1
|
Hall SB, Zuo YY. The biophysical function of pulmonary surfactant. Biophys J 2024; 123:1519-1530. [PMID: 38664968 PMCID: PMC11213971 DOI: 10.1016/j.bpj.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The type II pneumocytes of the lungs secrete a mixture of lipids and proteins that together acts as a surfactant. The material forms a thin film on the surface of the liquid layer that lines the alveolar air sacks. When compressed by the decreasing alveolar surface area during exhalation, the films reduce surface tension to exceptionally low levels. Pulmonary surfactant is essential for preserving the integrity of the barrier between alveolar air and capillary blood during normal breathing. This review focuses on the major biophysical processes by which endogenous pulmonary surfactant achieves its function and the mechanisms involved in those processes. Vesicles of pulmonary surfactant adsorb rapidly from the alveolar liquid to form the interfacial film. Interfacial insertion, which requires the hydrophobic surfactant protein SP-B, proceeds by a process analogous to the fusion of two vesicles. When compressed, the adsorbed film desorbs slowly. Constituents remain at the surface at high interfacial concentrations that reduce surface tensions well below equilibrium levels. We review the models proposed to explain how pulmonary surfactant achieves both the rapid adsorption and slow desorption characteristic of a functional film.
Collapse
Affiliation(s)
- Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon.
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
2
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The input of chemical and physical sciences to life sciences is increasingly important. Surface science as a complex multidisciplinary research area provides many relevant practical tools to support research in medicine. The tensiometry and surface rheology of human biological liquids as diagnostic tools have been very successfully applied. Additionally, for the characterization of pulmonary surfactants, this methodology is essential to deepen the insights into the functionality of the lungs and for the most efficient administration of certain drugs. Problems in ophthalmology can be addressed using surface science methods, such as the stability of the wetting films and the development of artificial tears. The serious problem of obesity is fast-developing in many industrial countries and must be better understood, while therapies for its treatment must also be developed. Finally, the application of fullerenes as a suitable system for detecting cancer in humans is discussed.
Collapse
|
4
|
Loney RW, Brandner B, Dagan MP, Smith PN, Roche M, Fritz JR, Hall SB, Tristram-Nagle SA. Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles. SOFT MATTER 2021; 17:3358-3366. [PMID: 33630985 PMCID: PMC8016726 DOI: 10.1039/d0sm02223c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains (Sxray) and the bending modulus of the lipid bilayers (KC). Samples contained different amounts of the proteins with two sets of lipids. Dioleoylphosphatidylcholine (DOPC) provided a simple, well characterized model system. The nonpolar and phospholipids (N&PL) from extracted calf surfactant provided the biological mix of lipids. For both systems, the proteins produced changes in Sxray that correlated well with KC. The dose-response to the proteins, however, differed. Small amounts of protein generated large decreases in Sxray and KC for DOPC that progressed monotonically. The changes for the surfactant lipids were erratic. Our studies then tested whether the proteins produced correlated effects on adsorption. Experiments measured the initial fall in surface tension during adsorption to a constant surface area, and then expansion of the interface during adsorption at a constant surface tension of 40 mN m-1. The proteins produced a sigmoidal increase in the rate of adsorption at 40 mN m-1 for both lipids. The results correlated poorly with the changes in Sxray and KC in both cases. Disordering of the lipid chains produced by the proteins, and the softening of the bilayers, fail to explain how the proteins promote adsorption of lipid vesicles.
Collapse
Affiliation(s)
- Ryan W Loney
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
6
|
Bykov A, Milyaeva O, Isakov N, Michailov A, Loglio G, Miller R, Noskov B. Dynamic properties of adsorption layers of pulmonary surfactants. Influence of matter exchange with bulk phase. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Fritz JR, Loney RW, Hall SB, Tristram-Nagle S. Suppression of L α/L β Phase Coexistence in the Lipids of Pulmonary Surfactant. Biophys J 2020; 120:243-253. [PMID: 33347885 DOI: 10.1016/j.bpj.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
To determine how different constituents of pulmonary surfactant affect its phase behavior, we measured wide-angle x-ray scattering (WAXS) from oriented bilayers. Samples contained the nonpolar and phospholipids (N&PL) obtained from calf lung surfactant extract (CLSE), which also contains the hydrophobic surfactant proteins SP-B and SP-C. Mixtures with different ratios of N&PL and CLSE provided the same set of lipids with different amounts of the proteins. At 37°C, N&PL by itself forms coexisting Lα and Lβ phases. In the Lβ structure, the acyl chains of the phospholipids occupy an ordered array that has melted by 40°C. This behavior suggests that the Lβ composition is dominated by dipalmitoyl phosphatidylcholine (DPPC), which is the most prevalent component of CLSE. The Lβ chains, however, lack the tilt of the Lβ' phase formed by pure DPPC. At 40°C, WAXS also detects an additional diffracted intensity, the location of which suggests a correlation among the phospholipid headgroups. The mixed samples of N&PL with CLSE show that increasing amounts of the proteins disrupt both the Lβ phase and the headgroup correlation. With physiological levels of the proteins in CLSE, both types of order are absent. These results with bilayers at physiological temperatures indicate that the hydrophobic surfactant proteins disrupt the ordered structures that have long been considered essential for the ability of pulmonary surfactant to sustain low surface tensions. They agree with prior fluorescence micrographic results from monomolecular films of CLSE, suggesting that at physiological temperatures, any ordered phase is likely to be absent or occupy a minimal interfacial area.
Collapse
Affiliation(s)
- Jonathan R Fritz
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ryan W Loney
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon.
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Andreev K, Martynowycz MW, Kuzmenko I, Bu W, Hall SB, Gidalevitz D. Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13439-13447. [PMID: 33080138 PMCID: PMC8754419 DOI: 10.1021/acs.langmuir.0c01813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
When compressed by the shrinking alveolar surface area during exhalation, films of pulmonary surfactant in situ reduce surface tension to levels at which surfactant monolayers collapse from the surface in vitro. Vesicles of pulmonary surfactant added below these monolayers slow collapse. X-ray scattering here determined the structural changes induced by the added vesicles. Grazing incidence X-ray diffraction on monolayers of extracted calf surfactant detected an ordered phase. Mixtures of dipalmitoyl phosphatidylcholine and cholesterol, but not the phospholipid alone, mimic that structure. At concentrations that stabilize the monolayers, vesicles in the subphase had no effect on the unit cell, and X-ray reflection showed that the film remained monomolecular. The added vesicles, however, produced a concentration-dependent increase in the diffracted intensity. These results suggest that the enhanced resistance to collapse results from enlargement by the additional material of the ordered phase.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Wei Bu
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, United States
| | - Stephen B Hall
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
9
|
Loney RW, Panzuela S, Chen J, Yang Z, Fritz JR, Dell Z, Corradi V, Kumar K, Tieleman DP, Hall SB, Tristram-Nagle SA. Location of the Hydrophobic Surfactant Proteins, SP-B and SP-C, in Fluid-Phase Bilayers. J Phys Chem B 2020; 124:6763-6774. [PMID: 32600036 DOI: 10.1021/acs.jpcb.0c03665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, promote rapid adsorption by the surfactant lipids to the surface of the liquid that lines the alveolar air sacks of the lungs. To gain insights into the mechanisms of their function, we used X-ray diffuse scattering (XDS) and molecular dynamics (MD) simulations to determine the location of SP-B and SP-C within phospholipid bilayers. Initial samples contained the surfactant lipids from extracted calf surfactant with increasing doses of the proteins. XDS located protein density near the phospholipid headgroup and in the hydrocarbon core, presumed to be SP-B and SP-C, respectively. Measurements on dioleoylphosphatidylcholine (DOPC) with the proteins produced similar results. MD simulations of the proteins with DOPC provided molecular detail and allowed direct comparison of the experimental and simulated results. Simulations used conformations of SP-B based on other members of the saposin-like family, which form either open or closed V-shaped structures. For SP-C, the amino acid sequence suggests a partial α-helix. Simulations fit best with measurements of XDS for closed SP-B, which occurred at the membrane surface, and SP-C oriented along the hydrophobic interior. Our results provide the most definitive evidence yet concerning the location and orientation of the hydrophobic surfactant proteins.
Collapse
Affiliation(s)
- Ryan W Loney
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sergio Panzuela
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Theoretical Physics and Condensed Matter, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Jespar Chen
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zimo Yang
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan R Fritz
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zachary Dell
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kamlesh Kumar
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Stephanie A Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Vazquez-de-Lara LG, Tlatelpa-Romero B, Romero Y, Fernández-Tamayo N, Vazquez-de-Lara F, M Justo-Janeiro J, Garcia-Carrasco M, de-la-Rosa Paredes R, Cisneros-Lira JG, Mendoza-Milla C, Moccia F, Berra-Romani R. Phosphatidylethanolamine Induces an Antifibrotic Phenotype in Normal Human Lung Fibroblasts and Ameliorates Bleomycin-Induced Lung Fibrosis in Mice. Int J Mol Sci 2018; 19:ijms19092758. [PMID: 30223424 PMCID: PMC6164566 DOI: 10.3390/ijms19092758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Lung surfactant is a complex mixture of phospholipids and specific proteins but its role in the pathogenesis of interstitial lung diseases is not established. Herein, we analyzed the effects of three representative phospholipid components, that is, dipalmitoilphosphatidylcoline (DPPC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), on collagen expression, apoptosis and Ca2+ signaling in normal human lung fibroblasts (NHLF) and probed their effect in an experimental model of lung fibrosis. Collagen expression was measured with RT-PCR, apoptosis was measured by using either the APOPercentage assay kit (Biocolor Ltd., Northern Ireland, UK) or the Caspase-Glo 3/7 assay (Promega, Madison, WI, USA) and Ca2+ signaling by conventional epifluorescence imaging. The effect in vivo was tested in bleomycin-induced lung fibrosis in mice. DPPC and PG did not affect collagen expression, which was downregulated by PE. Furthermore, PE promoted apoptosis and induced a dose-dependent Ca2+ signal. PE-induced Ca2+ signal and apoptosis were both blocked by phospholipase C, endoplasmic reticulum pump and store-operated Ca2+ entry inhibition. PE-induced decrease in collagen expression was attenuated by blocking phospholipase C. Finally, surfactant enriched with PE and PE itself attenuated bleomycin-induced lung fibrosis and decreased the soluble collagen concentration in mice lungs. This study demonstrates that PE strongly contributes to the surfactant-induced inhibition of collagen expression in NHLF through a Ca2+ signal and that early administration of Beractant enriched with PE diminishes lung fibrosis in vivo.
Collapse
Affiliation(s)
| | | | - Yair Romero
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| | - Nora Fernández-Tamayo
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| | | | | | - Mario Garcia-Carrasco
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| | | | - José G Cisneros-Lira
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico.
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ''Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Roberto Berra-Romani
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| |
Collapse
|
11
|
Dagan MP, Hall SB. The Equilibrium Spreading Tension of Pulmonary Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13063-7. [PMID: 26583569 PMCID: PMC4896737 DOI: 10.1021/acs.langmuir.5b03094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γ(e)) with the bulk phase from which they form. For individual phospholipids, γ(e) is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γ(e) therefore represents a range rather than a single value of surface tension. Between the upper and lower ends of this range, rates of collapse for spread and adsorbed films decrease substantially. Changes during adsorption across this narrow region of coexistence between the two- and three-dimensional structures at least partially explain how alveolar films of pulmonary surfactant become resistant to collapse.
Collapse
Affiliation(s)
| | - Stephen B. Hall
- Corresponding Author Address: Pulmonary and Critical Care Medicine, Mail Code UHN-67, OHSU, Portland, OR 97239-3098. Telephone: 503-494-6667;
| |
Collapse
|
12
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
13
|
Chavarha M, Loney RW, Rananavare SB, Hall SB. An anionic phospholipid enables the hydrophobic surfactant proteins to alter spontaneous curvature. Biophys J 2013; 104:594-603. [PMID: 23442910 DOI: 10.1016/j.bpj.2012.12.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022] Open
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, greatly accelerate the adsorption of the surfactant lipids to an air/water interface. Previous studies of factors that affect curvature suggest that vesicles may adsorb via a rate-limiting structure with prominent negative curvature, in which the hydrophilic face of the lipid leaflets is concave. To determine if SP-B and SP-C might promote adsorption by inducing negative curvature, we used small-angle x-ray scattering to test whether the physiological mixture of the two proteins affects the radius of cylindrical monolayers in the inverse hexagonal phase. With dioleoyl phosphatidylethanolamine alone, the proteins had no effect on the hexagonal lattice constant, suggesting that the proteins fail to insert into the cylindrical monolayers. The surfactant lipids also contain ∼10% anionic phospholipids, which might allow incorporation of the cationic proteins. With 10% of the anionic dioleoyl phosphatidylglycerol added to dioleoyl phosphatidylethanolamine, the proteins induced a dose-related decrease in the hexagonal lattice constant. At 30°C, the reduction reached a maximum of 8% relative to the lipids alone at ∼1% (w/w) protein. Variation of NaCl concentration tested whether the effect of the protein represented a strictly electrostatic effect that screening by electrolyte would eliminate. With concentrations up to 3 M NaCl, the dose-related change in the hexagonal lattice constant decreased but persisted. Measurements at different hydrations determined the location of the pivotal plane and proved that the change in the lattice constant produced by the proteins resulted from a shift in spontaneous curvature. These results provide the most direct evidence yet that the surfactant proteins can induce negative curvature in lipid leaflets. This finding supports the model in which the proteins promote adsorption by facilitating the formation of a negatively curved, rate-limiting structure.
Collapse
Affiliation(s)
- Mariya Chavarha
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
14
|
Chavarha M, Loney RW, Kumar K, Rananavare SB, Hall SB. Differential effects of the hydrophobic surfactant proteins on the formation of inverse bicontinuous cubic phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16596-604. [PMID: 23140329 PMCID: PMC3514604 DOI: 10.1021/la3025364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Prior studies have shown that the biological mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, produces faster adsorption of the surfactant lipids to an air/water interface, and that they induce 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) to form inverse bicontinuous cubic phases. Previous studies have shown that SP-B has a much greater effect than SP-C on adsorption. If the two proteins induce faster adsorption and formation of the bicontinuous structures by similar mechanisms, then they should also have different abilities to form the cubic phases. To test this hypothesis, we measured small-angle X-ray scattering on the individual proteins combined with POPE. SP-B replicated the dose-related ability of the combined proteins to induce the cubic phases at temperatures more than 25 °C below the point at which POPE alone forms the curved inverse-hexagonal phase. With SP-C, diffraction from cubic structures was either absent or present at very low intensities only with larger amounts of protein. The correlation between the structural effects of inducing curved structures and the functional effects on the rate of adsorption fits with the model in which SP-B promotes adsorption by facilitating formation of an inversely curved, rate-limiting structure.
Collapse
Affiliation(s)
- Mariya Chavarha
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | - Ryan W. Loney
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | - Kamlesh Kumar
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | | | - Stephen B. Hall
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
- To whom correspondence should be addressed: Stephen B. Hall, Pulmonary & Critical Care Medicine, Mail Code UHN-67, Oregon Health & Science University, Portland, Oregon 97239-3098, Telephone: (503) 494-6667,
| |
Collapse
|
15
|
Khoojinian H, Goodarzi JP, Hall SB. Optical factors in the rapid analysis of captive bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14081-14089. [PMID: 22950373 PMCID: PMC3489924 DOI: 10.1021/la301864d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bubbles and droplets offer multiple advantages over Langmuir troughs for compressing interfacial films. Experiments, however, that manipulate films to maintain constant surface tension (γ) present problems because they require feedback. Measurements of bubbles and droplets calculate γ from the shape of the interface, and calculations in real time based on finding the Laplacian shape that best fits the interface can be difficult. Faster methods obtain γ from only the height and diameter, but the bubbles and droplets rest against a solid support, which obscures one section of the interface and complicates measurements of the height. The experiments here investigated a series of optical variables that affect the visualized location of the different surfaces for captive bubbles. The pitch of the support and camera as well as the collimation of illuminating light affected the accuracy of the measured dimensions. The wavelength of illumination altered the opacity of turbid subphases and hydrated gel used to form the solid support. The width of all visualized edges depended on the spectral width and collimation of the illuminating light. The intensity of illumination had little effect on the images as long as the grayscale remained within the dynamic range of the camera. With optimization of these optical factors, the width of all edges narrowed significantly. The surfaces away from the solid support approached the infinite sharpness of the physical interface. With these changes, the grayscale at the upper interface provided the basis for locating all surfaces, which improved real-time measurements based on the height and diameter.
Collapse
Affiliation(s)
| | | | - Stephen B. Hall
- Address correspondence to: Stephen B. Hall, Pulmonary & Critical Care Medicine, Mail Code UHN-67, OHSU, Portland, OR 97239-3098, Telephone: 503-494-6667,
| |
Collapse
|