1
|
Saak CM, Backus EHG. The Role of Sum-Frequency Generation Spectroscopy in Understanding On-Surface Reactions and Dynamics in Atmospheric Model-Systems. J Phys Chem Lett 2024; 15:4546-4559. [PMID: 38636165 PMCID: PMC11071071 DOI: 10.1021/acs.jpclett.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Surfaces, both water/air and solid/water, play an important role in mediating a multitude of processes central to atmospheric chemistry, particularly in the aerosol phase. However, the study of both static and dynamic properties of surfaces is highly challenging from an experimental standpoint, leading to a lack of molecular level information about the processes that take place at these systems and how they differ from bulk. One of the few techniques that has been able to capture ultrafast surface phenomena is time-resolved sum-frequency generation (SFG) spectroscopy. Since it is both surface-specific and chemically sensitive, the extension of this spectroscopic technique to the time domain makes it possible to study dynamic processes on the femtosecond time scale. In this Perspective, we will explore recent advances made in the field both in terms of studying energy dissipation as well as chemical reactions and the role the surface geometry plays in these processes.
Collapse
Affiliation(s)
- Clara-Magdalena Saak
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| | - Ellen H. G. Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| |
Collapse
|
2
|
Brown SJ, Ryan TM, Drummond CJ, Greaves TL, Han Q. Lysozyme aggregation and unfolding in ionic liquid solvents: Insights from small angle X-ray scattering and high throughput screening. J Colloid Interface Sci 2024; 655:133-144. [PMID: 37931553 DOI: 10.1016/j.jcis.2023.10.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Understanding protein behaviour is crucial for developing functional solvent systems. Ionic liquids (ILs) are designer salts with versatile ion combinations, where some suppress unfavourable protein behaviour. This work utilizes small angle X-ray scattering (SAXS) to investigate the size and shape changes of model protein hen egg white lysozyme (HEWL) in 137 IL and salt solutions. Guinier, Kratky, and pair distance distribution analysis were used to evaluate the protein size, shape, and aggregation changes in these solvents. At low IL and salt concentration (1 mol%), HEWL remained monodispersed and globular. Most ILs increased HEWL size compared to buffer, while the nitrate and mesylate anions induced the most significant size increases. IL cation branching, hydroxyl groups, and longer alkyl chains counteracted this size increase. Common salts exhibited specific ion effects, while the IL effect varied with concentration due to complex ion-pairing. Protein aggregation and unfolding occurred at 10 mol% IL, altering the protein shape, especially for ILs with multiple alkyl chains on the cation, or with a mesylate/nitrate anion. This study highlights the usefulness of adopting a high-throughput SAXS strategy for understanding IL effects on protein behaviour and provides insights on controlling protein aggregation and unfolding with ILs.
Collapse
Affiliation(s)
- Stuart J Brown
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Timothy M Ryan
- SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
3
|
Tadesse DB, Parsons DF. The impact of steric repulsion on the total free energy of electric double layer capacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Carucci C, Raccis F, Salis A, Magner E. Specific ion effects on the enzymatic activity of alcohol dehydrogenase fromSaccharomyces cerevisiae. Phys Chem Chem Phys 2020; 22:6749-6754. [DOI: 10.1039/c9cp06800g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The specific activity andVmax, but notKm, of alcohol dehydrogenase fromSaccharomyces cerevisiaeare ion specific.
Collapse
Affiliation(s)
- Cristina Carucci
- Department of Chemical Sciences
- Synthesis and Solid State Pharmaceutical Centre (SSPC) and Bernal Institute
- University of Limerick
- Limerick
- Ireland
| | - Francesco Raccis
- Department of Chemical Sciences
- Synthesis and Solid State Pharmaceutical Centre (SSPC) and Bernal Institute
- University of Limerick
- Limerick
- Ireland
| | - Andrea Salis
- Department of Chemical and Geological Sciences
- University of Cagliari
- CSGI & CNBS
- Cittadella Universitaria
- 09042 Monserrato (CA)
| | - Edmond Magner
- Department of Chemical Sciences
- Synthesis and Solid State Pharmaceutical Centre (SSPC) and Bernal Institute
- University of Limerick
- Limerick
- Ireland
| |
Collapse
|
5
|
The Hofmeister series: Specific ion effects in aqueous polymer solutions. J Colloid Interface Sci 2019; 555:615-635. [PMID: 31408761 DOI: 10.1016/j.jcis.2019.07.067] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Specific ion effects in aqueous polymer solutions have been under active investigation over the past few decades. The current state-of-the-art research is primarily focused on the understanding of the mechanisms through which ions interact with macromolecules and affect their solution stability. Hence, we herein first present the current opinion on the sources of ion-specific effects and review the relevant studies. This includes a summary of the molecular mechanisms through which ions can interact with polymers, quantification of the affinity of ions for the polymer surface, a thermodynamic description of the effects of salts on polymer stability, as well as a discussion on the different forces that contribute to ion-polymer interplay. Finally, we also highlight future research issues that call for further scrutiny. These include fundamental questions on the mechanisms of ion-specific effects and their correlation with polymer properties as well as a discussion on the specific ion effects in more complex systems such as mixed electrolyte solutions.
Collapse
|
6
|
Parsons DF, Salis A. A thermodynamic correction to the theory of competitive chemisorption of ions at surface sites with nonelectrostatic physisorption. J Chem Phys 2019; 151:024701. [DOI: 10.1063/1.5096237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Drew F. Parsons
- College of Science, Health, Engineering & Education, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Unità Operativa Univ. Cagliari, Italy and Centro NanoBiotecnologie Sardegna (CNBS), Unità Operativa Univ. Cagliari,Italy
| |
Collapse
|
7
|
Li P, Penfold J, Thomas RK, Xu H. Multilayers formed by polyelectrolyte-surfactant and related mixtures at the air-water interface. Adv Colloid Interface Sci 2019; 269:43-86. [PMID: 31029983 DOI: 10.1016/j.cis.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
The structure and occurrence of multilayered adsorption at the air-water interface of surfactants in combination with other oppositely charged species is reviewed. The main species that trigger multilayer formation are multiply charged metal, oligo- and polyions. The structures vary from the attachment of one or two more or less complete surfactant bilayers to the initial surfactant monolayer at the air-water interface to the attachment of a greater number of bilayers with a more defective structure. The majority of the wide range of observations of such structures have been made using neutron reflectometry. The possible mechanisms for the attraction of surfactant bilayers to an air-water interface are discussed and particular attention is given to the question of whether these structures are true equilibrium structures.
Collapse
Affiliation(s)
- Peixun Li
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0RA, United Kingdom
| | - Jeffery Penfold
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0RA, United Kingdom
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom.
| | - Hui Xu
- KLK OLEO, Room 1603, 16th Floor, LZY Tower, 4711 Jiao Tong Road, Putuo District, Shanghai 200331, China
| |
Collapse
|
8
|
Biernacki KA, Kaczkowska E, Bruździak P. Aqueous solutions of NMA, Na2HPO4, and NaH2PO4 as models for interaction studies in phosphate–protein systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ion specific hydration in nano-confined electrical double layers. J Colloid Interface Sci 2017; 506:263-270. [DOI: 10.1016/j.jcis.2017.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/15/2022]
|
10
|
Diao Y, Han M, Lopez-Berganza JA, Valentino L, Marinas B, Espinosa-Marzal RM. Reconciling DLVO and non-DLVO Forces and Their Implications for Ion Rejection by a Polyamide Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8982-8992. [PMID: 28771012 DOI: 10.1021/acs.langmuir.7b02306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recognizing the significance of surface interactions for ion rejection and membrane fouling in nanofiltration, we revise the theories of DLVO (named after Derjaguin, Landau, Verwey, and Overbeek) and non-DLVO forces in the context of polyamide active layers. Using an atomic force microscope, surface forces between polyamide active layers and a micrometer-large and smooth silica colloid were measured in electrolyte solutions of representative monovalent and divalent ions. While the analysis of DLVO forces, accounting for surface roughness, provides how surface charge of the active layer changes with electrolyte concentration, scrutiny of non-DLVO hydration forces gives molecular insight into the composition of the membrane-solution interface. Importantly, we report an expansion of the diffuse layer at high ionic strength, consistent with the recent development of the electrical double layer theory, but in contrast to the widely accepted phenomenon of aggregation in the secondary minimum. Further, the enhanced repulsion acting on modified membranes via polyelectrolyte adsorption can be quantitatively predicted by DLVO and non-DLVO forces. This work serves to solve past misunderstandings about the interaction forces acting on nanofiltration membranes, and it provides guidance for future work on the relation between surface properties and rejection mechanisms and fouling.
Collapse
Affiliation(s)
- Yijue Diao
- Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mengwei Han
- Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Josue A Lopez-Berganza
- Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Lauren Valentino
- Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Benito Marinas
- Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Salis A, Monduzzi M. Not only pH. Specific buffer effects in biological systems. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Hofmeister effects at low salt concentration due to surface charge transfer. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
TANG YING, LI HANG, ZHU HUALING, TIAN RUI, GAO XIAODAN. Impact of electric field on Hofmeister effects in aggregation of negatively charged colloidal minerals. J CHEM SCI 2016. [DOI: 10.1007/s12039-015-1008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Hu F, Li H, Liu X, Li S, Ding W, Xu C, Li Y, Zhu L. Quantitative characterization of non-classic polarization of cations on clay aggregate stability. PLoS One 2015; 10:e0122460. [PMID: 25874864 PMCID: PMC4398450 DOI: 10.1371/journal.pone.0122460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/11/2015] [Indexed: 11/30/2022] Open
Abstract
Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.
Collapse
Affiliation(s)
- Feinan Hu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Hang Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinmin Liu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Song Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Wuquan Ding
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Chenyang Xu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yue Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Longhui Zhu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Parsons DF, Salis A. The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces. J Chem Phys 2015; 142:134707. [DOI: 10.1063/1.4916519] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Drew F. Parsons
- School of Engineering and Information Technology, Murdoch University, 90 South St, Murdoch, WA 6150, Australia
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
| | - Andrea Salis
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
- Department of Chemical and Geological Sciences, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato (CA), Italy
| |
Collapse
|
16
|
Supercapacitors have an asymmetric electrode potential and charge due to nonelectrostatic electrolyte interactions. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Specific ion effect on the point of zero charge of α-alumina and on the adsorption of 3,4-dihydroxybenzoic acid onto α-alumina surface. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Salis A, Ninham BW. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev 2014; 43:7358-77. [PMID: 25099516 DOI: 10.1039/c4cs00144c] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Specific effects of electrolytes have posed a challenge since the 1880's. The pioneering work was that of Franz Hofmeister who studied specific salt induced protein precipitation. These effects are the rule rather the exception and are ubiquitous in chemistry and biology. Conventional electrostatic theories (Debye-Hückel, DLVO, etc.) cannot explain such effects. Over the past decades it has been recognised that additional quantum mechanical dispersion forces with associated hydration effects acting on ions are missing from theory. In parallel Collins has proposed a phenomenological set of rules (the law of matching water affinities, LMWA) which explain and bring to order the order of ion-ion and ion-surface site interactions at a qualitative level. The two approaches appear to conflict. Although the need for inclusion of quantum dispersion forces in one form or another is not questioned, the modelling has often been misleading and inappropriate. It does not properly describe the chemical nature (kosmotropic/chaotropic or hard/soft) of the interacting species. The success of the LMWA rules lies in the fact that they do. Here we point to the way that the two apparently opposing approaches might be reconciled. Notwithstanding, there are more challenges, which deal with the effect of dissolved gas and its connection to 'hydrophobic' interactions, the problem of water at different temperatures and 'water structure' in the presence of solutes. They take us to another dimension that requires the rebuilding of theoretical foundations.
Collapse
Affiliation(s)
- Andrea Salis
- Department of Chemical and Geological Science, University of Cagliari, Italy and CSGI.
| | | |
Collapse
|
19
|
Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions. J Colloid Interface Sci 2014; 427:67-72. [DOI: 10.1016/j.jcis.2014.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/23/2022]
|
20
|
Duignan TT, Parsons DF, Ninham BW. Collins’s rule, Hofmeister effects and ionic dispersion interactions. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.056] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Enami S, Colussi AJ. Ion-Specific Long-Range Correlations on Interfacial Water Driven by Hydrogen Bond Fluctuations. J Phys Chem B 2014; 118:1861-6. [DOI: 10.1021/jp411385u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shinichi Enami
- The Hakubi
Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Agustín J. Colussi
- Linde Center for Global Environmental
Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Shagieva FM, Boinovich LB. Manifestation of ion specificity in the behavior of the dynamic dielectric permittivity of aqueous solutions of alkali metal halides. J STRUCT CHEM+ 2014. [DOI: 10.1134/s0022476613080143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Tian R, Yang G, Li H, Gao X, Liu X, Zhu H, Tang Y. Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects. Phys Chem Chem Phys 2014; 16:8828-36. [DOI: 10.1039/c3cp54813a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Enami S, Colussi AJ. Long-range specific ion-ion interactions in hydrogen-bonded liquid films. J Chem Phys 2013; 138:184706. [DOI: 10.1063/1.4803652] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Enami S, Colussi AJ. Long-range Hofmeister effects of anionic and cationic amphiphiles. J Phys Chem B 2013; 117:6276-81. [PMID: 23621428 DOI: 10.1021/jp401285f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific ion effects at aqueous interfaces play key roles in many important phenomena. We recently reported that ions interact specifically over unexpectedly long distances on the surface of sub-micromolar electrolyte solutions (Enami et al. J. Chem. Phys. 2012, 136, 154707). Whether the anionic and cationic headgroups of the organic amphiphiles present at most water/hydrophobe interfaces act similarly or display new behaviors, however, is not known. Here we report the results of experiments in which we apply online electrospray ionization mass spectrometry (ESI-MS) to investigate how carboxylate, RCOO(-) (R = CH3, C5H11, C7H15), and alkylammonium, R'(CH3)3N(+) (R' = CH3, C14H29), ions affect the ratio χ = I(-)/Br(-) at the aerial interface of 1 μM (NaI + NaBr) aqueous solutions. We found that χ is systematically but selectively depressed by these ionic amphiphiles and minimally affected by the neutral surfactant 1-octanol. The depressing effects induced by cationic headgroups are stronger than those caused by anionic surfactants and always increase with the length of the alkyl chains.
Collapse
Affiliation(s)
- Shinichi Enami
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan.
| | | |
Collapse
|
26
|
Azam MS, Weeraman CN, Gibbs-Davis JM. Specific Cation Effects on the Bimodal Acid-Base Behavior of the Silica/Water Interface. J Phys Chem Lett 2012; 3:1269-74. [PMID: 26286770 DOI: 10.1021/jz300255x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Using nonresonant second harmonic generation spectroscopy, we have monitored the change in surface charge density of the silica/water interface over a broad pH range in the presence of different alkali chlorides. Planar silica is known to possess two types of surface sites with pKa values of ∼4 and ∼9, which are attributed to different solvation environments of the silanols. We report that varying the alkali chloride electrolyte significantly changes the effective acid dissociation constant (pKa(eff)) for the less acidic silanol groups, with the silica/NaClaq and silica/CsClaq interfaces exhibiting the lowest and highest pKa(eff) values of 8.3(1) and 10.8(1), respectively. Additionally, the relative populations of the two silanol groups are also very sensitive to the electrolyte identity. The greatest percentage of acidic silanol groups was 60(2)% for the silica/LiClaq interface in contrast to the lowest value of 20(2)% for the silica/NaClaq interface. We attribute these changes in the bimodal behavior to the influence of alkali ions on the interfacial water structure and its corresponding effect on surface acidity.
Collapse
Affiliation(s)
- Md Shafiul Azam
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
27
|
Enami S, Mishra H, Hoffmann MR, Colussi AJ. Hofmeister effects in micromolar electrolyte solutions. J Chem Phys 2012; 136:154707. [PMID: 22519343 DOI: 10.1063/1.4704752] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shinichi Enami
- The Hakubi Center, Kyoto University, Kyoto 606-8302, Japan.
| | | | | | | |
Collapse
|
28
|
Lo Nostro P, Ninham BW. Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 2012; 112:2286-322. [PMID: 22251403 DOI: 10.1021/cr200271j] [Citation(s) in RCA: 690] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pierandrea Lo Nostro
- Department of Chemistry and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.
| | | |
Collapse
|
29
|
Salis A, Boström M, Medda L, Cugia F, Barse B, Parsons DF, Ninham BW, Monduzzi M. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11597-11604. [PMID: 21834579 DOI: 10.1021/la2024605] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential).
Collapse
Affiliation(s)
- Andrea Salis
- Department of Chemical Science, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042- Monserrato (CA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|