1
|
Melcrová A, Klein C, Roos WH. Membrane-Active Antibiotics Affect Domains in Bacterial Membranes as the First Step of Their Activity. NANO LETTERS 2024; 24:11800-11807. [PMID: 39145544 PMCID: PMC11440642 DOI: 10.1021/acs.nanolett.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The need to combat antimicrobial resistance is becoming more and more pressing. Here we investigate the working mechanism of a small cationic agent, N-alkylamide 3d, by conventional and high-speed atomic force microscopy. We show that N-alkylamide 3d interacts with the membrane of Staphylococcus aureus, where it changes the organization and dynamics of lipid domains. After this initial step, supramolecular structures of the antimicrobial agent attach on top of the affected membrane gradually, covering it entirely. These results demonstrate that lateral domains in the bacterial membranes might be affected by small antimicrobial agents more often than anticipated. At the same time, we show a new dual-step activity of N-alkylamide 3d that not only destroys the lateral membrane organization but also effectively covers the whole membrane with aggregates. This final step could render the membrane inaccessible from the outside and possibly prevent signaling and waste disposal of living bacteria.
Collapse
Affiliation(s)
- Adéla Melcrová
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| | - Christiaan Klein
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| | - Wouter H. Roos
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Roth J, Hoop C, Williams JK, Nanda V, Baum J. Real-time single-molecule observation of incipient collagen fibrillogenesis and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2401133121. [PMID: 39102538 PMCID: PMC11331128 DOI: 10.1073/pnas.2401133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Cody Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jonathan K. Williams
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
3
|
Pipis N, Stewart KA, Tabatabaei M, Williams LN, Allen JB. Exploring the Fibrous Nature of Single-Stranded DNA-Collagen Complexes: Nanostructural Observations and Physicochemical Insights. ACS OMEGA 2024; 9:32052-32058. [PMID: 39072094 PMCID: PMC11270544 DOI: 10.1021/acsomega.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Nucleic acid-collagen complexes (NACCs) are a self-assembled biomimetic fibrillary platform arising from the spontaneous complexation of single-stranded DNA (ssDNA) oligonucleotides and collagen. NACCs merge the extracellular matrix functionality of collagen with the tunable bioactivity of ssDNA as aptamers for broad biomedical applications. We hypothesize that NACCs offer a hierarchical architecture across multiple length scales that significantly varies compared to native collagen. We investigate this using atomic force microscopy and electron microscopy (transmission electron microscopy and cryogenic electron microscopy). Results demonstrate key topographical differences induced by adding ssDNA oligonucleotides to collagen type I. NACCs form a dense network of intertwined collagen fiber bundles in the microscale and nanoscale while retaining their characteristic D-band periodicities (∼67 nm). Additionally, our exploration of thermodynamic parameters governing the interaction indicates an entropically favorable NACC formation driven by ssDNA. Thermal analysis demonstrates the preservation of collagen's triple helical domains and a more stabilized polypeptide structure at higher temperatures than native collagen. These findings offer important insights into our understanding of the ssDNA-induced complexation of collagen toward the further establishment of structure-property relationships in NACCs and their future development into practical biomaterials. They also provide pathways for manipulating and enhancing collagenous matrices' properties without requiring complex chemical modifications or fabrication procedures.
Collapse
Affiliation(s)
- Nikolaos Pipis
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A. Stewart
- George
& Josephine Butler Polymer Research Laboratory, Department of
Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Mohammad Tabatabaei
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lakiesha N. Williams
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Josephine B. Allen
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department
of Materials Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Garcia-Sacristan C, Gisbert VG, Klein K, Šarić A, Garcia R. In Operando Imaging Electrostatic-Driven Disassembly and Reassembly of Collagen Nanostructures. ACS NANO 2024; 18:18485-18492. [PMID: 38958189 PMCID: PMC11256892 DOI: 10.1021/acsnano.4c03839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Collagen is the most abundant protein in tissue scaffolds in live organisms. Collagen can self-assemble in vitro, which has led to a number of biotechnological and biomedical applications. To understand the dominant factors that participate in the formation of collagen nanostructures, here we study in real time and with nanoscale resolution the disassembly and reassembly of collagens. We implement a high-speed force microscope, which provides in situ high spatiotemporal resolution images of collagen nanostructures under changing pH conditions. The disassembly and reassembly are dominated by the electrostatic interactions among amino-acid residues of different molecules. Acidic conditions favor disassembly by neutralizing negatively charged residues. The process sets a net repulsive force between collagen molecules. A neutral pH favors the presence of negative and positively charged residues along the collagen molecules, which promotes their electrostatic attraction. Molecular dynamics simulations reproduce the experimental behavior and validate the electrostatic-based model of the disassembly and reassembly processes.
Collapse
Affiliation(s)
- Clara Garcia-Sacristan
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Victor G. Gisbert
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Kevin Klein
- Institute
of Science and Technology Austria, Klosterneuburg 3400, Austria
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Anđela Šarić
- Institute
of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
5
|
Arvelo DM, Garcia-Sacristan C, Chacón E, Tarazona P, Garcia R. Interfacial water on collagen nanoribbons by 3D AFM. J Chem Phys 2024; 160:164714. [PMID: 38656444 DOI: 10.1063/5.0205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Collagen is the most abundant structural protein in mammals. Type I collagen in its fibril form has a characteristic pattern structure that alternates two regions called gap and overlap. The structure and properties of collagens are highly dependent on the water and mineral content of the environment. Here, we apply 3D AFM to characterize at angstrom-scale resolution the interfacial water structure of collagen nanoribbons. For a neutral tip, the interfacial water structure is characterized by the oscillation of the water particle density distribution with a value of 0.3 nm (hydration layers). The interfacial structure does not depend on the collagen region. For a negatively charged tip, the interfacial structure might depend on the collagen region. Hydration layers are observed in overlap regions, while in gap regions, the interfacial solvent structure is dominated by electrostatic interactions. These interactions generate interlayer distances of 0.2 nm.
Collapse
Affiliation(s)
- Diana M Arvelo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| |
Collapse
|
6
|
Alberstein RG, Prelesnik JL, Nakouzi E, Zhang S, De Yoreo JJ, Pfaendtner J, Tezcan FA, Mundy CJ. Discrete Orientations of Interfacial Waters Direct Crystallization of Mica-Binding Proteins. J Phys Chem Lett 2023; 14:80-87. [PMID: 36573690 DOI: 10.1021/acs.jpclett.2c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the basis of templated molecular assembly on a solid surface requires a fundamental comprehension of both short- and long-range aqueous response to the surface under a variety of solution conditions. Herein we provide a detailed picture of how the molecular-scale response to different mica surfaces yields distinct solvent orientations that produce quasi-static directional potentials onto which macromolecules can adsorb. We connect this directionality to observed (a)symmetric epitaxial alignment of designed proteins onto these surfaces, corroborate our findings with 3D atomic force microscopy experiments, and identify slight differences in surface structure as the origin of this effect. Our work provides a detailed picture of the intrinsic electrolyte response in the vicinity of mineral interfaces, with clear predictions for experiment, and highlights the role of solvent on the predictive assembly of hierarchical materials on mineral surfaces.
Collapse
Affiliation(s)
- Robert G Alberstein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse L Prelesnik
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elias Nakouzi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Shuai Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher J Mundy
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Stroyuk O, Raievska O, Brabec CJ, Dzhagan V, Havryliuk Y, Zahn DRT. Self-assembly of colloidal single-layer carbon nitride. NANOSCALE 2022; 14:12347-12357. [PMID: 35971970 DOI: 10.1039/d2nr03477h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce a new concept of a "bottom-to-top" design of intercalate carbon nitride compounds based on the effects of self-assembly of colloidal single-layer carbon nitride (SLCN) sheets stabilized by tetraethylammonium hydroxide NEt4OH upon ambient drying of the water solvent. These effects include (i) formation of stage-1 intercalates of NEt4OH during the ambient drying of SLCN colloids on glass substrates and (ii) the spontaneous formation of layered hexagonally-shaped networks of SLCN sheets on freshly-cleaved mica surfaces. The dynamics of the intercalate formation was followed by in situ X-ray diffraction allowing different stages to be identified, including the deposition of a primary "wet" intercalate of hydrated NEt4OH and the gradual elimination of excessive water during its ambient drying. The intercalated NEt4+ cations show a specific "flattened" conformation allowing the dynamics of formation and structure of the intercalate to be probed by vibrational spectroscopies. The two-dimensional self-assembly on mica is assumed to be driven both by the internal hexagonal symmetry of heptazine units and by a templating effect of the mica surface.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Christoph J Brabec
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials for Electronics and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Nauky Av., 03028 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., 01601 Kyiv, Ukraine
| | - Yevhenii Havryliuk
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
8
|
Yue C, Ding C, Su J, Cheng B. Effect of copper and zinc ions on type I collagen self-assembly. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2093569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Chengfei Yue
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Changkun Ding
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Jieliang Su
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Bowen Cheng
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| |
Collapse
|
9
|
Amornkitbamrung U, In Y, Wang Z, Song J, Oh SH, Hong MH, Shin H. c-Axis-Oriented Platelets of Crystalline Hydroxyapatite in Biomimetic Intrafibrillar Mineralization of Polydopamine-Functionalized Collagen Type I. ACS OMEGA 2022; 7:4821-4831. [PMID: 35187302 PMCID: PMC8851625 DOI: 10.1021/acsomega.1c05198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mineralized collagen fibrils are important basic building blocks of calcified tissues, such as bone and dentin. Polydopamine (PDA) can introduce functional groups, i.e., hydroxyl and amine groups, on the surfaces of type I collagen (Col-I) as possible nucleation sites of calcium phosphate (CaP) crystallization. Molecular bindings in between PDA and Col-I fibrils (Col-PDA) have been found to significantly reduce the interfacial energy. The wetting effect, mainly hydrophilicity due to the functional groups, escalates the degree of mineralization. The assembly of Col-I molecules into fibrils was initiated at the designated number of collagenous molecules and PDA. In contrast to the infiltration of amorphous calcium phosphate (ACP) precursors into the Col-I matrix by polyaspartic acid (pAsp), this collagen assembly process allows nucleation and ACP to exist in advance by PDA in the intrafibrillar matrix. PDA bound to specific sites, i.e., gap and overlap zones, by the regular arrangement of Col-I fibrils enhanced ACP nucleation and thus mineralization. As a result, the c-axis-oriented platelets of crystalline hydroxyapatite in the Col-I fibril matrix were observed in the enhanced mineralization through PDA functionalization.
Collapse
Affiliation(s)
- Urasawadee Amornkitbamrung
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongjae In
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhen Wang
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyoon Song
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Ho Oh
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min-Ho Hong
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjung Shin
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Ion-dependent protein-surface interactions from intrinsic solvent response. Proc Natl Acad Sci U S A 2021; 118:2025121118. [PMID: 34172582 DOI: 10.1073/pnas.2025121118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The phyllosilicate mineral muscovite mica is widely used as a surface template for the patterning of macromolecules, yet a molecular understanding of its surface chemistry under varying solution conditions, required to predict and control the self-assembly of adsorbed species, is lacking. We utilize all-atom molecular dynamics simulations in conjunction with an electrostatic analysis based in local molecular field theory that affords a clean separation of long-range and short-range electrostatics. Using water polarization response as a measure of the electric fields that arise from patterned, surface-bound ions that direct the adsorption of charged macromolecules, we apply a Landau theory of forces induced by asymmetrically polarized surfaces to compute protein-surface interactions for two muscovite-binding proteins (DHR10-mica6 and C98RhuA). Comparison of the pressure between surface and protein in high-concentration KCl and NaCl aqueous solutions reveals ion-specific differences in far-field protein-surface interactions, neatly capturing the ability of ions to modulate the surface charge of muscovite that in turn selectively attracts one binding face of each protein over all others.
Collapse
|
11
|
Zhang S, Chen J, Liu J, Pyles H, Baker D, Chen CL, De Yoreo JJ. Engineering Biomolecular Self-Assembly at Solid-Liquid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1905784. [PMID: 32627885 DOI: 10.1002/adma.201905784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Biomolecular self-assembly is a key process used by life to build functional materials from the "bottom up." In the last few decades, bioengineering and bionanotechnology have borrowed this strategy to design and synthesize numerous biomolecular and hybrid materials with diverse architectures and properties. However, engineering biomolecular self-assembly at solid-liquid interfaces into predesigned architectures lags the progress made in bulk solution both in practice and theory. Here, recent achievements in programming self-assembly of peptides, proteins, and peptoids at solid-liquid interfaces are summarized and corresponding applications are described. Recent advances in the physical understandings of self-assembly pathways obtained using in situ atomic force microscopy are also discussed. These advances will lead to novel strategies for designing biomaterials organized at and interfaced with inorganic surfaces.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jianli Liu
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523830, China
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
12
|
Aligned Collagen-CNT Nanofibrils and the Modulation Effect on Ovarian Cancer Cells. JOURNAL OF COMPOSITES SCIENCE 2021; 5. [PMID: 35664989 PMCID: PMC9164112 DOI: 10.3390/jcs5060148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibrillar collagen is a one-dimensional biopolymer and is the most abundant structural protein in the extracellular matrix (ECM) of connective tissues. Due to the unique properties of carbon nanotubes (CNTs), considerable attention has been given to the application of CNTs in developing biocomposite materials for tissue engineering and drug delivery. When introduced to tissues, CNTs inevitably interact and integrate with collagen and impose a discernible effect on cells in the vicinity. The positive effect of the collagen-CNT (COL-CNT) matrix in tissue regeneration and the cytotoxicity of free CNTs have been investigated extensively. In this study, we aimed to examine the effect of COL-CNT on mediating the interaction between the matrix and SKOV3 ovarian cancer cells. We generated unidirectionally aligned collagen and COL-CNT nanofibrils, mimicking the structure and dimension of collagen fibrils in native tissues. AFM analysis revealed that the one-dimensional structure, high stiffness, and low adhesion of COL-CNT greatly facilitated the polarization of SKOV3 cells by regulating the β−1 integrin-mediated cell–matrix interaction, cytoskeleton rearrangement, and cell migration. Protein and gene level analyses implied that both collagen and COL-CNT matrices induced the epithelial–mesenchymal transition (EMT), and the COL-CNT matrix prompted a higher level of cell transformation. However, the induced cells expressed CD44 at a reduced level and MMP2 at an increased level, and they were responsive to the chemotherapy drug gemcitabine. The results suggested that the COL-CNT matrix induced the transdifferentiation of the epithelial cancer cells to mature, less aggressive, and less potent cells, which are inapt for tumor metastasis and chemoresistance. Thus, the presence of CNT in a collagen matrix is unlikely to cause an adverse effect on cancer patients if a controlled dose of CNT is used for drug delivery or tissue regeneration.
Collapse
|
13
|
Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, Guan B, Li Z, Zhang T, Zhou Y, Wang CY, Liu Y. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun 2021; 12:1293. [PMID: 33637721 PMCID: PMC7910464 DOI: 10.1038/s41467-021-21545-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries disrupt the balance between stability and mobility, causing compromised functions and disabilities. The regeneration of mature, functional tendons remains a clinical challenge. Here, we perform transcriptional profiling of tendon developmental processes to show that the extracellular matrix-associated protein periostin (Postn) contributes to the maintenance of tendon stem/progenitor cell (TSPC) functions and promotes tendon regeneration. We show that recombinant periostin (rPOSTN) promotes the proliferation and stemness of TSPCs, and maintains the tenogenic potentials of TSPCs in vitro. We also find that rPOSTN protects TSPCs against functional impairment during long-term passage in vitro. For in vivo tendon formation, we construct a biomimetic parallel-aligned collagen scaffold to facilitate TSPC tenogenesis. Using a rat full-cut Achilles tendon defect model, we demonstrate that scaffolds loaded with rPOSTN promote endogenous TSPC recruitment, tendon regeneration and repair with native-like hierarchically organized collagen fibers. Moreover, newly regenerated tendons show recovery of mechanical properties and locomotion functions. The regeneration of functional tendons remains a clinical challenge. Here the authors develop a biomimetic scaffold loaded with recombinant periostin and demonstrate its functionality in promoting tendon stem/progenitor cell recruitment and tenogenic differentiation, and tendon regeneration in a rat full-cut Achilles tendon defect model.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dan Luo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung & Vascular Diseases, Capital Medical University, Beijing, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
14
|
Gisbert V, Benaglia S, Uhlig MR, Proksch R, Garcia R. High-Speed Nanomechanical Mapping of the Early Stages of Collagen Growth by Bimodal Force Microscopy. ACS NANO 2021; 15:1850-1857. [PMID: 33412008 PMCID: PMC8477367 DOI: 10.1021/acsnano.0c10159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
High-speed atomic force microscopy (AFM) enabled the imaging of protein interactions with millisecond time resolutions (10 fps). However, the acquisition of nanomechanical maps of proteins is about 100 times slower. Here, we developed a high-speed bimodal AFM that provided high-spatial resolution maps of the elastic modulus, the loss tangent, and the topography at imaging rates of 5 fps. The microscope was applied to identify the initial stages of the self-assembly of the collagen structures. By following the changes in the physical properties, we identified four stages, nucleation and growth of collagen precursors, formation of tropocollagen molecules, assembly of tropocollagens into microfibrils, and alignment of microfibrils to generate microribbons. Some emerging collagen structures never matured, and after an existence of several seconds, they disappeared into the solution. The elastic modulus of a microfibril (∼4 MPa) implied very small stiffness (∼3 × 10-6 N/m). Those values amplified the amplitude of the collagen thermal fluctuations on the mica plane, which facilitated microribbon build-up.
Collapse
Affiliation(s)
- Victor
G. Gisbert
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Simone Benaglia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Manuel R. Uhlig
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Roger Proksch
- Asylum
Research an Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
15
|
McCluskey AR, Hung KSW, Marzec B, Sindt JO, Sommerdijk NAJM, Camp PJ, Nudelman F. Disordered Filaments Mediate the Fibrillogenesis of Type I Collagen in Solution. Biomacromolecules 2020; 21:3631-3643. [DOI: 10.1021/acs.biomac.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew R. McCluskey
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Kennes S. W. Hung
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Bartosz Marzec
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Julien O. Sindt
- EPCC, University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, U.K
| | - Nico A. J. M. Sommerdijk
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein, 6525 GA Nijmegen, The Netherlands
| | - Philip J. Camp
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Fabio Nudelman
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
16
|
Lin J, Shi Y, Men Y, Wang X, Ye J, Zhang C. Mechanical Roles in Formation of Oriented Collagen Fibers. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:116-128. [PMID: 31801418 DOI: 10.1089/ten.teb.2019.0243] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a structural protein that is widely present in vertebrates, being usually distributed in tissues in the form of fibers. In living organisms, fibers are organized in different orientations in various tissues. As the structural base in connective tissue and load-bearing tissue, the orientation of collagen fibers plays an extremely important role in the mechanical properties and physiological and biochemical functions. The study on mechanics role in formation of oriented collagen fibers enables us to understand how discrete cells use limited molecular materials to create tissues with different structures, thereby promoting our understanding of the mechanism of tissue formation from scratch, from invisible to tangible. However, the current understanding of the mechanism of fiber orientation is still insufficient. In addition, existing fabrication methods of oriented fibers are varied and involve interdisciplinary study, and the achievements of each experiment are favorable to the construction and improvement of the fiber orientation theory. To this end, this review focuses on the preparation methods of oriented fibers and proposes a model explaining the formation process of oriented fibers in tendons based on the existing fiber theory. Impact statement As the structural base in connective tissue and load-bearing tissue, the orientation of collagen fibers plays an extremely important role in the mechanical properties and physiological and biochemical functions. However, the current understanding of the mechanism of fiber orientation is still insufficient, which is greatly responsible for the challenge of functional tissue repair and regeneration. Understanding the mechanism of fiber orientation can promote the successful application of fiber orientation scaffolds in tissue repair and regeneration, as well as providing an insight for the mechanism of tissue histomorphology.
Collapse
Affiliation(s)
- Jiexiang Lin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Yanping Shi
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Jinduo Ye
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| |
Collapse
|
17
|
Hu H, Wang S, Feng X, Pauly M, Decher G, Long Y. In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chem Soc Rev 2020; 49:509-553. [DOI: 10.1039/c9cs00382g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One-dimensional (1D) nanoobjects have strongly anisotropic physical properties which are averaged out and cannot be exploited in disordered systems. We reviewed the in plane alignment approaches and potential applications with perspectives shared.
Collapse
Affiliation(s)
- Hebing Hu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Shancheng Wang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Xueling Feng
- Key Laboratory of Science and Technology of Eco-Textile
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Matthias Pauly
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Gero Decher
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Yi Long
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| |
Collapse
|
18
|
Pyles H, Zhang S, De Yoreo JJ, Baker D. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 2019; 571:251-256. [PMID: 31292559 PMCID: PMC6948101 DOI: 10.1038/s41586-019-1361-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 11/09/2022]
Abstract
The ability of proteins and other macromolecules to interact with inorganic surfaces is critical to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains1-5, but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces guided by the example of ice-binding proteins, which present arrays of threonine residues matched to the ice lattice that order clathrate waters into an ice-like structure6. We designed proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the K+ sublattice on muscovite mica (001). At low [K+] individual molecules bind independently to mica in the designed orientations, while at high [K+], the designs form 2D liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimeters. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K+ lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micron long single protein-diameter wires, and a designed trimeric interface yielded extensive honeycomb arrays. The nearest neighbor distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nm with 2.1 nm selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.
Collapse
Affiliation(s)
- Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shuai Zhang
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.,Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - James J De Yoreo
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA. .,Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA. .,Institute for Protein Design, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Eryilmaz E, Teizer W, Hwang W. Macromolecular and nanoscale investigation of intermolecular interactions driving the self-assembly of collagen. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Wang J, Boddupalli A, Koelbl J, Nam DH, Ge X, Bratlie KM, Schneider IC. Degradation and Remodeling of Epitaxially Grown Collagen Fibrils. Cell Mol Bioeng 2019; 12:69-84. [PMID: 31007771 PMCID: PMC6472930 DOI: 10.1007/s12195-018-0547-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION— The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance. METHODS— Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by breast cancer cells. RESULTS— We show that cells that contact guide with high fidelity (MDA-MB-231 cells) exert more force on the underlying collagen fibrils than do cells that contact guide with low fidelity (MTLn3 cells). These high traction cells (MDA-MB-231 cells) remodel collagen fibrils over hours, pulling so hard that the collagen fibrils detach from the surface, effectively delaminating the entire contact guidance cue. Myosin or MMP inhibition decreases this effect. Interestingly, blocking MMP appears to increase the alignment of cells on these substrates, potentially allowing the alignment through myosin contractility to be uninhibited. Finally, amplification or dampening of contact guidance with respect to a particular collagen fibril organization is seen under different conditions. CONCLUSIONS— Both myosin II contractility and MMP activity allow MDA-MB-231 cells to remodel and eventually destroy epitaxially grown aligned collagen fibrils.
Collapse
Affiliation(s)
- Juan Wang
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Anuraag Boddupalli
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Joseph Koelbl
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Dong Hyun Nam
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Xin Ge
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Kaitlin M. Bratlie
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Materials Science and Engineering, Iowa State University, Ames, IA USA
| | - Ian C. Schneider
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA USA
| |
Collapse
|
21
|
Yang B, Adams DJ, Marlow M, Zelzer M. Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15109-15125. [PMID: 30032622 DOI: 10.1021/acs.langmuir.8b01165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the many parameters that have been explored to exercise control over self-assembly processes, the influence of surface properties on self-assembly has been recognized as important but has received considerably less attention than other factors. This is particularly true for biomolecule-derived self-assembling molecules such as protein, peptide, and nucleobase derivatives. Because of their relevance to biomaterial and drug delivery applications, interest in these materials is increasing. As the formation of supramolecular structures from these biomolecule derivatives inevitably brings them into contact with the surfaces of surrounding materials, understanding and controlling the impact of the properties of these surfaces on the self-assembly process are important. In this feature article, we present an overview of the different surface parameters that have been used and studied for the direction of the self-assembly of protein, peptide, and nucleoside-based molecules. The current mechanistic understanding of these processes will be discussed, and potential applications of surface-mediated self-assembly will be outlined.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Maria Marlow
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Mischa Zelzer
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| |
Collapse
|
22
|
Wang J, Koelbl J, Boddupalli A, Yao Z, Bratlie KM, Schneider IC. Transfer of assembled collagen fibrils to flexible substrates for mechanically tunable contact guidance cues. Integr Biol (Camb) 2018; 10:705-718. [PMID: 30320857 PMCID: PMC6267882 DOI: 10.1039/c8ib00127h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contact guidance or bidirectional migration along aligned fibers modulates many physiological and pathological processes such as wound healing and cancer invasion. Aligned 2D collagen fibrils epitaxially grown on mica substrates replicate many features of contact guidance seen in aligned 3D collagen fiber networks. However, these 2D collagen self-assembled substrates are difficult to image through, do not have known or tunable mechanical properties and cells degrade and mechanically detach collagen fibrils from the surface, leading to an inability to assess contact guidance over long times. Here, we describe the transfer of aligned collagen fibrils from mica substrates to three different functionalized target substrates: glass, polydimethylsiloxane (PDMS) and polyacrylamide (PA). Aligned collagen fibrils can be efficiently transferred to all three substrates. This transfer resulted in substrates that were to varying degrees resistant to cell-mediated collagen fibril deformation that resulted in detachment of the collagen fibril field, allowing for contact guidance to be observed over longer time periods. On these transferred substrates, cell speed is lowest on softer contact guidance cues for both MDA-MB-231 and MTLn3 cells. Intermediate stiffness resulted in the fastest migration. MTLn3 cell directionality was low on soft contact guidance cues, whereas MDA-MB-231 cell directionality marginally increased. It appears that the stiffness of the contact guidance cue regulates contact guidance differently between cell types. The development of this collagen fibril transfer method allows for the attachment of aligned collagen fibrils on substrates, particularly flexible substrates, that do not normally promote aligned collagen fibril growth, increasing the utility of this collagen self-assembly system for the fundamental examination of mechanical regulation of contact guidance.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Rezaei N, Lyons A, Forde NR. Environmentally Controlled Curvature of Single Collagen Proteins. Biophys J 2018; 115:1457-1469. [PMID: 30269884 PMCID: PMC6260212 DOI: 10.1016/j.bpj.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/01/2022] Open
Abstract
The predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo- versus heterotrimeric) and source (tissue derived versus recombinant) influence flexibility. Using SmarTrace, a chain-tracing algorithm we devised, we performed statistical analysis of collagen conformations collected with atomic force microscopy to determine the protein's mechanical properties. Our results show that types I, II, and III collagens-the key fibrillar varieties-exhibit similar molecular flexibilities. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl concentration increases in both neutral and acidic pH. Although analysis with a standard worm-like chain model suggests that the persistence length of collagen can attain a wide range of values within the literature range, closer inspection reveals that this modulation of collagen's conformational behavior is not due to changes in flexibility but rather arises from the induction of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain in two dimensions. Analysis within the curved worm-like chain model shows that collagen's curvature depends strongly on pH and salt, whereas its persistence length does not. Thus, we find that triple-helical collagen is well described as semiflexible irrespective of source, type, pH, and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid rod, which may have implications for its cellular processing and secretion.
Collapse
Affiliation(s)
- Nagmeh Rezaei
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Aaron Lyons
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
24
|
YANG DL, ZENG FX, SUN M, GU WH, LI L. Investigation on Properties of Collagen Nanowires Quasiepitaxially Grown on Mica Lattice Plane. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Eryilmaz E, Teizer W, Hwang W. In Vitro Analysis of the Co-Assembly of Type-I and Type-III Collagen. Cell Mol Bioeng 2016; 10:41-53. [PMID: 31719849 DOI: 10.1007/s12195-016-0466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
An important step towards achieving functional diversity of biomimetic surfaces is to better understand the co-assembly of the extracellular matrix components. For this, we study type-I and type-III collagen, the two major collagen types in the extracellular matrix. By using atomic force microscopy, custom image analysis, and kinetic modeling, we study their homotypic and heterotypic assembly. We find that the growth rate and thickness of heterotypic fibrils decrease as the fraction of type-III collagen increases, but the fibril nucleation rate is maximal at an intermediate fraction of type-III. This is because the more hydrophobic type-I collagen nucleates fast and grows in both longitudinal and lateral directions, whereas more hydrophilic type-III limits lateral growth of fibrils, driving more monomers to nucleate additional fibrils. This demonstrates that subtle differences in physico-chemical properties of similar molecules can be used to fine-tune their assembly behavior.
Collapse
Affiliation(s)
- Esma Eryilmaz
- 1Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843 USA
- 2Department of Biotechnology, College of Science, Selcuk University, Konya, 42003 Turkey
| | - Winfried Teizer
- 3Departments of Physics and Astronomy and Materials Science & Engineering, Texas A&M University, College Station, TX 77843 USA
- 4WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577 Japan
| | - Wonmuk Hwang
- 5Department of Biomedical Engineering and Materials Science & Engineering, Texas A&M University, College Station, TX 77843 USA
- 6School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 02455 Korea
| |
Collapse
|
26
|
Fu Y, Liu S, Cui SJ, Kou XX, Wang XD, Liu XM, Sun Y, Wang GN, Liu Y, Zhou YH. Surface Chemistry of Nanoscale Mineralized Collagen Regulates Periodontal Ligament Stem Cell Fate. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15958-15966. [PMID: 27280804 DOI: 10.1021/acsami.6b04951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interplay between stem cells and their extracellular microenvironment is of critical importance to the stem cell-based therapeutics in regenerative medicine. Mineralized collagen is the main component of bone extracellular matrix, but the effect of interfacial properties of mineralized collagen on subsequent cellular behaviors is unclear. This study examined the role of surface chemistry of nanoscale mineralized collagen on human periodontal ligament stem cell (hPDLSC) fate decisions. The intrafibrillarly mineralized collagen (IMC), fabricated by a biomimetic bottom-up approach, showed a bonelike hierarchy with nanohydroxyapatites (HAs) periodically embedded within fibrils. The infrared spectrum of the IMC showed the presence of phosphate, carbonate, amide I and II bands; and infrared mapping displayed uniform and higher spatial distribution of mineralization in the IMC. However, the distribution of the phosphate group differed far from that of the amide I group in the extrafibrillarly mineralized collagen (EMC), in which flowerlike HA clusters randomly depositing around the surface of the fibrils. Moreover, a large quantity of extrafibrillar HAs covered up the C═O stretch and N-H in-plane bend, resulting in substantial reduction of amide I and II bands. Cell experiments demonstrated that the hPDLSCs seeded on the IMC exhibited a highly branched, osteoblast-like polygonal shape with extended pseudopodia and thick stress fiber formation; while cells on the EMC displayed a spindle shape with less branch points and thin actin fibril formation. Furthermore, the biocompatibility of EMC was much lower than that of IMC. Interestingly, even without osteogenic induction, mRNA levels of major osteogenic differentiation genes were highly expressed in the IMC during cultivation time. These data suggest that the IMC with a similar nanotopography and surface chemistry to natural mineralized collagen directs hPDLSCs toward osteoblast differentiation, providing a promising scaffold in bone tissue regeneration.
Collapse
Affiliation(s)
- Yu Fu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Shuai Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Sheng-Jie Cui
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Xiao-Xing Kou
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Xue-Dong Wang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Xiao-Mo Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Yue Sun
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Gao-Nan Wang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Yan Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Yan-Heng Zhou
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| |
Collapse
|
27
|
Nowacka M, Kowalewska A, Makowski T. Nanostructured surfaces by supramolecular self-assembly of linear oligosilsesquioxanes with biocompatible side groups. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:2377-87. [PMID: 26734528 PMCID: PMC4685769 DOI: 10.3762/bjnano.6.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Linear oligomeric silsesquioxanes with polar side moieties (e.g., carboxylic groups and derivatives of N-acetylcysteine, cysteine hydrochloride or glutathione) can form specific, self-assembled nanostructures when deposited on mica by dip coating. The mechanism of adsorption is based on molecule-to-substrate interactions between carboxylic groups and mica. Intermolecular cross-linking by hydrogen bonds was also observed due to the donor-acceptor character of the functional groups. The texture of supramolecular nanostructures formed by the studied materials on mica was analysed with atomic force microscopy and their specific surface energy was estimated by contact angle measurements. Significant differences in the surface roughness, thickness and the arrangement of macromolecules were noted depending on the kind of functional groups on the side chains. Specific changes in the morphology of the surface layer were observed when mica was primed with a monolayer of small organic compounds (e.g., N-acetylcysteine, citric acid, thioglycolic or acid). The adsorption of both silsesquioxane oligomers and organic primers was confirmed with attenuated total reflectance infrared spectroscopy. The observed physiochemical and textural variations in the adsorbed materials correlate with the differences in the chemical structure of the applied oligomers and primers.
Collapse
Affiliation(s)
- Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
28
|
Abbah SA, Delgado LM, Azeem A, Fuller K, Shologu N, Keeney M, Biggs MJ, Pandit A, Zeugolis DI. Harnessing Hierarchical Nano- and Micro-Fabrication Technologies for Musculoskeletal Tissue Engineering. Adv Healthc Mater 2015; 4:2488-99. [PMID: 26667589 DOI: 10.1002/adhm.201500004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/24/2015] [Indexed: 12/14/2022]
Abstract
Cells within a tissue are able to perceive, interpret and respond to the biophysical, biomechanical, and biochemical properties of the 3D extracellular matrix environment in which they reside. Such stimuli regulate cell adhesion, metabolic state, proliferation, migration, fate and lineage commitment, and ultimately, tissue morphogenesis and function. Current scaffold fabrication strategies in musculoskeletal tissue engineering seek to mimic the sophistication and comprehensiveness of nature to develop hierarchically assembled 3D implantable devices of different geometric dimensions (nano- to macrometric scales) that will offer control over cellular functions and ultimately achieve functional regeneration. Herein, advances and shortfalls of bottom-up (self-assembly, freeze-drying, rapid prototype, electrospinning) and top-down (imprinting) scaffold fabrication approaches, specific to musculoskeletal tissue engineering, are discussed and critically assessed.
Collapse
Affiliation(s)
- Sunny A. Abbah
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Luis M. Delgado
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Ayesha Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Kieran Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Michael Keeney
- Department of Orthopaedic Surgery; Stanford School of Medicine; Stanford University CA USA
| | - Manus J. Biggs
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| |
Collapse
|
29
|
Kowalewska A, Nowacka M, Tracz A, Makowski T. Supramolecular self-assembly of linear oligosilsesquioxanes on mica--AFM surface imaging and hydrophilicity studies. SOFT MATTER 2015; 11:4818-4829. [PMID: 25982889 DOI: 10.1039/c5sm00787a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Linear oligomeric [2-(carboxymethylthio)ethylsilsesquioxanes] (LPSQ-COOH) adsorb spontaneously on muscovite mica and form smooth, well-ordered lamellar structures at the liquid-solid interface. Side carboxylic groups, having donor-acceptor character with regard to hydrogen bonds, are engaged both in multipoint molecule-to-substrate interactions and intermolecular cross-linking. The unique arrangement of silsesquioxane macromolecules, with COOH groups situated at the interface with air, produces highly hydrophilic surfaces of good thermal and solvolytic stability. Supramolecular assemblies of LPSQ-COOH were studied using atomic force microscopy (AFM), angle-resolved X-ray photoelectron spectroscopy (ARXPS) and attenuated total reflectance (ATR) FTIR spectroscopy. Comparative height profile analysis combined with ATR-FTIR studies of the spectral regions characteristic of carboxylic groups and C1s core level envelope by XPS confirmed specific interactions between LPSQ-COOH and mica.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.
| | | | | | | |
Collapse
|
30
|
Zhang F, Zhang P, Hou J, Yun X, Li W, Du Q, Chen Y. Large scale anomalous patterns of muscovite mica discovered by atomic force microscopy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8699-8705. [PMID: 25839085 DOI: 10.1021/acsami.5b00984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Muscovite mica is a widely used substrate because of its flatness. The large scale anomalous patterns of muscovite have been discovered by atomic force microscopy (AFM). These patterns distribute around the defects of the muscovite surface. By using different imaging modes and analyzing functions of AFM, these extraordinary patterns are thoroughly characterized, and it was revealed that some selected regularly aligned patterns mimic 2-D orthorhombic crystal systems surrounding the regular structure. However, such patterned nanostructures have no effects on the template-assisted self-assembly (or epitaxial growth) of a disease-related peptide GAV-9.
Collapse
Affiliation(s)
- Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Ping Zhang
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Jiahua Hou
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Xiaoling Yun
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Wanrong Li
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Qiqige Du
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Youjun Chen
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| |
Collapse
|
31
|
Staicu T, Cîrcu V, Ioniţă G, Ghica C, Popa VT, Micutz M. Analysis of bimodal thermally-induced denaturation of type I collagen extracted from calfskin. RSC Adv 2015. [DOI: 10.1039/c5ra02708j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DSC tracks of collagen in solution revealing a bimodal behaviour during its heat-induced denaturation.
Collapse
Affiliation(s)
- Teodora Staicu
- Department of Physical Chemistry
- University of Bucharest
- Bucharest 030018
- Romania
| | - Viorel Cîrcu
- Department of Inorganic Chemistry
- University of Bucharest
- Bucharest 020464
- Romania
| | - Gabriela Ioniţă
- Institute of Physical Chemistry “Ilie Murgulescu”
- Romanian Academy
- Bucharest 060021
- Romania
| | - Corneliu Ghica
- National Institute of Materials Physics
- Măgurele 077125
- Romania
| | - Vlad T. Popa
- Institute of Physical Chemistry “Ilie Murgulescu”
- Romanian Academy
- Bucharest 060021
- Romania
| | - Marin Micutz
- Department of Physical Chemistry
- University of Bucharest
- Bucharest 030018
- Romania
- Institute of Physical Chemistry “Ilie Murgulescu”
| |
Collapse
|
32
|
Wang J, Petefish J, Hillier AC, Schneider IC. Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:307-14. [PMID: 25531276 PMCID: PMC4295811 DOI: 10.1021/la503254x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Collapse
Affiliation(s)
- Juan Wang
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Joseph
W. Petefish
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Andrew C. Hillier
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Ian C. Schneider
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| |
Collapse
|
33
|
Zhao N, Zhu D. Collagen self-assembly on orthopedic magnesium biomaterials surface and subsequent bone cell attachment. PLoS One 2014; 9:e110420. [PMID: 25303459 PMCID: PMC4193861 DOI: 10.1371/journal.pone.0110420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemical, Biological and Bio-Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Donghui Zhu
- Department of Chemical, Biological and Bio-Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bortolini C, Liu L, Gronewold TMA, Wang C, Besenbacher F, Dong M. The position of hydrophobic residues tunes peptide self-assembly. SOFT MATTER 2014; 10:5656-5661. [PMID: 24995505 DOI: 10.1039/c4sm01065e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The final structure and properties of synthetic peptides mainly depend on their sequence composition and experimental conditions. This work demonstrates that a variation in the positions of hydrophobic residues within a peptide sequence can tune the self-assembly. Techniques employed are atomic force microscopy, transmission electron microscopy and an innovative method based on surface acoustic waves. In addition, a systematic investigation on pH dependence was carried out by utilizing constant experimental parameters.
Collapse
Affiliation(s)
- Christian Bortolini
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds 14, Building 1590, Aarhus C., Denmark.
| | | | | | | | | | | |
Collapse
|
35
|
Hwang W, Eryilmaz E. Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy. PHYSICAL REVIEW LETTERS 2014; 113:025502. [PMID: 25062204 DOI: 10.1103/physrevlett.113.025502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Indexed: 06/03/2023]
Abstract
We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning between the power-law and exponential behaviors in a network can be used to find the stage and kinetic parameters of the assembly process. To analyze real-world networks, we develop a computer program that measures the network architecture in experimental images. Application to triaxial networks of collagen fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing and controlling the network formation that is observed across biological and nonbiological systems.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Departments of Biomedical Engineering and Materials Science & Engineering, Texas A&M University, College Station, Texas 77845, USA and School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea
| | - Esma Eryilmaz
- Department of Physics, Texas A&M University, College Station, Texas 77845, USA
| |
Collapse
|
36
|
Li W, Zhu B, Strakova Z, Wang R. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 2014; 450:1377-82. [PMID: 25003322 DOI: 10.1016/j.bbrc.2014.06.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 12/26/2022]
Abstract
It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation.
Collapse
Affiliation(s)
- Wen Li
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn ST., Chicago, IL 60616, United States
| | - Bofan Zhu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn ST., Chicago, IL 60616, United States
| | - Zuzana Strakova
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 S Wood Street, M/C 808, Chicago, IL 60612, United States
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn ST., Chicago, IL 60616, United States.
| |
Collapse
|
37
|
Narayanan B, Gilmer GH, Tao J, De Yoreo JJ, Ciobanu CV. Self-assembly of collagen on flat surfaces: the interplay of collagen-collagen and collagen-substrate interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1343-50. [PMID: 24437511 DOI: 10.1021/la4043364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fibrillar collagens, common tissue scaffolds in live organisms, can also self-assemble in vitro from solution. While previous in vitro studies showed that the pH and the electrolyte concentration in solution largely control the collagen assembly, the physical reasons why such control could be exerted are still elusive. To address this issue and to be able to simulate self-assembly over large spatial and temporal scales, we have developed a microscopic model of collagen with explicit interactions between the units that make up the collagen molecules, as well as between these units and the substrate. We have used this model to investigate assemblies obtained via molecular dynamics deposition of collagen on a substrate at room temperature using an implicit solvent. By comparing the morphologies from our molecular dynamics simulations with those from our atomic-force microscopy experiments, we have found that the assembly is governed by the competition between the collagen-collagen interactions and those between collagen and the substrate. The microscopic model developed here can serve for guiding future experiments that would explore new regions of the parameter space.
Collapse
Affiliation(s)
- Badri Narayanan
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines , Golden, Colorado 80401, United States
| | | | | | | | | |
Collapse
|
38
|
Wang L, Guo Y, Li P, Song Y. Anion-Specific Effects on the Assembly of Collagen Layers Mediated by Magnesium Ion on Mica Surface. J Phys Chem B 2014; 118:511-8. [DOI: 10.1021/jp405035x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Wang
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| | - Yan Guo
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| | - Pengcheng Li
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| |
Collapse
|
39
|
Kjelstrup-Hansen J, Simbrunner C, Rubahn HG. Organic surface-grown nanowires for functional devices. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:126502. [PMID: 24262288 DOI: 10.1088/0034-4885/76/12/126502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Discontinuous organic thin film growth on the surface of single crystals results in crystalline nanowires with extraordinary morphological and optoelectronic properties. By way of being generated at the interface of organic and inorganic materials, these nanowires combine the advantages of flexible organic films with the defectless character of inorganic crystalline substrates. The development of destruction-free transfer and direct growth methods allows one to integrate the organic nanowires into semiconductor, metallic electronic or photonic platforms. This article details the mechanisms that lead to the growth of these nanowires and exemplifies some of the linear as well as non-linear photonic properties, such as optical wave guiding, lasing and frequency conversion. The article also highlights future potential by showing that organic nanowires can be integrated into optoelectronic devices or hybrid photonic/plasmonic platforms as passive and active nanoplasmonic elements.
Collapse
|
40
|
Lara Rodriguez L, Schneider IC. Directed cell migration in multi-cue environments. Integr Biol (Camb) 2013; 5:1306-23. [DOI: 10.1039/c3ib40137e] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, USA
| |
Collapse
|
41
|
Varongchayakul N, Johnson S, Quabili T, Cappello J, Ghandehari H, Solares SDJ, Hwang W, Seog J. Direct observation of amyloid nucleation under nanomechanical stretching. ACS NANO 2013; 7:7734-7743. [PMID: 23987654 DOI: 10.1021/nn402322k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-assembly of amyloid nanofiber is associated with both functional biological and pathological processes such as those in neurodegenerative diseases. Despite intensive studies, the stochastic nature of the process has made it difficult to elucidate a molecular mechanism for the key amyloid nucleation event. Here we investigated nucleation of the silk-elastin-like peptide (SELP) amyloid using time-lapse lateral force microscopy (LFM). By repeated scanning of a single line on a SELP-coated mica surface, we observed a sudden stepwise height increase. This corresponds to nucleation of an amyloid fiber, which subsequently grew perpendicular to the scanning direction. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction. The probability of nucleation correlated with the maximum stretching force and extension, implying that stretching of SELP molecules is a key molecular event for amyloid nucleation. The mechanically induced nucleation allows for positional and directional control of amyloid assembly in vitro, which we demonstrate by generating single nanofibers at predetermined nucleation sites.
Collapse
Affiliation(s)
- Nitinun Varongchayakul
- Department of Materials Science and Engineering, ‡Fischell Department of Bioengineering, ¶Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Y, Douglas EP. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. Colloids Surf B Biointerfaces 2013; 112:42-50. [PMID: 23948153 DOI: 10.1016/j.colsurfb.2013.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 02/01/2023]
Abstract
Even though the behavior of collagen monomers self-assembling into fibrils is commonly understood in terms of hydrophobic and electrostatic interactions, the mechanisms that drive their ordered, longitudinal alignment to form a characteristic periodicity are still unclear. By introducing various salts into the collagen fibrillogenesis system, the intermolecular interactions of fibril formation were studied. We found that the pH and ion species play a critical role in forming native fibrils. Turbidity and electron microscopy revealed that collagen self-assembled into fibrils with a native banding pattern in the presence of multivalent ions. The isoelectric point of collagen in 12mM of NaCl is pH 8.9; it shifted to pH 9.4 and pH 7.0 after adding 10mM CaCl2 and Na2SO4, respectively. Native fibrils were reconstituted at pH 7.4 in salts with divalent anions and at pH 9.0 in salts with divalent cations. Circular dichroism spectroscopy showed a loss of helicity in the conditions where fibrillogenesis was unable to be achieved. The multivalent ions not only change the surface charge of collagen, but also facilitate the formation of fibrils with the native D-periodic banding pattern. It is likely that the binding multivalent ions induce the like-charge attraction and facilitate monomers' longitudinal registration to form fibrils with the native banding.
Collapse
Affiliation(s)
- Yuping Li
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, USA.
| | | |
Collapse
|
43
|
Stylianou A, Yova D. Surface nanoscale imaging of collagen thin films by Atomic Force Microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2947-57. [DOI: 10.1016/j.msec.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 01/24/2023]
|
44
|
Fang M, Goldstein EL, Matich EK, Orr BG, Holl MMB. Type I collagen self-assembly: the roles of substrate and concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2330-2338. [PMID: 23339654 DOI: 10.1021/la3048104] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Collagen molecules, self-assembled into macroscopic hierarchical tissue networks, are the main organic building block of many biological tissues. A particularly common and important form of this self-assembly consists of type I collagen fibrils, which exhibit a nanoscopic signature, D-periodic gap/overlap spacing, with a distribution of values centered at approximately 67 nm. In order to better understand the relationship between type I collagen self-assembly and D-spacing distribution, we investigated surface-mediated collagen self-assembly as a function of substrate and incubation concentration. Collagen fibril assembly on phlogopite and muscovite mica as well as fibrillar gel coextrusion in glass capillary tubes all exhibited D-spacing distributions similar to those commonly observed in biological tissues. The observation of D-spacing distribution by self-assembly of type I collagen alone is significant as it eliminates the necessity to invoke other preassembly or postassembly hypotheses, such as variation in the content of collagen types, enzymatic cross-linking, or other post-translational modifications, as mechanistic origins of D-spacing distribution. The D-spacing distribution on phlogopite mica is independent of type I collagen concentration, but on muscovite mica D-spacing distributions showed increased negative skewness at 20 μg/mL and higher concentrations. Tilted D-spacing angles were found to correlate with decreased D-spacing measurements, an effect that can be removed with a tilt angle correction, resulting in no concentration dependence of D-spacing distribution on muscovite mica. We then demonstrated that tilted D-spacing is uncommon in biological tissues and it does not explain previous observations of low D-spacing values in ovariectomized dermis and bone.
Collapse
Affiliation(s)
- Ming Fang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | |
Collapse
|
45
|
Liu JW, Liang HW, Yu SH. Macroscopic-Scale Assembled Nanowire Thin Films and Their Functionalities. Chem Rev 2012; 112:4770-99. [DOI: 10.1021/cr200347w] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jian-Wei Liu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hai-Wei Liang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|