1
|
Capitaine A, Fajri ML, Sciacca B. Pushing the Limits of Capillary Assembly for the Arbitrary Positioning of Sub-50nm Nanocubes in Printable Plasmonic Surfaces. SMALL METHODS 2024; 8:e2300373. [PMID: 37391271 DOI: 10.1002/smtd.202300373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Indexed: 07/02/2023]
Abstract
The fabrication of high quality nanophotonic surfaces for integration in optoelectronic devices remains a challenge because of the complexity and cost of top-down nanofabrication strategies. Combining colloidal synthesis with templated self-assembly emerged as an appealing low-cost solution. However, it still faces several obstacles before integration in devices can become a reality. This is mostly due to the difficulty in assembling small nanoparticles (<50 nm) in complex nanopatterns with a high yield. In this study, a reliable methodology is proposed to fabricate printable nanopatterns with an aspect ratio varying from 1 to 10 and a lateral resolution of 30 nm via nanocube assembly and epitaxy. Investigating templated assembly via capillary forces, a new regime was identified that was used to assemble 30-40 nm nanocubes in a patterned polydimethylsiloxane template with a high yield for both Au and Ag with multiple particles per trap. This new method relies on the generation and control of an accumulation zone at the contact line that is thin as opposed to dense, displaying higher versatility. This is in contrast with conventional wisdom, identifying a dense accumulation zone as a requirement for high-yield assembly. In addition, different formulations are proposed that can be used for the colloidal dispersion, showing that the standard water-surfactant solutions can be replaced by surfactant-free ethanol solutions, with good assembly yield. This allows to minimize the presence of surfactants that can affect electronic properties. Finally, it is shown that the obtained nanocube arrays can be transformed into continuous monocrystalline nanopatterns via nanocube epitaxy at near ambient temperature, and transferred to different substrates via contact printing. This approach opens new doors to the templated assembly of small colloids and could find potential applications in various optoelectronic devices ranging from solar cells to light-emitting diodes and displays.
Collapse
Affiliation(s)
- Anna Capitaine
- Aix-Marseille Univ, CNRS, CINaM, Campus de Luminy, Marseille, 13009, France
| | - Muhammad L Fajri
- Aix-Marseille Univ, CNRS, CINaM, Campus de Luminy, Marseille, 13009, France
| | - Beniamino Sciacca
- Aix-Marseille Univ, CNRS, CINaM, Campus de Luminy, Marseille, 13009, France
| |
Collapse
|
2
|
Sutradhar A, Sam JC, Gupta S. Optical gratings fabricated using the capillary-assisted self-assembly of nanoparticles on a flexible substrate. APPLIED OPTICS 2023; 62:5786-5793. [PMID: 37707197 DOI: 10.1364/ao.492232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 09/15/2023]
Abstract
We demonstrate a cost-effective and high-throughput fabrication technique to deposit colloidal nanoparticles on a patterned polymer substrate using a capillary-assisted self-assembly method over a large area. In particular, we fabricate optical gratings using gold nanoparticles and a polymer substrate. We show the versatility of the technique over different nanoparticle diameters and grating periodicities. Through both experiments and simulations, we show enhanced transmission in the first-order diffraction of the gold-polymer grating as compared to the air-polymer grating. Our fabrication technique also enables the transfer of the nanoparticle pattern from the polymer substrate to any desired surface. Here we demonstrate the transfer of the nanoparticle grating structure to the tip of optical fibers.
Collapse
|
3
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
4
|
Roach L, Hereu A, Lalanne P, Duguet E, Tréguer-Delapierre M, Vynck K, Drisko GL. Controlling disorder in self-assembled colloidal monolayers via evaporative processes. NANOSCALE 2022; 14:3324-3345. [PMID: 35174843 PMCID: PMC8900142 DOI: 10.1039/d1nr07814c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Monolayers of assembled nano-objects with a controlled degree of disorder hold interest in many optical applications, including photovoltaics, light emission, sensing, and structural coloration. Controlled disorder can be achieved through either top-down or bottom-up approaches, but the latter is more suited to large-scale, low-cost fabrication. Disordered colloidal monolayers can be assembled through evaporatively driven convective assembly, a bottom-up process with a wide range of parameters impacting particle placement. Motivated by the photonic applications of such monolayers, in this review we discuss the quantification of monolayer disorder, and the assembly methods that have been used to produce them. We review the impact of particle and solvent properties, as well as the use of substrate patterning, to create the desired spatial distributions of particles.
Collapse
Affiliation(s)
- Lucien Roach
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Adrian Hereu
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Philippe Lalanne
- IOGS, Univ. Bordeaux, CNRS, LP2N, UMR 5298, F-33400 Talence, France
| | - Etienne Duguet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | | | - Kevin Vynck
- Univ. Claude Bernard Lyon 1, CNRS, iLM, UMR 5306, F-69622 Villeurbanne, France.
| | - Glenna L Drisko
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| |
Collapse
|
5
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Lee JB, Walker H, Li Y, Nam TW, Rakovich A, Sapienza R, Jung YS, Nam YS, Maier SA, Cortés E. Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensing. ACS NANO 2020; 14:17693-17703. [PMID: 33270433 DOI: 10.1021/acsnano.0c09319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deterministic positioning and assembly of colloidal nanoparticles (NPs) onto substrates is a core requirement and a promising alternative to top-down lithography to create functional nanostructures and nanodevices with intriguing optical, electrical, and catalytic features. Capillary-assisted particle assembly (CAPA) has emerged as an attractive technique to this end, as it allows controlled and selective assembly of a wide variety of NPs onto predefined topographical templates using capillary forces. One critical issue with CAPA, however, lies in its final printing step, where high printing yields are possible only with the use of an adhesive polymer film. To address this problem, we have developed a template dissolution interfacial patterning (TDIP) technique to assemble and print single colloidal AuNP arrays onto various dielectric and conductive substrates in the absence of any adhesion layer, with printing yields higher than 98%. The TDIP approach grants direct access to the interface between the AuNP and the target surface, enabling the use of colloidal AuNPs as building blocks for practical applications. The versatile applicability of TDIP is demonstrated by the creation of direct electrical junctions for electro- and photoelectrochemistry and nanoparticle-on-mirror geometries for single-particle molecular sensing.
Collapse
Affiliation(s)
- Joong Bum Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Harriet Walker
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Emiliano Cortés
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| |
Collapse
|
7
|
Du L, Sun N, Chen Z, Li Y, Liu X, Zhong X, Wu X, Xie Y, Liu Q. Depletion-Mediated Uniform Deposition of Nanorods with Patterned, Multiplexed Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49200-49209. [PMID: 33048523 DOI: 10.1021/acsami.0c13409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Device-scale, uniform, and controllable deposition of nanoparticles on various substrates is fundamentally important not only for the fabrication of thin-film devices but also for the large sample statistics of single-particle performances. However, it is challenging to obtain such predefined depositions using a simple and efficient method. Here, we present a novel strategy for obtaining the uniform and particle density/spacing-tunable deposition of nanorods on a linker-free substrate. The deposition is driven by the tailored particle-substrate depletion attraction owing to the size-matched design of the substrate roughness and the nanorod diameter. Both gold nanorods and upconversion nanorods were applied to demonstrate the generality of the method. The high particle density of more than 21 per μm2 and correspondingly the small particle spacing of fewer than 0.3 μm were achieved on a scalable substrate template. On this basis, orientational ordering and pattern-selective deposition of nanorods were realized by controlling the liquid flow rate and employing the substrate with patterned roughness areas, respectively. With the roughness-directed density-tunable depositions of nanorods integrated onto a single platform, multiplexed gold nanorod assembly and programmable surface-enhanced Raman mapping were achieved, with a promising prospect in information encoding by using the Raman signals as the translation units. The thermal stability and related transition temperature of about 160 °C of gold nanorods were also revealed as an application of single-particle statistics. This practical method could be extended to wide ranges of potential applications in plasmonic coupling devices, cryptography, or single-particle performance statistics with the feature of the high-throughput, low-cost, and scalable fabrication.
Collapse
Affiliation(s)
- Lena Du
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ningfei Sun
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Ziyu Chen
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Yuanyuan Li
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Xiaoduo Liu
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Xiaolan Zhong
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
| | - Xiaochun Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong Xie
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 102206, China
- Key Laboratory of Intelligent Systems and Equipment Electromagnetic Environment Effect (Ministry of Industry and Information Technology), School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
| | - Qian Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
8
|
Zhang H, Kinnear C, Mulvaney P. Fabrication of Single-Nanocrystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904551. [PMID: 31576618 DOI: 10.1002/adma.201904551] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 05/17/2023]
Abstract
To realize the full potential of nanocrystals in nanotechnology, it is necessary to integrate single nanocrystals into addressable structures; for example, arrays and periodic lattices. The current methods for achieving this are reviewed. It is shown that a combination of top-down lithography techniques with directed assembly offers a platform for attaining this goal. The most promising of these directed assembly methods are reviewed: capillary force assembly, electrostatic assembly, optical printing, DNA-based assembly, and electrophoretic deposition. The last of these appears to offer a generic approach to fabrication of single-nanocrystal arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Calum Kinnear
- CSIRO Manufacturing, Ian Wark Laboratories, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Wang Y, Li D, Sun Y, Zhong L, Liang W, Qin W, Guo W, Liang Z, Jiang L. Multiplexed Assembly of Plasmonic Nanostructures Through Charge Inversion on Substrate for Surface Encoding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6176-6182. [PMID: 31927912 DOI: 10.1021/acsami.9b17530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanomaterials are excellent and promising building blocks for information encoding and decoding. However, the positioning of multiplexed nanomaterials into recognizable structures remains a major challenge in nanotechnology. Herein, we developed a novel method for fabricating diversified nanostructures through surface charge inversion from amino-modified substrates to carboxyl-modified ones, as well as the corresponding electrostatic-induced assembly of metal nanoparticles. Under optimal conditions, the selected gold nanospheres (NSs) and peanut-like gold nanorods were successively located into patterns of spaced lines on the same substrate. Due to their unique optical properties, these two types of designed nanoarrays exhibited distinct color contrast and spectrum difference under dark-field scattering microscopy. Furthermore, this general strategy can be extended to wide ranges of nanoparticles with different morphologies and compositions for other multifunctional and high-demanding encoding applications.
Collapse
Affiliation(s)
- Yawen Wang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Dong Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Yinghui Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Liubiao Zhong
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wenkai Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wei Qin
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wei Guo
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| |
Collapse
|
10
|
Jin CM, Lee W, Kim D, Kang T, Choi I. Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803055. [PMID: 30294867 DOI: 10.1002/smll.201803055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Controlled assembly of colloidal nanoparticles onto solid substrates generally needs to overcome their thermal diffusion in water. For this purpose, several techniques that are based on chemical bonding, capillary interactions with substrate patterning, optical force, and optofluidic heating of light-absorbing substrates are proposed. However, the direct assembly of colloidal nanoparticles on generic substrates without chemical linkers and substrate patterning still remains challenging. Here, photothermal convection lithography is proposed, which allows the rapid placement of colloidal nanoparticles onto the surface of diverse solid substrates. It is based on local photothermal heating of colloidal nanoparticles by resonant light focusing without substrate heating, which induces convective flow. The convective flow, then, forces the colloidal nanoparticles to assemble at the illumination point of light. The size of the assembly is increased by either increasing the light intensity or illumination time. It is shown that three types of colloidal gold nanoparticles with different shapes (rod, star, and sphere) can be uniformly assembled by the proposed method. Each assembly with a diameter of tens of micrometers can be completed within a minute and its patterned arrays can also be achieved rapidly.
Collapse
Affiliation(s)
- Chang Min Jin
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| |
Collapse
|
11
|
Zhang H, Cadusch J, Kinnear C, James T, Roberts A, Mulvaney P. Direct Assembly of Large Area Nanoparticle Arrays. ACS NANO 2018; 12:7529-7537. [PMID: 30004661 DOI: 10.1021/acsnano.8b02932] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Jasper Cadusch
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Calum Kinnear
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Timothy James
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
- Reserve Bank of Australia , Craigieburn , Victoria 3064 , Australia
| | - Ann Roberts
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
12
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
13
|
Makarenko KS, Liu Z, de Jong MP, Zwanenburg FA, Huskens J, van der Wiel WG. Bottom-Up Single-Electron Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702920. [PMID: 28922482 DOI: 10.1002/adma.201702920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Indexed: 06/07/2023]
Abstract
As the downscaling of conventional semiconductor electronics becomes more and more challenging, the interest in alternative material systems and fabrication methods is growing. A novel bottom-up approach for the fabrication of high-quality single-electron transistors (SETs) that can easily be contacted electrically in a controllable manner is developed. This approach employs the self-assembly of Au nanoparticles forming the SETs, and Au nanorods forming the leads to macroscopic electrodes, thus bridging the gap between the nano- and microscale. Low-temperature electron-transport measurements reveal exemplary single-electron tunneling characteristics. SET behavior can be significantly changed, post-fabrication, using molecular exchange of the tunnel barriers, demonstrating the tunability of the assemblies. These results form a promising proof of principle for the versatility of bottom-up nanoelectronics, and toward controlled fabrication of nanoelectronic devices.
Collapse
Affiliation(s)
- Ksenia S Makarenko
- NanoElectronics Group MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Zhihua Liu
- NanoElectronics Group MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Michel P de Jong
- NanoElectronics Group MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Floris A Zwanenburg
- NanoElectronics Group MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Wilfred G van der Wiel
- NanoElectronics Group MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| |
Collapse
|
14
|
Boehm SJ, Lin L, Brljak N, Famularo NR, Mayer TS, Keating CD. Reconfigurable Positioning of Vertically-Oriented Nanowires Around Topographical Features in an AC Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10898-10906. [PMID: 28915051 DOI: 10.1021/acs.langmuir.7b02163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the effect of topographical features on gold nanowire assemblies in a vertically applied AC electric field. Nanowires 300 nm in diameter ×2.5 μm long, and coated with ∼30 nm silica shell, were assembled in aqueous solution between top and bottom electrodes, where the bottom electrode was patterned with cylindrical dielectric posts. Assemblies were monitored in real time using optical microscopy. Dielectrophoretic and electrohydrodynamic forces were manipulated through frequency and voltage variation, organizing nanowires parallel to the field lines, i.e., standing perpendicular to the substrate surface. Field gradients around the posts were simulated and assembly behavior was experimentally evaluated as a function of patterned feature diameter and spacing. The electric field gradient was highest around these topographic features, which resulted in accumulation of vertically oriented nanowires around the post perimeters when dielectrophoresis dominated (high AC frequency) or between the posts when electrohydrodynamics dominated (low AC frequency). This general type of reconfigurable assembly, coupled with judicious choice of nanowire and post materials/dimensions, could ultimately enable new types of optical materials capable of switching between two functional states by changing the applied field conditions.
Collapse
|
15
|
Ashkar R, Hore MJA, Ye X, Natarajan B, Greybush NJ, Lam T, Kagan CR, Murray CB. Rapid Large-Scale Assembly and Pattern Transfer of One-Dimensional Gold Nanorod Superstructures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25513-25521. [PMID: 28686407 DOI: 10.1021/acsami.7b06273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The utility of gold nanorods for plasmonic applications largely depends on the relative orientation and proximity of the nanorods. Though side-by-side or chainlike nanorod morphologies have been previously demonstrated, a simple reliable method to obtain high-yield oriented gold nanorod assemblies remains a significant challenge. We present a facile, scalable approach which exploits meniscus drag, evaporative self-assembly, and van der Waals interactions to precisely position and orient gold nanorods over macroscopic areas of 1D nanostructured substrates. By adjusting the ratio of the nanorod diameter to the width of the nanochannels, we demonstrate the formation of two highly desired translationally ordered nanorod patterns. We further demonstrate a method to transfer the aligned nanorods into a polymer matrix which exhibits anisotropic optical properties, allowing for rapid fabrication and deployment of flexible optical and electronic materials in future nanoscale devices.
Collapse
Affiliation(s)
- Rana Ashkar
- Center for Neutron Research, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
- Materials Science and Engineering Department, University of Maryland , College Park, Maryland 20742, United States
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Xingchen Ye
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Bharath Natarajan
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
| | - Nicholas J Greybush
- Department of Materials Science & Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Thomas Lam
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
| | - Cherie R Kagan
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania , 200 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science & Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science & Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Hughes RA, Menumerov E, Neretina S. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. NANOTECHNOLOGY 2017; 28:282002. [PMID: 28590253 DOI: 10.1088/1361-6528/aa77ce] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.
Collapse
Affiliation(s)
- Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | | | | |
Collapse
|
17
|
Flauraud V, Mastrangeli M, Bernasconi GD, Butet J, Alexander DTL, Shahrabi E, Martin OJF, Brugger J. Nanoscale topographical control of capillary assembly of nanoparticles. NATURE NANOTECHNOLOGY 2017; 12:73-80. [PMID: 27694849 DOI: 10.1038/nnano.2016.179] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/17/2016] [Indexed: 05/22/2023]
Abstract
Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.
Collapse
Affiliation(s)
- Valentin Flauraud
- Microsystems Laboratory, Institute of Microtechnique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Massimo Mastrangeli
- Department of Bio, Electro and Mechanical Systems, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Gabriel D Bernasconi
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jeremy Butet
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Duncan T L Alexander
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elmira Shahrabi
- Microsystems Laboratory, Institute of Microtechnique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Juergen Brugger
- Microsystems Laboratory, Institute of Microtechnique and Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
Nanomanufacturing, the commercially scalable and economically sustainable mass production of nanoscale materials and devices, represents the tangible outcome of the nanotechnology revolution. In contrast to those used in nanofabrication for research purposes, nanomanufacturing processes must satisfy the additional constraints of cost, throughput, and time to market. Taking silicon integrated circuit manufacturing as a baseline, we consider the factors involved in matching processes with products, examining the characteristics and potential of top-down and bottom-up processes, and their combination. We also discuss how a careful assessment of the way in which function can be made to follow form can enable high-volume manufacturing of nanoscale structures with the desired useful, and exciting, properties.
Collapse
Affiliation(s)
- J. Alexander Liddle
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | | |
Collapse
|
19
|
Thermal scanning probe lithography. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-08-100354-1.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Tebbe M, Mayer M, Glatz BA, Hanske C, Probst PT, Müller MB, Karg M, Chanana M, König TAF, Kuttner C, Fery A. Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas. Faraday Discuss 2015; 181:243-60. [PMID: 25951174 PMCID: PMC4530594 DOI: 10.1039/c4fd00236a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022]
Abstract
We demonstrate the large-scale organisation of anisotropic nanoparticles into linear assemblies displaying optical anisotropy on macroscopic areas. Monodisperse gold nanorods with a hydrophilic protein shell are arranged by dip-coating on wrinkled surfaces and subsequently transferred to indium tin oxide (ITO) substrates by capillary transfer printing. We elucidate how tuning the wrinkle amplitude enables us to precisely adjust the assembly morphology and fabricate single, double and triple nanorod lines. For the single lines, we quantify the order parameter of the assemblies as well as interparticle distances from scanning electron microscopy (SEM) images. We find an order parameter of 0.97 and a mean interparticle gap size of 7 nm. This combination of close to perfect uni-axial alignment and close-packing gives rise to pronounced macroscopic anisotropic optical properties due to strong plasmonic coupling. We characterise the optical response of the assemblies on ITO-coated glass via UV/vis/NIR spectroscopy and determine an optical order parameter of 0.91. The assemblies are thus plasmonic metamaterials, as their periodicity and building block sizes are well below the optical wavelength. The presented approach does not rely on lithographic patterning and provides access to functional materials, which could have applications in subwavelength waveguiding, photovoltaics, and for large-area metamaterial fabrication.
Collapse
Affiliation(s)
- Moritz Tebbe
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Martin Mayer
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Bernhard A. Glatz
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Christoph Hanske
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Patrick T. Probst
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Mareen B. Müller
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Matthias Karg
- Physical Chemistry I , Universitätsstraße 30 , 95440 , Bayreuth , Germany
| | - Munish Chanana
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
- Institute of Building Materials , ETH Zurich , 8093 , Zurich , Switzerland
| | - Tobias A. F. König
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Christian Kuttner
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| | - Andreas Fery
- Physical Chemistry II , Universitätsstraße 30 , 95440 , Bayreuth , Germany . ; Fax: +49 (0)921/55-2059 ; Tel: +49 (0)921/55-2751
| |
Collapse
|
21
|
|
22
|
Diaz Fernandez YA, Gschneidtner TA, Wadell C, Fornander LH, Lara Avila S, Langhammer C, Westerlund F, Moth-Poulsen K. The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices. NANOSCALE 2014; 6:14605-16. [PMID: 25208687 DOI: 10.1039/c4nr03717k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of top-down nanofabrication techniques has opened many possibilities for the design and realization of complex devices based on single molecule phenomena such as e.g. single molecule electronic devices. These impressive achievements have been complemented by the fundamental understanding of self-assembly phenomena, leading to bottom-up strategies to obtain hybrid nanomaterials that can be used as building blocks for more complex structures. In this feature article we highlight some relevant published work as well as present new experimental results, illustrating the versatility of self-assembly methods combined with top-down fabrication techniques for solving relevant challenges in modern nanotechnology. We present recent developments on the use of hierarchical self-assembly methods to bridge the gap between sub-nanometer and micrometer length scales. By the use of non-covalent self-assembly methods, we show that we are able to control the positioning of nanoparticles on surfaces, and to address the deterministic assembly of nano-devices with potential applications in plasmonic sensing and single-molecule electronics experiments.
Collapse
Affiliation(s)
- Yuri A Diaz Fernandez
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang J, Li M, Tang B, Xie P, Ma L, Hu Z, Zhao Y, Wei Z. Assembling single gold nanorods into large-scale highly aligned nanoarrays via vacuum-enhanced capillarity. NANOSCALE RESEARCH LETTERS 2014; 9:556. [PMID: 25313304 PMCID: PMC4194060 DOI: 10.1186/1556-276x-9-556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
We report a simple, straightforward, and efficient approach to assemble single gold nanorods (AuNRs) into highly aligned arrays, via a unique vacuum-enhanced capillarity. The assembled AuNR arrays demonstrate both an excellently unidirectional ordering and a wonderful single-rod resolution. The key role of vacuum in this approach enables high-aspect-ratio (10 to 22) AuNR alignment and efficiently facilitates large-area alignment. Further investigation of one- and two-dimensional AuNR arrays would undoubtedly be beneficial to their potential applications.
Collapse
Affiliation(s)
- Jiaojiao Wang
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Yuquan Rd. 19A, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| | - Bochong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| | - Peng Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| | - Lei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| | - Zhongbo Hu
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Yuquan Rd. 19A, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| | - Zhongqing Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19B, Beijing 100049, China
| |
Collapse
|
24
|
Greybush NJ, Saboktakin M, Ye X, Della Giovampaola C, Oh SJ, Berry NE, Engheta N, Murray CB, Kagan CR. Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. ACS NANO 2014; 8:9482-91. [PMID: 25182662 DOI: 10.1021/nn503675a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate plasmonic enhancement of upconversion luminescence in individual nanocrystal heterodimers formed by template-assisted self-assembly. Lithographically defined, shape-selective templates were used to deterministically coassemble single Au nanorods in proximity to single hexagonal (β-phase) NaYF4:Yb(3+),Er(3+) upconversion nanophosphors. By tailoring the dimensions of the rods to spectrally tune their longitudinal surface plasmon resonance to match the 977 nm excitation wavelength of the phosphors and by spatially localizing the phosphors in the intense near-fields surrounding the rod tips, several-fold luminescence enhancements were achieved. The enhancement effects exhibited a strong dependence on the excitation light's polarization relative to the rod axis. In addition, greater enhancement was observed at lower excitation power densities due to the nonlinear behavior of the upconversion process. The template-based coassembly scheme utilized here for plasmonic coupling offers a versatile platform for improving our understanding of optical interactions among individual chemically prepared nanocrystal components.
Collapse
Affiliation(s)
- Nicholas J Greybush
- Department of Materials Science and Engineering, ‡Department of Electrical and Systems Engineering, §Department of Chemistry, ∥Department of Physics and Astronomy, and ⊥Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiao J, Li Z, Ye X, Ma Y, Qi L. Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. NANOSCALE 2014; 6:996-1004. [PMID: 24292548 DOI: 10.1039/c3nr05343a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vertically aligned, supercrystalline microplates with a well-defined rectangular shape were fabricated in a large area through self-assembly of gold nanorods by a novel bulk solution evaporation method. This evaporative self-assembly strategy involving continuous movement of the contact line can prevent the coffee-ring effect, thus allowing uniform deposition of discrete GNR superstructures over a large area and favoring the formation of GNR supercrystals with geometrically symmetric shapes. A mechanism based on the continuing nucleation and growth of smectic GNR superstructures accompanying the movement of the contact line was put forward for the formation of the unique GNR supercrystal arrays. Based on this mechanism, a micropatterned substrate was designed to control the nucleation location and growth direction, leading to the spontaneous self-assembly of nearly parallel arrays of vertically aligned, supercrystalline microplates of GNRs. The obtained rectangular-plate-shaped GNR supercrystals exhibited interesting anisotropic optical reflection properties, which were revealed by polarized light microscopy.
Collapse
Affiliation(s)
- Junyan Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
26
|
Ni S, Klein MJK, Spencer ND, Wolf H. Cascaded assembly of complex multiparticle patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:90-95. [PMID: 24350596 DOI: 10.1021/la403956e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A method for the cascaded capillary assembly of different particle populations in a single assembly cycle is presented. The method addresses the increasing need for fast and simple fabrication of multicomponent arrays from colloidal micro- and nanoscale building blocks for constructing nanoelectronic, optical, and sensing devices. It is based on the use of a microfluidic device from which two independent capillary bridges extend. The menisci of the capillary bridges are pulled over a template with trapping sites that receive the colloidal particles. We describe the parameters for simultaneous, high-yield assembly from both menisci and demonstrate the applicability of the process by means of the size-selective assembly of particles of different diameters and also by the fabrication of two-component particle clusters with defined shape and composition. This approach allows the fabrication of multifunctional particle clusters having different functionalities at predetermined positions.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | | | | | | |
Collapse
|
27
|
Rey A, Billardon G, Lörtscher E, Moth-Poulsen K, Stuhr-Hansen N, Wolf H, Bjørnholm T, Stemmer A, Riel H. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications. NANOSCALE 2013; 5:8680-8688. [PMID: 23900232 DOI: 10.1039/c3nr02358c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of ∼6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature. In addition, we transferred the gold nanorod chains from the assembly template onto a Si/SiO2 target substrate, thus establishing a platform for a variety of nanoscale electronic and optical applications ranging from molecular electronics to optical and plasmonic devices. As a first example, electrical measurements are performed on contacted gold nanorod chains before and after their immersion in a solution of thiol end-capped oligophenylenevinylene molecules showing an increase in the conductance by three orders of magnitude, indicating molecular-mediated transport.
Collapse
Affiliation(s)
- Antje Rey
- IBM Research-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tinguely JC, Charron G, Lau-Truong S, Hohenau A, Grand J, Félidj N, Aubard J, Krenn JR. Template-assisted deposition of CTAB-functionalized gold nanoparticles with nanoscale resolution. J Colloid Interface Sci 2013; 394:237-42. [PMID: 23352701 DOI: 10.1016/j.jcis.2012.12.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
In this paper, we demonstrate the template-assisted deposition of cetyltrimethylammonium bromide (CTAB) stabilized gold nanorods at lithographically defined positions on a substrate. Overcoating of the nanoparticles with polystyrenesulfonate allows to switch the original nanoparticles positive surface charge to negative and to apply the template-assisted deposition technique developed for citrate-capped gold nanoparticles also to CTAB stabilized nanoparticles. The successful, selective deposition of gold nanorods in trenches with widths down to 50 nm is demonstrated. Our results indicate the potential of this method for the fabrication of well controlled, reproducible plasmonic biosensing substrates, applicable to the vast palette of anisotropic nanoparticle shapes synthesized with CTAB as the templating agent.
Collapse
Affiliation(s)
- Jean-Claude Tinguely
- Institute of Physics, Karl-Franzens University, Universitätsplatz 5, A-8010 Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cheng CC, Liu MH, Mou CY, Chen YF. Controllable orientation of assembled gold nanorods on unstructured substrates. RSC Adv 2013. [DOI: 10.1039/c3ra41357h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
30
|
Celebrano M, Rosman C, Sönnichsen C, Krishnan M. Angular trapping of anisometric nano-objects in a fluid. NANO LETTERS 2012; 12:5791-5796. [PMID: 23016893 DOI: 10.1021/nl303099c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.
Collapse
Affiliation(s)
- Michele Celebrano
- CNISM - Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Kin Wai Lei
- Texas Materials Institute and Department of Chemistry & Biochemistry, University of Texas, Austin, Texas 78712, United States
| | - Tyler West
- Texas Materials Institute and Department of Chemistry & Biochemistry, University of Texas, Austin, Texas 78712, United States
| | - X.-Y. Zhu
- Texas Materials Institute and Department of Chemistry & Biochemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
32
|
Vigderman L, Khanal BP, Zubarev ER. Functional gold nanorods: synthesis, self-assembly, and sensing applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4811-41, 5014. [PMID: 22740090 DOI: 10.1002/adma.201201690] [Citation(s) in RCA: 452] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Indexed: 05/19/2023]
Abstract
Gold nanorods have received much attention due to their unique optical and electronic properties which are dependent on their shape, size, and aspect ratio. This article covers in detail the synthesis, functionalization, self-assembly, and sensing applications of gold nanorods. The synthesis of three major types of rods is discussed: single-crystalline and pentahedrally-twinned rods, which are synthesized by wet chemistry methods, and polycrystalline rods, which are synthesized by templated deposition. Functionalization of these rods is usually necessary for their applications, but can often be problematic due to their surfactant coating. Thus, general strategies are provided for the covalent and noncovalent functionalization of gold nanorods. The review will then examine the significant progress that has been made in controllable assembly of nanorods into various arrangements. This assembly can have a large effect on measurable properties of rods, making it particularly applicable towards sensing of a variety of analytes. Other types of sensing not dependent on nanorod assembly, such as refractive-index based sensing, are also discussed.
Collapse
Affiliation(s)
- Leonid Vigderman
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | | | |
Collapse
|
33
|
Nepal D, Onses MS, Park K, Jespersen M, Thode CJ, Nealey PF, Vaia RA. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. ACS NANO 2012; 6:5693-5701. [PMID: 22647144 DOI: 10.1021/nn301824u] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synergy of self- and directed-assembly processes and lithography provides intriguing avenues to fabricate translationally ordered nanoparticle arrangements, but currently lacks the robustness necessary to deliver complex spatial organization. Here, we demonstrate that interparticle spacing and local orientation of gold nanorods (AuNR) can be tuned by controlling the Debye length of AuNR in solution and the dimensions of a chemical contrast pattern. Electrostatic and hydrophobic selectivity for AuNR to absorb to patterned regions of poly(2-vinylpyridine) (P2VP) and polystyrene brushes and mats was demonstrated for AuNR functionalized with mercaptopropane sulfonate (MS) and poly(ethylene glycol), respectively. For P2VP patterns of stripes with widths comparable to the length of the AuNR, single- and double-column arrangements of AuNR oriented parallel and perpendicular to the P2VP line were obtained for MS-AuNR. Furthermore, the spacing of the assembled AuNR was uniform along the stripe and related to the ionic strength of the AuNR dispersion. The different AuNR arrangements are consistent with predictions based on maximization of packing of AuNR within the confined strip.
Collapse
Affiliation(s)
- Dhriti Nepal
- Nanostructured and Biological Materials Branch, Air Force Research Laboratories/RXBN, Wright-Patterson AFB, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Jain T, Lara-Avila S, Kervennic YV, Moth-Poulsen K, Nørgaard K, Kubatkin S, Bjørnholm T. Aligned growth of gold nanorods in PMMA channels: parallel preparation of nanogaps. ACS NANO 2012; 6:3861-3867. [PMID: 22494354 DOI: 10.1021/nn204986y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate alignment and positional control of gold nanorods grown in situ on substrates using a seed-mediated synthetic approach. Alignment control is obtained by directing the growth of spherical nanoparticle seeds into nanorods in well-defined poly(methyl methacrylate) nanochannels. Substrates with prepatterned metallic electrodes provide an additional handle for the position of the gold nanorods and yield nanometer-sized gaps between the electrode and nanorod. The presented approach is a novel demonstration of bottom-up device fabrication of multiple nanogap junctions on a single chip mediated viain situ growth of gold nanorods acting as nanoelectrodes.
Collapse
Affiliation(s)
- Titoo Jain
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
35
|
Onses MS, Liu CC, Thode CJ, Nealey PF. Highly selective immobilization of Au nanoparticles onto isolated and dense nanopatterns of poly(2-vinyl pyridine) brushes down to single-particle resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7299-307. [PMID: 22497347 DOI: 10.1021/la300552w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Chemical patterns consisting of poly(2-vinyl pyridine) (P2VP) brushes in a background of a cross-linked polystyrene (PS) mat enabled the highly selective placement of citrate-stabilized Au nanoparticles (NPs) in arrays on surfaces. The cross-linked PS mat prevented the nonspecific binding of Au NPs, and the regions functionalized with P2VP brushes allowed the immobilization of the particles. Isolated chemical patterns of feature sizes from hundreds to tens of nanometers were prepared by standard lithographic techniques. The number of 13 nm Au NPs bound per feature increased linearly with increasing area of the patterns. This behavior is similar to previous reports using 40 nm particles or larger. Arrays of single NPs were obtained by reducing the dimensions of patterned P2VP brushes to below ~20 nm. To generate dense (center-to-center distance = 80 nm) linear chemical patterns for the placement of rows of single NPs, a block-copolymer (BCP)-assisted lithographic process was used. BCPs healed defects associated with the standard lithographic patterning of small dimensions at high densities and led to highly registered, linear, single NP arrays.
Collapse
Affiliation(s)
- M Serdar Onses
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
36
|
Smith BD, Mayer TS, Keating CD. Deterministic Assembly of Functional Nanostructures Using Nonuniform Electric Fields. Annu Rev Phys Chem 2012; 63:241-63. [DOI: 10.1146/annurev-physchem-032210-103346] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Theresa S. Mayer
- Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | | |
Collapse
|
37
|
Holzner F, Kuemin C, Paul P, Hedrick JL, Wolf H, Spencer ND, Duerig U, Knoll AW. Directed placement of gold nanorods using a removable template for guided assembly. NANO LETTERS 2011; 11:3957-62. [PMID: 21854023 DOI: 10.1021/nl202276q] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have used a temperature sensitive polymer film as a removable template to position, and align, gold nanorods onto an underlying target substrate. Shape-matching guiding structures for the assembly of nanorods of size 80 nm × 25 nm have been written by thermal scanning probe lithography. The nanorods were assembled into the guiding structures, which determine both the position and the orientation of single nanorods, by means of capillary interactions. Following particle assembly, the polymer was removed cleanly by thermal decomposition and the nanorods are transferred to the underlying substrate. We have thus demonstrated both the placement and orientation of nanorods with an overall positioning accuracy of ≈10 nm onto an unstructured target substrate.
Collapse
Affiliation(s)
- Felix Holzner
- IBM Research-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|