHMs are easily charged with oxygen gas and that they release their oxygen payload only when exposed to desaturated blood. We demonstrate that oxygen release from PHMs is diffusion-controlled, that they deliver approximately five times more oxygen gas than human red blood cells (per gram), and that they are safe and effective when injected in vivo. Finally, we show that PHMs can be stored at room temperature under dry ambient conditions for at least 2 mo without any effect on particle size distribution or gas carrying capacity.
Collapse
|
22
|
Thomson LM, Seekell RP, McGowan FX, Kheir JN, Polizzotti BD. Freeze-thawing at point-of-use to extend shelf stability of lipid-based oxygen microbubbles for intravenous oxygen delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Kandadai MA, Mukherjee P, Shekhar H, Shaw GJ, Papautsky I, Holland CK. Microfluidic manufacture of rt-PA -loaded echogenic liposomes. Biomed Microdevices 2016; 18:48. [PMID: 27206512 PMCID: PMC4920071 DOI: 10.1007/s10544-016-0072-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Echogenic liposomes (ELIP), loaded with recombinant tissue-type plasminogen activator (rt-PA) and microbubbles that act as cavitation nuclei, are under development for ultrasound-mediated thrombolysis. Conventional manufacturing techniques produce a polydisperse rt-PA-loaded ELIP population with only a small percentage of particles containing microbubbles. Further, a polydisperse population of rt-PA-loaded ELIP has a broadband frequency response with complex bubble dynamics when exposed to pulsed ultrasound. In this work, a microfluidic flow-focusing device was used to generate monodisperse rt-PA-loaded ELIP (μtELIP) loaded with a perfluorocarbon gas. The rt-PA associated with the μtELIP was encapsulated within the lipid shell as well as intercalated within the lipid shell. The μtELIP had a mean diameter of 5 μm, a resonance frequency of 2.2 MHz, and were found to be stable for at least 30 min in 0.5 % bovine serum albumin. Additionally, 35 % of μtELIP particles were estimated to contain microbubbles, an order of magnitude higher than that reported previously for batch-produced rt-PA-loaded ELIP. These findings emphasize the advantages offered by microfluidic techniques for improving the encapsulation efficiency of both rt-PA and perflurocarbon microbubbles within echogenic liposomes.
Collapse
Affiliation(s)
- Madhuvanthi A Kandadai
- Department of Emergency Medicine, University of Cincinnati, 231 Albert Sabin Way, Suite 1551, Cincinnati, OH, 45267, USA.
- Department of Emergency Medicine, 231 Albert Sabin Way, CVC 3974, Cincinnati, OH, 45267-0769, USA.
| | - Prithviraj Mukherjee
- Department of Electrical Engineering and Computing Systems, University of Cincinnati, 812 Rhodes Hall, Cincinnati, OH, 45221, USA
| | - Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - George J Shaw
- Department of Emergency Medicine, University of Cincinnati, 231 Albert Sabin Way, Suite 1551, Cincinnati, OH, 45267, USA
| | - Ian Papautsky
- Department of Electrical Engineering and Computing Systems, University of Cincinnati, 812 Rhodes Hall, Cincinnati, OH, 45221, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| |
Collapse
|
24
|
Lin H, Chen J, Chen C. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation. Med Biol Eng Comput 2016; 54:1317-30. [DOI: 10.1007/s11517-016-1475-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022]
|
25
|
Shih R, Lee AP. Post-Formation Shrinkage and Stabilization of Microfluidic Bubbles in Lipid Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1939-1946. [PMID: 26820229 DOI: 10.1021/acs.langmuir.5b03948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Medical ultrasound imaging often employs ultrasound contrast agents (UCAs), injectable microbubbles stabilized by shells or membranes. In tissue, the compressible gas cores can strongly scatter acoustic signals, resonate, and emit harmonics. However, bubbles generated by conventional methods have nonuniform sizes, reducing the fraction that resonates with a given transducer. Microfluidic flow-focusing is an alternative production method which generates highly monodisperse bubbles with uniform constituents, enabling more-efficient contrast enhancement than current UCAs. Production size is tunable by adjusting gas pressure and solution flow rate, but solution effects on downstream stable size and lifetime have not been closely examined. This study therefore investigated several solution parameters, including the DSPC/DSPE-PEG2000 lipid ratio, concentration, viscosity, and preparation temperature to determine their effects on stabilization. It was found that bubble lifetime roughly correlated with stable size, which in turn was strongly influenced by primary-lipid-to-emulsifier ratio, analogous to its effects on conventional bubble yield and Langmuir-trough compressibility in existing studies. Raising DSPE-PEG2000 fraction in solution reduced bubble surface area in proportion to its reduction of lipid packing density at low compression in literature. In addition, the surface area was found to increase proportionately with lipid concentration above 2.1 mM. However, viscosities above or below 2.3-3.3 mPa·s seemed to reduce bubble size. Finally, lipid preparation at room temperature led to smaller bubbles compared to preparation near or above the primary lipid's phase transition point. Understanding these effects will further improve on postformation control over microfluidic bubble production, and facilitate size-tuning for optimal contrast enhancement.
Collapse
Affiliation(s)
- Roger Shih
- Department of Biomedical Engineering, University of California Irvine , 3406 Engineering Hall, Irvine, California 92697, United States
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California Irvine , 3406 Engineering Hall, Irvine, California 92697, United States
| |
Collapse
|
26
|
High Yielding Microbubble Production Method. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3572827. [PMID: 27034935 PMCID: PMC4789381 DOI: 10.1155/2016/3572827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/17/2022]
Abstract
Microfluidic approaches to microbubble production are generally disadvantaged by low yield and high susceptibility to (micro)channel blockages. This paper presents an alternative method of producing microbubbles of 2.6 μm mean diameter at concentrations in excess of 30 × 10(6) mL(-1). In this method, the nitrogen gas flowing inside the liquid jet is disintegrated into spray of microbubble when air surrounding this coflowing nitrogen gas-liquid jet passes through a 100 μm orifice at high velocity. Resulting microbubble foam has the polydispersity index of 16%. Moreover, a ratio of mean microbubble diameter to channel width ratio was found to be less than 0.025, which substantially alleviates the occurrence of blockages during production.
Collapse
|
27
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
28
|
Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015; 4:193-205. [PMID: 27512682 PMCID: PMC4918399 DOI: 10.2147/ov.s66097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The field of ultrasound (US) has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB) are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.
Collapse
Affiliation(s)
- Rounak Nande
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
29
|
Abstract
Microfluidics-based production of stable microbubbles for ultrasound contrast enhancement or drug/gene delivery allows for precise control over microbubble diameter but at the cost of a low production rate. In situ microfluidic production of microbubbles directly in the vasculature may eliminate the necessity for high microbubble production rates, long stability, or small diameters. Towards this goal, we investigated whether microfluidic-produced microbubbles directly administered into a mouse tail vein could provide sufficient ultrasound contrast. Microbubbles composed of nitrogen gas and stabilized with 3 % bovine serum albumin and 10 % dextrose were injected for 10 seconds into wild type C57BL/6 mice, via a tail-vein catheter. Short-axis images of the right and left ventricle were acquired at 12.5 MHz and image intensity over time was analyzed. Microbubbles were produced on the order of 10(5) microbubbles/s and were observed in both the right and left ventricles. The median rise time, duration, and decay time within the right ventricle were 2.9, 21.3, and 14.3 s, respectively. All mice survived the procedure with no observable respiratory or heart rate distress despite microbubble diameters as large as 19 μm.
Collapse
|
30
|
Park Y, Pham TA, Beigie C, Cabodi M, Cleveland RO, Nagy JO, Wong JY. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9762-9770. [PMID: 26303989 DOI: 10.1021/acs.langmuir.5b02747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is a critical need to formulate stable micron-sized oil droplets as hydrophobic drug carriers for efficient drug encapsulation, long-term storage, and sustained drug release. Microfluidic methods were developed to maximize the stability of micron-sized, oil-in-water (o/w) emulsions for potential use in drug delivery, using doxorubicin-loaded triacetin oil as a model hydrophobic drug formulation. Initial experiments examined multiple flow conditions for the dispersed (oil) and continuous (liposome aqueous) phases in a microfluidic device to establish the parameters that influenced droplet size. These data were fit to a mathematical model from the literature and indicate that the droplet sizes formed are controlled by the ratio of flow rates and the height of the device channel, rather than the orifice size. Next, we investigated effects of o/w emulsion production methods on the stability of the droplets. The stability of o/w emulsion produced by microfluidic flow-focusing techniques was found to be much greater (5 h vs 1 h) than for emulsions produced by mechanical agitation (vortexing). The increased droplet stability was attributed to the uniform size and lipid distribution of droplets generated by flow-focusing. In contrast, vortexed populations consisted of a wide size distribution that resulted in a higher prevalence of Ostwald ripening. Finally, the effects of shell polymerization on stability were investigated by comparing oil droplets encapsulated by a photopolymerizable diacetylene lipid shell to those with a nonpolymerizable lipid shell. Shell polymerization was found to significantly enhance stability against dissolution for flow-focused oil droplets but did not significantly affect the stability of vortexed droplets. Overall, results of these experiments show that flow-focusing is a promising technique for generating tunable, stable, monodisperse oil droplet emulsions, with potential applications for controlled delivery of hydrophobic drug formulations.
Collapse
Affiliation(s)
| | | | | | | | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford , Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | - Jon O Nagy
- NanoValent Pharmaceuticals, Inc. , 910 Technology Boulevard STE G, Bozeman, Montana 59718, United States
| | | |
Collapse
|
31
|
Lee M, Lee EY, Lee D, Park BJ. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. SOFT MATTER 2015; 11:2067-79. [PMID: 25698443 DOI: 10.1039/c5sm00113g] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbubbles with diameters ranging from a few micrometers to tens of micrometers have garnered significant attention in various applications including food processing, water treatment, enhanced oil recovery, surface cleaning, medical purposes, and material preparation fields with versatile functionalities. A variety of techniques have been developed to prepare microbubbles, such as ultrasonication, excimer laser ablation, high shear emulsification, membrane emulsification, an inkjet printing method, electrohydrodynamic atomization, template layer-by-layer deposition, and microfluidics. Generated bubbles should be immediately stabilized via the adsorption of stabilizing materials (e.g., surfactants, lipids, proteins, and solid particles) onto the gas-liquid interface to lower the interfacial tension. Such adsorption of stabilizers prevents coalescence between the microbubbles and also suppresses gas dissolution and resulting disproportionation caused by the presence of the Laplace overpressure across the gas-liquid interface. Herein, we comprehensively review three important topics of microbubbles: stabilization, fabrication, and applications.
Collapse
Affiliation(s)
- Mina Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin, 446-701, South Korea.
| | | | | | | |
Collapse
|
32
|
Teng Z, Cao S, Li W, Yang L, Shi W, Wang Y, Wu J, Bin J. A micrometer-sized ultrasound contrast agent with nanometer-scale polygonal patterning surfaces. J Med Ultrason (2001) 2014; 41:421-9. [PMID: 27278022 DOI: 10.1007/s10396-014-0543-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To develop a smaller micro-sized bubble ultrasound contrast agent which composed of an insoluble, less-dense, self-assembled surfactant with a condensed crystallized nanometer-scale polygonal patterning surface. METHODS The microbubble was prepared by high-shear mixing a mixture of sucrose esters, glucose sugar, and water. The coulter counter was used to measure the size and concentration of the microbubble. Surface patterns of the microbubble were determined using vitrified samples under cryo-transmission electron microscopy. Myocardial contrast effects of six normal dog's myocardium were assessed. RESULTS The diameter of the developed microbubble was smaller than Sonovue(®). Direct imaging of cryo-transmission electron microscopy revealed that the developed microbubble has a nanometer-scale polygonal surface pattern. Both the developed microbubble and Sonovue(®) effectively enhanced the myocardial contrast. The difference in the peak video intensity, the longevity of the contrast effect, and time-to-peak interval between both microbubbles were not statistically significant (NS). CONCLUSION The microbubble with nanometer-scale polygonal patterning surfaces is a feasible and promising contrast agent for the ultrasound imaging.
Collapse
Affiliation(s)
- Zhonghua Teng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shiping Cao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Wei Li
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Yang
- Department of Pharmacology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Yuegang Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| |
Collapse
|
33
|
Carrick C, Lindström SB, Larsson PT, Wågberg L. Lightweight, highly compressible, noncrystalline cellulose capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7635-7644. [PMID: 24870000 DOI: 10.1021/la501118b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate how to prepare extraordinarily deformable, gas-filled, spherical capsules from nonmodified cellulose. These capsules have a low nominal density, ranging from 7.6 to 14.2 kg/m(3), and can be deformed elastically to 70% deformation at 50% relative humidity. No compressive strain-at-break could be detected for these dry cellulose capsules, since they did not rupture even when compressed into a disk with pockets of highly compressed air. A quantitative constitutive model for the large deformation compression of these capsules is derived, including their high-frequency mechanical response and their low-frequency force relaxation, where the latter is governed by the gas barrier properties of the dry capsule. Mechanical testing corroborated these models with good accuracy. Force relaxation measurements at a constant compression rendered an estimate for the gas permeability of air through the capsule wall, calculated to 0.4 mL μm/m(2) days kPa at 50% relative humidity. These properties taken together open up a large application area for the capsules, and they could most likely be used for applications in compressible, lightweight materials and also constitute excellent model materials for adsorption and adhesion studies.
Collapse
Affiliation(s)
- Christopher Carrick
- School of Chemical Science and Engineering, Department of Fibre and Polymer Technology and ‡School of Chemical Science and Engineering, Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
35
|
Vega EJ, Acero AJ, Montanero JM, Herrada MA, Gañán-Calvo AM. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:063012. [PMID: 25019884 DOI: 10.1103/physreve.89.063012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 06/03/2023]
Abstract
We analyze both experimentally and numerically the formation of microbubbles in the jetting regime reached when a moderately viscous liquid stream focuses a gaseous meniscus inside a converging micronozzle. If the total (stagnation) pressure of the injected gas current is fixed upstream, then there are certain conditions on which a quasisteady gas meniscus forms. The meniscus tip is sharpened by the liquid stream down to the gas molecular scale. On the other side, monodisperse collections of microbubbles can be steadily produced in the jetting regime if the feeding capillary is appropriately located inside the nozzle. In this case, the microbubble size depends on the feeding capillary position. The numerical simulations for an imposed gas flow rate show that a recirculation cell appears in the gaseous meniscus for low enough values of that parameter. The experiments allow one to conclude that the bubble pinch-off comprises two phases: (i) a stretching motion of the precursor jet where the neck radius versus the time before the pinch essentially follows a potential law, and (ii) a final stage where a very thin and slender gaseous thread forms and eventually breaks apart into a number of micron-sized bubbles. Because of the difference between the free surface and core velocities, the gaseous jet breakage differs substantially from that of liquid capillary jets and gives rise to bubbles with diameters much larger than those expected from the Rayleigh-type capillary instability. The dependency of the bubble diameter upon the flow-rate ratio agrees with the scaling law derived by A. M. Gañán-Calvo [Phys. Rev. E 69, 027301 (2004)], although a slight influence of the Reynolds number can be observed in our experiments.
Collapse
Affiliation(s)
- E J Vega
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - A J Acero
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - J M Montanero
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - M A Herrada
- Departamento de Mecánica de Fluidos e Ingeniería Aeroespacial, Universidad de Sevilla, E-41092 Sevilla, Spain
| | - A M Gañán-Calvo
- Departamento de Mecánica de Fluidos e Ingeniería Aeroespacial, Universidad de Sevilla, E-41092 Sevilla, Spain
| |
Collapse
|
36
|
Chen H, Li J, Zhou W, Pelan EG, Stoyanov SD, Arnaudov LN, Stone HA. Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4262-6. [PMID: 24694278 DOI: 10.1021/la5004929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
An approach based upon sonication-microfluidics is presented to fabricate nanoparticle-coated microbubbles. The gas-in-liquid slug flow formed in a microchannel is subjected to ultrasound, leading to cavitation at the gas-liquid interface. Therefore, microbubbles are formed and then stabilized by the nanoparticles contained in the liquid. Compared to the conventional sonication method, this sonication-microfluidics continuous flow approach has unlimited gas nuclei for cavitation that yields continuous production of foam with shorter residence time. By controlling the flow rate ratios of the gas to the liquid, this method also achieves a higher production volume, smaller bubble size, and less waste of the nanoparticles needed to stabilize the microbubbles.
Collapse
Affiliation(s)
- Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University , Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Polizzotti BD, Thomson LM, O'Connell DW, McGowan FX, Kheir JN. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design. J Biomed Mater Res B Appl Biomater 2014; 102:1148-56. [DOI: 10.1002/jbm.b.33096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/08/2013] [Accepted: 12/10/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Brian D. Polizzotti
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
- Department of Pediatrics; Harvard Medical School; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| | - Lindsay M. Thomson
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| | - Daniel W. O'Connell
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| | - Francis X. McGowan
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia, Civic Center Boulevard; Philadelphia Pennsylvania 19104
| | - John N. Kheir
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
- Department of Pediatrics; Harvard Medical School; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| |
Collapse
|
38
|
Shih R, Bardin D, Martz TD, Sheeran PS, Dayton PA, Lee AP. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications. LAB ON A CHIP 2013; 13:4816-26. [PMID: 24162868 PMCID: PMC4062572 DOI: 10.1039/c3lc51016f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ultrasound imaging often calls for the injection of contrast agents, micron-sized bubbles which echo strongly in blood and help distinguish vascularized tissue. Such microbubbles are also being augmented for targeted drug delivery and gene therapy, by the addition of surface receptors and therapeutic payloads. Unfortunately, conventional production methods yield a polydisperse population, whose nonuniform resonance and drug-loading are less than ideal. An alternative technique, microfluidic flow-focusing, is able to produce highly monodisperse microbubbles with stabilizing lipid membranes and drug-carrying oil layers. However, the published 1 kHz production rate for these uniform drug bubbles is very low compared to conventional methods, and must be improved before clinical use can be practical. In this study, flow-focusing production of oil-layered lipid microbubbles was tested up to 300 kHz, with coalescence suppressed by high lipid concentrations or inclusion of Pluronic F68 surfactant in the lipid solution. The transition between geometry-controlled and dripping production regimes was analysed, and production scaling was found to be continuous, with a power trend of exponent ~5/12 similar to literature. Unlike prior studies with this trend, however, scaling curves here were found to be pressure-dependent, particularly at lower pressure-flow equilibria (e.g. <15 psi). Adjustments in oil flow rate were observed to have a similar effect, akin to a pressure change of 1-3 psi. This analysis and characterization of high-speed dual-layer bubble generation will enable more-predictive production control, at rates practical for in vivo or clinical use.
Collapse
Affiliation(s)
- Roger Shih
- Department of Biomedical Engineering, University of California Irvine, 3406 Engineering Hall, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Phillips LC, Puett C, Sheeran PS, Wilson Miller G, Matsunaga TO, Dayton PA. Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1473-82. [PMID: 23927187 PMCID: PMC3745500 DOI: 10.1121/1.4812866] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 05/19/2023]
Abstract
Ultrasound contrast agents are known to enhance high intensity focused ultrasound (HIFU) ablation, but these perfluorocarbon microbubbles are limited to the vasculature, have a short half-life in vivo, and may result in unintended heating away from the target site. Herein, a nano-sized (100-300 nm), dual perfluorocarbon (decafluorobutane/dodecafluoropentane) droplet that is stable, is sufficiently small to extravasate, and is convertible to micron-sized bubbles upon acoustic activation was investigated. Microbubbles and nanodroplets were incorporated into tissue-mimicking acrylamide-albumin phantoms. Microbubbles or nanodroplets at 0.1 × 10(6) per cm(3) resulted in mean lesion volumes of 80.4 ± 33.1 mm(3) and 52.8 ± 14.2 mm(3) (mean ± s.e.), respectively, after 20 s of continuous 1 MHz HIFU at a peak negative pressure of 4 MPa, compared to a lesion volume of 1.0 ± 0.8 mm(3) in agent-free control phantoms. Magnetic resonance thermometry mapping during HIFU confirmed undesired surface heating in phantoms containing microbubbles, whereas heating occurred at the acoustic focus of phantoms containing the nanodroplets. Maximal change in temperature at the target site was enhanced by 16.9% and 37.0% by microbubbles and nanodroplets, respectively. This perfluorocarbon nanodroplet has the potential to reduce the time to ablate tumors by one-third during focused ultrasound surgery while also safely enhancing thermal deposition at the target site.
Collapse
Affiliation(s)
- Linsey C Phillips
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 109 Mason Farm Road, 304 Taylor Hall, CB 7575, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Kheir JN, Polizzotti BD, Thomson LM, O'Connell DW, Black KJ, Lee RW, Wilking JN, Graham AC, Bell DC, McGowan FX. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery. Adv Healthc Mater 2013; 2:1131-41. [PMID: 23471884 DOI: 10.1002/adhm.201200350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/21/2012] [Indexed: 12/25/2022]
Abstract
Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing.
Collapse
Affiliation(s)
- John N Kheir
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Enders 1228, Boston, Massachusetts 02115 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dicker S, Mleczko M, Siepmann M, Wallace N, Sunny Y, Bawiec CR, Schmitz G, Lewin P, Wrenn SP. Influence of shell composition on the resonance frequency of microbubble contrast agents. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1292-302. [PMID: 23683409 DOI: 10.1016/j.ultrasmedbio.2013.02.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/22/2013] [Accepted: 02/24/2013] [Indexed: 05/12/2023]
Abstract
The effect of variations in microbubble shell composition on microbubble resonance frequency is revealed through experiment. These variations are achieved by altering the mole fraction and molecular weight of functionalized polyethylene glycol (PEG) in the microbubble phospholipid monolayer shell and measuring the microbubble resonance frequency. The resonance frequency is measured via a chirp pulse and identified as the frequency at which the pressure amplitude loss of the ultrasound wave is the greatest as a result of passing through a population of microbubbles. For the shell compositions used herein, we find that PEG molecular weight has little to no influence on resonance frequency at an overall PEG mole fraction (0.01) corresponding to a mushroom regime and influences the resonance frequency markedly at overall PEG mole fractions (0.050-0.100) corresponding to a brush regime. Specifically, the measured resonance frequency was found to be 8.4, 4.9, 3.3 and 1.4 MHz at PEG molecular weights of 1000, 2000, 3000 and 5000 g/mol, respectively, at an overall PEG mole fraction of 0.075. At an overall PEG mole fraction of just 0.01, on the other hand, resonance frequency exhibited no systematic variation, with values ranging from 5.7 to 4.9 MHz. Experimental results were analyzed using the Sarkar bubble dynamics model. With the dilatational viscosity held constant (10(-8) N·s/m) and the elastic modulus used as a fitting parameter, model fits to the pressure amplitude loss data resulted in elastic modulus values of 2.2, 2.4, 1.6 and 1.8 N/m for PEG molecular weights of 1000, 2000, 3000 and 5000 g/mol, respectively, at an overall PEG mole fraction of 0.010 and 4.2, 1.4, 0.5 and 0.0 N/m, respectively, at an overall PEG mole fraction of 0.075. These results are consistent with theory, which predicts that the elastic modulus is constant in the mushroom regime and decreases with PEG molecular weight to the inverse 3/5 power in the brush regime. Additionally, these results are consistent with inertial cavitation studies, which revealed that increasing PEG molecular weight has little to no effect on inethe rtial cavitation threshold in the mushroom regime, but that increasing PEG molecular weight decreases inertial cavitation markedly in the brush regime. We conclude that the design and synthesis of microbubbles with a prescribed resonance frequency is attainable by tuning PEG composition and molecular weight.
Collapse
Affiliation(s)
- Stephen Dicker
- Department of Chemical Engineering, Drexel University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-345. [PMID: 23504911 DOI: 10.1002/wnan.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
43
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
44
|
Dhanaliwala AH, Chen JL, Wang S, Hossack JA. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles. MICROFLUIDICS AND NANOFLUIDICS 2013; 14:457-467. [PMID: 23439786 PMCID: PMC3579535 DOI: 10.1007/s10404-012-1064-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Current microbubble-based ultrasound contrast agents are administered intravenously resulting in large losses of contrast agent, systemic distribution, and strict requirements for microbubble longevity and diameter size. Instead we propose in situ production of microbubbles directly within the vasculature to avoid these limitations. Flow focusing microfluidic devices (FFMDs) are a promising technology for enabling in situ production as they can produce microbubbles with precisely controlled diameters in real-time. While the microfluidic chips are small, the addition of inlets and interconnects to supply the gas and liquid phase greatly increases the footprint of these devices preventing the miniaturization of FFMDs to sizes compatible with medium and small vessels. To overcome this challenge, we introduce a new method for supplying the liquid (shell) phase to an FFMD that eliminates bulky interconnects. A pressurized liquid-filled chamber is coupled to the liquid inlets of an FFMD, which we term a flooded FFMD. The microbubble diameter and production rate of flooded FFMDs were measured optically over a range of gas pressures and liquid flow rates. The smallest FFMD manufactured measured 14.5 × 2.8 × 2.3 mm. A minimum microbubble diameter of 8.1 ± 0.3 μm was achieved at a production rate of 450,000 microbubbles/s (MB/s). This represents a significant improvement with respect to any previously reported result. The flooded design also simplifies parallelization and production rates of up to 670,000 MB/s were achieved using a parallelized version of the flooded FFMD. In addition, an intravascular ultrasound (IVUS) catheter was coupled to the flooded FFMD to produce an integrated ultrasound contrast imaging device. B-mode and IVUS images of microbubbles produced from a flooded FFMD in a gelatin phantom vessel were acquired to demonstrate the potential of in situ microbubble production and real-time imaging. Microbubble production rates of 222,000 MB/s from a flooded FFMD within the vessel lumen provided a 23 dB increase in B-mode contrast. Overall, the flooded design is a critical contribution towards the long- term goal of utilizing in situ produced microbubbles for contrast enhanced ultrasound imaging of, and drug delivery to, the vasculature.
Collapse
Affiliation(s)
| | - Johnny L Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903
| | - Shiying Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903
| | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
45
|
Bencsik M, Al-Rwaili A, Morris R, Fairhurst DJ, Mundell V, Cave G, McKendry J, Evans S. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry. Magn Reson Med 2012; 70:1409-18. [PMID: 23233424 DOI: 10.1002/mrm.24575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/10/2012] [Accepted: 11/05/2012] [Indexed: 11/08/2022]
Abstract
PURPOSE The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. METHODS Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. RESULTS The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. CONCLUSION This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry.
Collapse
Affiliation(s)
- Martin Bencsik
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kwan JJ, Borden MA. Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 2012; 183-184:82-99. [PMID: 22959721 DOI: 10.1016/j.cis.2012.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
Microbubbles are micrometer-size gaseous particles suspended in water, and they are often stabilized by a lipid monolayer shell. Natural microbubbles are found in freshwater and saltwater systems, and engineered microbubbles have a variety of applications in food sciences, biotechnology and medicine. Lipid-coated microbubbles are found to have remarkable stability and mechanical behavior owing to the resistance of the lipid monolayer encapsulation to collapse. The purpose of this review is to tie in recent observations of lipid-coated microbubble dissolution and gas exchange with current literature on the physics of lipid monolayer collapse in the context of lung surfactant. Based on this analysis, we conclude that microbubble shells collapse through the nucleation of microscopic folds, which then catalyze the formation and aggregation of new folds, leading to macroscopic folding events. This process results in a cyclic behavior of crumple-to-smooth transitions, which can be modulated through lipid composition. Eventually, the microbubbles stabilize at 1-2 μm diameter, regardless of initial size or lipid composition, and various mechanisms for this stabilization are postulated. Our ultimate goal is to inspire the reader to consider lipid monolayer collapse as the main long-term stabilizing mechanism for lipid-coated microbubbles, and to stimulate the use of microbubbles as a platform for studying monolayer collapse phenomena.
Collapse
|
47
|
Chen R, Dong PF, Xu JH, Wang YD, Luo GS. Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells. LAB ON A CHIP 2012; 12:3858-3860. [PMID: 22733304 DOI: 10.1039/c2lc40387k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we developed a simple and novel one-step approach to produce G/O/W emulsions with high gas volume fractions in a capillary microfluidic device. The thickness of the oil layer can be controlled easily by tuning the flow rates. We successfully used the G/O/W emulsions to prepared hollow microspheres with thin polymer shells.
Collapse
Affiliation(s)
- Ran Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
48
|
Mohamedi G, Azmin M, Pastoriza-Santos I, Huang V, Pérez-Juste J, Liz-Marzán LM, Edirisinghe M, Stride E. Effects of gold nanoparticles on the stability of microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13808-13815. [PMID: 22928997 DOI: 10.1021/la302674g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surfactant-coated microbubbles are utilized in a wide variety of applications, from wastewater purification to contrast agents in medical ultrasound imaging. In many of these applications, the stability of the microbubbles is crucial to their effectiveness. Controlling this, however, represents a considerable challenge. In this study, the potential for stabilizing microbubbles using solid nanoparticles adsorbed onto their surfaces was explored. A new theoretical model has been developed to describe the influence of interfacially adsorbed solid particles upon the dissolution of a gas bubble in a liquid. The aim of this work was to test experimentally the prediction of the model that the presence of the nanoparticles would inhibit gas diffusion and coalescence/disproportionation, thus increasing the life span of the bubbles. Near-monodisperse microbubbles (~100 μm diameter) were prepared using a microfluidic device and coated with a surfactant, with and without the addition of a suspension of spherical gold nanoparticles (~15 nm diameter). The experimental results confirmed the theoretical predictions that as the surface concentration of gold nanoparticles increased the bubbles underwent negligible changes in their size and size distribution over a period of 30 days at the ambient temperature and pressure. Under the same conditions, bubbles coated with the same surfactant but no nanoparticles survived only a matter of hours.
Collapse
Affiliation(s)
- Graciela Mohamedi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu JH, Chen R, Wang YD, Luo GS. Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device. LAB ON A CHIP 2012; 12:2029-2036. [PMID: 22508390 DOI: 10.1039/c2lc21193a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article presents a simple and novel approach to prepare monodispersed gas-in-oil-in-water (G/O/W) and gas-in-water-in-oil (G/W/O) double-emulsions in the same dual-coaxial microfluidic device. The effects of three phase flow rates on the sizes of microbubbles and droplets and the number of the encapsulated microbubbles were systematically studied. We successfully synthesized two different types of gas/liquid/liquid (G/L/L) double emulsions with different inner structures in the same geometry by adjusting the flow rates sequentially. Mathematical models were developed to predict the size and structures of the double emulsions. This simple approach gives a new idea for preparing hollow and porous microspheres with microbubbles as the direct core/pores templates.
Collapse
Affiliation(s)
- Jian-Hong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | |
Collapse
|
50
|
Duncanson WJ, Abbaspourrad A, Shum HC, Kim SH, Adams LLA, Weitz DA. Monodisperse gas-filled microparticles from reactions in double emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6742-6745. [PMID: 22509783 DOI: 10.1021/la300915p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a strategy for preparing size-controlled gas-filled microparticles using two aqueous components that chemically react to produce the gas. We use a dual-bore microfluidic device to isolate the reactants of two gas-producing reactions until they are encapsulated in the outer droplet. The reactants in the monodisperse droplets merge and produce the gas bubbles, which are stabilized with a surfactant and form the core of the microparticles. The number and size of the generated gas bubbles are governed by the gas-forming reaction used. Our versatile strategy can be applied to a wide range of gas-producing reactions.
Collapse
Affiliation(s)
- Wynter J Duncanson
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | |
Collapse
|