1
|
Kang Z, Zhang J, Guo X, Mao Y, Yang Z, Kankala RK, Zhao P, Chen AZ. Observing the Evolution of Metal Oxides in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304781. [PMID: 37635095 DOI: 10.1002/smll.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Indexed: 08/29/2023]
Abstract
Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.
Collapse
Affiliation(s)
- Zewen Kang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Junyu Zhang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiaohua Guo
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yangfan Mao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhimin Yang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Peng Zhao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
2
|
Britto S, Parlett CM, Bartlett S, Elliott JD, Ignatyev K, Schroeder SLM. Intermediates during the Nucleation of Platinum Nanoparticles by a Reaction with Ethylene Glycol: Operando X-ray Absorption Spectroscopy Studies with a Microfluidic Cell. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:8631-8639. [PMID: 37197382 PMCID: PMC10184164 DOI: 10.1021/acs.jpcc.2c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Using operando X-ray absorption spectroscopy in a continuous-flow microfluidic cell, we have investigated the nucleation of platinum nanoparticles from aqueous hexachloroplatinate solution in the presence of the reducing agent ethylene glycol. By adjusting flow rates in the microfluidic channel, we resolved the temporal evolution of the reaction system in the first few seconds, generating the time profiles for speciation, ligand exchange, and reduction of Pt. Detailed analysis of the X-ray absorption near-edge structure and extended X-ray absorption fine structure spectra with multivariate data analysis shows that at least two reaction intermediates are involved in the transformation of the precursor H2PtCl6 to metallic platinum nanoparticles, including the formation of clusters with Pt-Pt bonding before complete reduction to Pt nanoparticles.
Collapse
Affiliation(s)
- Sylvia Britto
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Christopher M.
A. Parlett
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- Diamond
Light Source, The University of Manchester
at Harwell, Didcot, Oxfordshire OX11 0DE, U.K.
- Department
of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, U.K.
- Rutherford
Appleton Laboratory, UK Catalysis Hub, Research
Complex at Harwell, Harwell, Oxfordshire OX11 0FA, U.K.
| | - Stuart Bartlett
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Joshua D. Elliott
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Konstantin Ignatyev
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Sven L. M. Schroeder
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Rutherford
Appleton Laboratory, ESPRC Future Continuous
Manufacturing and Advanced Crystallisation (CMAC) Hub, Research Complex
at Harwell, Harwell, Oxfordshire OX11 0FA, U.K.
| |
Collapse
|
3
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Wang Y, Hao M. Metal Nanoclusters Synthesized in Alkaline Ethylene Glycol: Mechanism and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:565. [PMID: 36770526 PMCID: PMC9922003 DOI: 10.3390/nano13030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The "unprotected" metal and alloy nanoclusters (UMCs) prepared by the alkaline ethylene glycol method, which are stabilized with simple ions and solvent molecules, have the advantages of a small particle size, a narrow size distribution, good stability, highly efficient preparation, easy separation, surface modification and transfer between different phases. They can be composited with diverse materials to prepare catalytic systems with controllable structures, providing an effective means of studying the different factors' effects on the catalytic properties separately. UMCs have been widely used in the development of high-performance catalysts for a variety of functional systems. This paper will review the research progress on the formation mechanism of the unprotected metal nanoclusters, exploring the structure-function relationship of metal nanocluster catalysts and the preparation of excellent metal catalysts using the unprotected metal nanoclusters as building blocks or starting materials. A principle of the influence of carriers, ligands and modifiers in metal nanocluster catalysts on the catalytic properties is proposed.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Sunan Institute for Molecular Engineering, Peking University, Changshu 215500, China
| | - Menggeng Hao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
McGuire SC, Zhang Y, Wong SS. A combined TEM and SAXS study of the growth and self-assembly of ultrathin Pt nanowires. NANOTECHNOLOGY 2022; 33:475602. [PMID: 36044706 DOI: 10.1088/1361-6528/ac893b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Ultrathin Pt nanowires possess high activity for various electrocatalytic applications. However, little work has focused on understanding their growth mechanisms. Herein, we utilize a combination of time-dependent,ex situtransmission electron microscopy (TEM) and small angle x-ray scattering (SAXS) techniques to observe the growth process in addition to associated surfactant-based interactions. TEM images indicate that initially nanoparticles are formed within 30 s; these small 'seed' particles quickly elongate to form ultrathin nanowires after 2 min. These motifs remain relatively unchanged in size and shape up to 480 min of reaction. Complementary SAXS data suggests that the initial nanoparticles, which are coated by a surfactant bilayer, arrange into abccsuperlattice. With increasing reaction time, thebcclattice disappears as the nanoparticles grow into nanowires, which then self-assemble into a columnar hexagonal structure in which the individual nanowires are covered by a CTAB monolayer. The hexagonal structure eventually degrades, thereby leading to the formation of lamellar stacking phases comprised of surfactant bilayers. To the best of our knowledge, this is the first time that SAXS has been used to monitor the growth and self-assembly of Pt nanowires. These insights can be used to better understand and rationally control the formation of anisotropic motifs of other metallic nanostructures.
Collapse
Affiliation(s)
- Scott C McGuire
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, United States of America
| | - Yugang Zhang
- Center for Functional Nanomaterials, Building 735, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, United States of America
| |
Collapse
|
7
|
Yellatur CS, Padmasale R, T M, Loka SS. Facile electrooxidation of ethanol on reduced graphene oxide supported Pt-Pd bimetallic nanocomposite surfaces in acidic media. NANOTECHNOLOGY 2022; 33:335401. [PMID: 35533662 DOI: 10.1088/1361-6528/ac6df7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Development of electrocatalysts with extended homogeneity and improved metal-support interactions is of urgent scientific need in the context of electrochemical energy applications. Herein, bimetallic Pt-Pd nanoparticles with good homogeneity are fabricated using a convenient solution phase chemical reduction method onto a reduced graphene oxide (rGO) support. X-ray diffraction studies revealed that Pt-Pd/rGO possesses the crystallite size of 3.1 nm. The efficacies of Pt-Pd/rGO catalyst (20 wt% Pt + 10 wt% Pd on rGO support, Pt:Pd atomic ratio = 1:1) towards ethanol electrooxidation reaction (EOR) are evaluated in acidic conditions by cyclic voltammetry using catalyst-coated glassy carbon electrode as a working electrode. With the better dispersion on rGO support the Pt-Pd/rGO nancomposite catalyst exhibit highest mass specific activity (0.358 mA/µg-Pt) which is observed to be 1.9 times of similarly synthesized 20 wt% Pt/rGO (0.189 mA/µg-Pt) and 2.5 times of commercial 20 wt% Pt/C (0.142 mA/µg-Pt), respectively. Apart from the observed improved EOR activity, the Pt-Pd/rGO catalyst exhibited better stability than Pt/rGO and Pt/C catalysts. Strong synergy offered by Pt, Pd and rGO support could contribute to the observed higher EOR activity of Pt-Pd/rGO.
Collapse
Affiliation(s)
- Chandra Sekhar Yellatur
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| | - Raghavendra Padmasale
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies (RGUKT)-AP, IIIT Campus, ONGOLE-516 216, Andhra Pradesh, India
| | - Maiyalagan T
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai-603 203, Tamil Nadu, India
| | - Subramanyam Sarma Loka
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| |
Collapse
|
8
|
Yoshimune W, Kuwaki A, Kusano T, Matsunaga T, Nakamura H. In Situ Small-Angle X-ray Scattering Studies on the Growth Mechanism of Anisotropic Platinum Nanoparticles. ACS OMEGA 2021; 6:10866-10874. [PMID: 34056240 PMCID: PMC8153930 DOI: 10.1021/acsomega.1c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Shape-controlled platinum nanoparticles exhibit extremely high oxygen reduction activity. Platinum nanoparticles were synthesized by the reduction of a platinum complex in the presence of a soft template formed by organic surfactants in oleylamine. The formation of platinum nanoparticles was investigated using in situ small-angle X-ray scattering experiments. Time-resolved measurements revealed that different particle shapes appeared during the reaction. After the nuclei were generated, they grew into anisotropic rod-shaped nanoparticles. The shape, size, number density, reaction yield, and specific surface area of the nanoparticles were successfully determined using small-angle X-ray scattering profiles. Anisotropic platinum nanoparticles appeared at a low reaction temperature (∼100 °C) after a short reaction time (∼30 min). The aspect ratio of these platinum nanoparticles was correlated with the local packing motifs of the surfactant molecules and their stability. Our findings suggest that the interfacial structure between the surfactant and platinum nuclei can be important as a controlling factor for tailoring the aspect ratio of platinum nanoparticles and further optimizing the fuel cell performance.
Collapse
|
9
|
Quinson J, Jensen KM. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv Colloid Interface Sci 2020; 286:102300. [PMID: 33166723 DOI: 10.1016/j.cis.2020.102300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Platinum (Pt) is one of the most studied materials in catalysis today and considered for a wide range of applications: chemical synthesis, energy conversion, air treatment, water purification, sensing, medicine etc. As a limited and non-renewable resource, optimized used of Pt is key. Nanomaterial design offers multiple opportunities to make the most of Pt resources down to the atomic scale. In particular, colloidal syntheses of Pt nanoparticles are well documented and simple to implement, which accounts for the large interest in research and development. For further breakthroughs in the design of Pt nanomaterials, a deeper understanding of the intricate synthesis-structures-properties relations of Pt nanoparticles must be obtained. Understanding how Pt nanoparticles form from molecular precursors is both a challenging and rewarding area of investigation. It is directly relevant to develop improved Pt nanomaterials but is also a source of inspiration to design other precious metal nanostructures. Here, we review the current understanding of Pt nanoparticle formation. This review is aimed at readers with interest in Pt nanoparticles in general and their colloidal syntheses in particular. Readers with a strongest interest on the study of nanomaterial formation will find here the case study of Pt. The preferred model systems and characterization techniques used to perform the study of Pt nanoparticle syntheses are discussed. In light of recent achievements, further direction and areas of research are proposed.
Collapse
|
10
|
Singh A, Miyabayashi K. Novel continuous flow synthesis of Pt NPs with narrow size distribution for Pt@carbon catalysts. RSC Adv 2019; 10:362-366. [PMID: 35492567 PMCID: PMC9047455 DOI: 10.1039/c9ra08762a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023] Open
Abstract
In this work, we report a novel continuous flow synthesis method to achieve ultra-small Pt NPs (2.3 to 2.5 nm) with narrow size distribution. This method expedited the synthesis of Pt NPs without any harsh reducing agent or capping agent. Further these Pt NPs were immobilized on a carbon support in a single step procedure for its application as an electrocatalyst for fuel cells. The synthesized Pt NPs and Pt NPs supported on carbon were analyzed using transmission electron microscopy affirming uniform distribution of Pt NPs throughout the carbon support without aggregation. A novel continuous flow synthesis method was performed to achieve ultra-small Pt NPs (2.3 to 2.5 nm) with narrow size distribution. This method expedites the synthesis of Pt NPs without any harsh reducing agent or capping agent.![]()
Collapse
Affiliation(s)
- Ankit Singh
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University Hamamatsu 432-8561 Japan
| | - Keiko Miyabayashi
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University Hamamatsu 432-8561 Japan
| |
Collapse
|
11
|
Ning X, Zhou X, Luo J, Ma L, Xu X, Zhan L. Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon support and synthesis method on the metal-support interaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Synthesis of Well-Defined Gold Nanoparticles Using Pluronic: The Role of Radicals and Surfactants in Nanoparticles Formation. Polymers (Basel) 2019; 11:polym11101553. [PMID: 31554270 PMCID: PMC6835800 DOI: 10.3390/polym11101553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Synthesis of gold nanoparticles (GNP) by reacting chloroauric acid (HAuCl4) and Pluronic F127 was thoroughly investigated. The rate of reduction of HAuCl4 and the yield and morphology of GNP strongly depended on the concentration of the reactants and sodium chloride, as well as pH and temperature. Upon completion of the reaction heterogeneous mixtures of small GNP of defined shape and Pluronic aggregates were formed. GNP were separated from the excess of Pluronic by centrifugal filtration. Under optimized conditions the GNP were small (ca. 80 nm), uniform (PDI ~0.09), strongly negatively charged (ζ-potential −30 mV) and nearly spherical. They were stable in distilled water and phosphate-buffered saline. Purified GNP contained ~13% by weight of an organic component, yet presence of polypropylene oxide was not detected suggesting that Pluronic was not adsorbed on their surface. Analysis of the soluble products suggested that the copolymer undergoes partial degradation accompanied by cleavage of the C–O bonds and appearance of new primary hydroxyl groups. The reaction involves formation of free radicals and hydroperoxides depends on the oxygen concentration. GNP did not form at 4 °C when the micellization of Pluronic was abolished reinforcing the role of the copolymer self-assembly. In conclusion, this work provides insight into the mechanism of HAuCl4 reduction and GNP formation in the presence of Pluronic block copolymers. It is useful for improving the methods of manufacturing uniform and pure GNP that are needed as nanoscale building blocks in nanomedicine applications.
Collapse
|
13
|
Wu S, Li M, Sun Y. In Situ Synchrotron X-ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angew Chem Int Ed Engl 2019; 58:8987-8995. [PMID: 30830994 DOI: 10.1002/anie.201900690] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 11/08/2022]
Abstract
Rational synthesis of colloidal nanoparticles with desirable properties relies on precise control over the nucleation and growth kinetics, which is still not well understood. The recent development of in situ high energy synchrotron X-ray techniques offers an excellent opportunity to quantitatively monitor the growth trajectories of colloidal nanoparticles in real time under real reaction conditions. The time-resolved, quantitative data of the growing colloidal nanoparticles are unique to reveal the mechanism of nanoparticle formation and determine the corresponding intrinsic kinetic parameters. This review discusses the kinetics of major steps of forming colloidal nanoparticles and the capability of in situ synchrotron X-ray techniques in studying the corresponding kinetics.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Mingrui Li
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
14
|
Wu S, Li M, Sun Y. In Situ Synchrotron X‐ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siyu Wu
- Department of Chemistry Temple University 1901 North 13th Street Philadelphia PA 19122 USA
| | - Mingrui Li
- Department of Chemistry Temple University 1901 North 13th Street Philadelphia PA 19122 USA
| | - Yugang Sun
- Department of Chemistry Temple University 1901 North 13th Street Philadelphia PA 19122 USA
| |
Collapse
|
15
|
Quinson J, Inaba M, Neumann S, Swane AA, Bucher J, Simonsen SB, Theil Kuhn L, Kirkensgaard JJK, Jensen KMØ, Oezaslan M, Kunz S, Arenz M. Investigating Particle Size Effects in Catalysis by Applying a Size-Controlled and Surfactant-Free Synthesis of Colloidal Nanoparticles in Alkaline Ethylene Glycol: Case Study of the Oxygen Reduction Reaction on Pt. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00694] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan Quinson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Masanori Inaba
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Sarah Neumann
- Institute of Applied and Physical Chemistry, University of Bremen, Leobenerstraße, 28359 Bremen, Germany
| | - Andreas A. Swane
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - J. Bucher
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Søren B. Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jacob J. K. Kirkensgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Kirsten M. Ø. Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mehtap Oezaslan
- School of Mathematics and Science Department of Chemistry, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - Sebastian Kunz
- Institute of Applied and Physical Chemistry, University of Bremen, Leobenerstraße, 28359 Bremen, Germany
| | - Matthias Arenz
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
16
|
Musino D, Genix AC, Chaussée T, Guy L, Meissner N, Kozak R, Bizien T, Oberdisse J. Aggregate Formation of Surface-Modified Nanoparticles in Solvents and Polymer Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3010-3020. [PMID: 29443532 DOI: 10.1021/acs.langmuir.7b03932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new method based on the combination of small-angle scattering, reverse Monte Carlo simulations, and an aggregate recognition algorithm is proposed to characterize the structure of nanoparticle suspensions in solvents and polymer nanocomposites, allowing detailed studies of the impact of different nanoparticle surface modifications. Experimental small-angle scattering is reproduced using simulated annealing of configurations of polydisperse particles in a simulation box compatible with the lowest experimental q-vector. Then, properties of interest like aggregation states are extracted from these configurations and averaged. This approach has been applied to silane surface-modified silica nanoparticles with different grafting groups, in solvents and after casting into polymer matrices. It is shown that the chemistry of the silane function, in particular mono- or trifunctionality possibly related to patch formation, affects the dispersion state in a given medium, in spite of an unchanged alkyl-chain length. Our approach may be applied to study any dispersion or aggregation state of nanoparticles. Concerning nanocomposites, the method has potential impact on the design of new formulations allowing controlled tuning of nanoparticle dispersion.
Collapse
Affiliation(s)
- Dafne Musino
- Laboratoire Charles Coulomb (L2C) , Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C) , Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Thomas Chaussée
- Solvay Silica , 15 rue Pierre Pays BP52 , 69660 Collonges au Mont d'Or , France
| | - Laurent Guy
- Solvay Silica , 15 rue Pierre Pays BP52 , 69660 Collonges au Mont d'Or , France
| | | | - Radoslaw Kozak
- Synthos Spółka Akcyjna , Chemików 1 , 32600 Oświęcim , Poland
| | - Thomas Bizien
- SOLEIL Synchrotron , L'Orme des Merisiers , Gif-Sur-Yvette , 91192 Saint-Aubin France
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C) , Université de Montpellier, CNRS , F-34095 Montpellier , France
| |
Collapse
|
17
|
El-Sayed HA, Burger VM, Miller M, Wagenbauer K, Wagenhofer M, Gasteiger HA. Ionic Conductivity Measurements-A Powerful Tool for Monitoring Polyol Reduction Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13615-13624. [PMID: 29083194 DOI: 10.1021/acs.langmuir.7b03444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The reduction of metal precursors during the polyol synthesis of metal nanoparticles was monitored by ex situ ionic conductivity measurements. Using commonly used platinum precursors (K2PtCl6, H2PtCl6, and K2PtCl4) as well as iridium and ruthenium precursors (IrCl3 and RuCl3), we demonstrate that their reduction in ethylene glycol at elevated temperatures is accompanied by a predictable change in ionic conductivity, enabling a precise quantification of the onset temperature for their reduction. This method also allows detecting the onset temperature for the further reaction of ethylene glycol with HCl produced by the reduction of chloride-containing metal precursors (at ≈120 °C). On the basis of these findings, we show that the conversion of the metal precursor to reduced metal atoms/clusters can be precisely quantified, if the reaction occurs below 120 °C, which also enables a distinction between the stages of metal particle nucleation and growth. The latter is demonstrated by the reduction of H2PtCl6 in ethylene glycol, comparing ionic conductivity measurements with transmission electron microscopy analysis. In summary, ionic conductivity measurements are a simple and straightforward tool to quantify the reduction kinetics of commonly used metal precursors in the polyol synthesis.
Collapse
Affiliation(s)
| | | | | | - Klaus Wagenbauer
- Walter Schottky Institut, Technical University of Munich , Am Coulombwall 4, D-85748 Garching, Germany
| | | | | |
Collapse
|
18
|
Abstract
Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.
Collapse
Affiliation(s)
- Hong-Gang Liao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; .,Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| |
Collapse
|
19
|
Mozaffari S, Li W, Thompson C, Ivanov S, Seifert S, Lee B, Kovarik L, Karim AM. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics. NANOSCALE 2017; 9:13772-13785. [PMID: 28885633 DOI: 10.1039/c7nr04101b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio)1/3, despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.
Collapse
Affiliation(s)
- Saeed Mozaffari
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction. J Catal 2017. [DOI: 10.1016/j.jcat.2017.02.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Perspectives on in situ electron microscopy. Ultramicroscopy 2017; 180:188-196. [PMID: 28434784 DOI: 10.1016/j.ultramic.2017.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/12/2017] [Accepted: 03/18/2017] [Indexed: 12/22/2022]
Abstract
In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. In this article, we highlight the development of liquid environment electron microscopy and its applications in the study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.
Collapse
|
22
|
Campos BB, Oliva MM, Contreras-Cáceres R, Rodriguez-Castellón E, Jiménez-Jiménez J, da Silva JCE, Algarra M. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection. J Colloid Interface Sci 2016; 465:165-73. [DOI: 10.1016/j.jcis.2015.11.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
|
23
|
Carey JL, Whitcomb DR, Chen S, Penn RL, Bühlmann P. Potentiometric in Situ Monitoring of Anions in the Synthesis of Copper and Silver Nanoparticles Using the Polyol Process. ACS NANO 2015; 9:12104-12114. [PMID: 26580413 DOI: 10.1021/acsnano.5b05170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Potentiometric sensors, such as polymeric membrane, ion-selective electrodes (ISEs), have been used in the past to monitor a variety of chemical processes. However, the use of these sensors has traditionally been limited to aqueous solutions and moderate temperatures. Here we present an ISE with a high-capacity ion-exchange sensing membrane for measurements of nitrate and nitrite in the organic solvent propylene glycol at 150 °C. It is capable of continuously measuring under these conditions for over 180 h. We demonstrate the usefulness of this sensor by in situ monitoring of anion concentrations during the synthesis of copper and silver nanoparticles in propylene glycol using the polyol method. Ion chromatography and a colorimetric method were used to independently confirm anion concentrations measured in situ. In doing so, it was shown that in this reaction the co-ion nitrate is reduced to nitrite.
Collapse
Affiliation(s)
- Jesse L Carey
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - David R Whitcomb
- Carestream Health , 1 Imation Way, Oakdale, Minnesota 55128, United States
| | - Suyue Chen
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Ning X, Yu H, Peng F, Wang H. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. J Catal 2015. [DOI: 10.1016/j.jcat.2015.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Boita J, Castegnaro MV, Alves MDCM, Morais J. A dispenser-reactor apparatus applied for in situ XAS monitoring of Pt nanoparticle formation. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:736-744. [PMID: 25931091 DOI: 10.1107/s1600577515003434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
In situ time-resolved X-ray absorption spectroscopy (XAS) measurements collected at the Pt L3-edge during the synthesis of Pt nanoparticles (NPs) in aqueous solution are reported. A specially designed dispenser-reactor apparatus allowed for monitoring changes in the XAS spectra from the earliest moments of Pt ions in solution until the formation of metallic nanoparticles with a mean diameter of 4.9 ± 1.1 nm. By monitoring the changes in the local chemical environment of the Pt atoms in real time, it was possible to observe that the NPs formation kinetics involved two stages: a reduction-nucleation burst followed by a slow growth and stabilization of NPs. Subsequently, the synthesized Pt NPs were supported on activated carbon and characterized by synchrotron-radiation-excited X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). The supported Pt NPs remained in the metallic chemical state and with a reduced size, presenting slight lattice parameter contraction in comparison with the bulk Pt values.
Collapse
Affiliation(s)
- Jocenir Boita
- Laboratório de Espectroscopia de Elétrons (LEe-), Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, CEP-91501-970, Porto Alegre, Rio Grande do Sul - RS 15051, Brazil
| | - Marcus Vinicius Castegnaro
- Laboratório de Espectroscopia de Elétrons (LEe-), Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, CEP-91501-970, Porto Alegre, Rio Grande do Sul - RS 15051, Brazil
| | - Maria do Carmo Martins Alves
- Instituto de Química, Universidde Federal do Rio Grande do Sul (UFRGS), Av. Bento Gaonçalves 9500, CEP-91501-970, Porto Alegre, Rio Grande do Sul - RS 15003, Brazil
| | - Jonder Morais
- Laboratório de Espectroscopia de Elétrons (LEe-), Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, CEP-91501-970, Porto Alegre, Rio Grande do Sul - RS 15051, Brazil
| |
Collapse
|
27
|
Boita J, Nicolao L, Alves MCM, Morais J. Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Phys Chem Chem Phys 2014; 16:17640-7. [DOI: 10.1039/c4cp01925c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Kim YN, Choi M. Synergistic integration of ion-exchange and catalytic reduction for complete decomposition of perchlorate in waste water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7503-7510. [PMID: 24894447 DOI: 10.1021/es501003m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.
Collapse
Affiliation(s)
- You-Na Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology , Daejeon, 305-701, Korea
| | | |
Collapse
|
29
|
Abstract
An understanding of nanocrystal growth mechanisms is of significant importance for the design of novel materials. The development of liquid cells for transmission electron microscopy (TEM) has enabled direct observation of nanoparticle growth in a liquid phase. By tracking single particle growth trajectories with high spatial resolution, novel growth mechanisms have been revealed. In recent years, there has been an increasing interest in liquid cell TEM and its applications include real time imaging of nanoparticles, biological materials, liquids, and so on. This paper reviews the development of liquid cell TEM and the progress made in using such a wonderful tool to study the growth of nanoparticles (mostly metal nanoparticles). Achievements in the understanding of coalescence, shape control mechanisms, surfactant effects, etc. are highlighted. Other studies relevant to metal precipitation in liquids, such as electrochemical deposition, nanoparticle motion and electron beam effects, are also included. At the end, our perspectives on future challenges and opportunities in liquid cell TEM are provided.
Collapse
Affiliation(s)
- Hong-Gang Liao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
30
|
de Oliveira JFA, Cardoso MB. Partial aggregation of silver nanoparticles induced by capping and reducing agents competition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4879-4886. [PMID: 24328925 DOI: 10.1021/la403635c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is well known that nanomaterials properties and applications are dependent on the size, shape, and morphology of these structures. Among nanomaterials, silver nanoparticles (AgNPs) have attracted attention since they have considerably versatile properties, such as a variable surface area to volume ratio, which is very useful for many biomedical and technological applications. Within this scenario, small nanoparticle aggregates can have their properties reduced due to the increased size and alterations in their shape/morphology. In this work, silver nanoparticles aggregation was studied through chemical reduction of silver nitrate in the presence of sodium borohydride (reducing agent) and sodium citrate (capping agent). By changing the amount of reducing agent along the reaction, unaggregated and partially aggregated samples were obtained and characterized by UV-vis, zeta potential, and SAXS techniques. pH was measured in every step of the reaction in order to correlate these results with those obtained from structural techniques. Addition of the reducing agent first causes the reduction of Ag(+) to silver nanoparticles. For higher concentrations of sodium borohydrate, the average AgNPs size is increased and NPs aggregation is observed. It was found that zeta potential and pH values have a strong influence on AgNPs formation, since reducing agent addition can induce partial removal of citrate weakly associated on the AgNPs surface and increase the ionic strength of the solution, promoting partial aggregation of the particles. This aggregation state was duly identified by coupling SAXS, zeta potential and pH measurements. In addition, the SAXS technique showed that aggregates formed along the process are elongated-like particles due to the exponential decay evidenced through SAXS curves.
Collapse
|
31
|
Murawska M, Wiatr M, Nowakowski P, Szutkowski K, Skrzypczak A, Kozak M. The structure and morphology of gold nanoparticles produced in cationic gemini surfactant systems. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|