1
|
Zhang J, Tang W, Zhang X, Song Z, Tong T. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics 2023; 15:2113. [PMID: 37631327 PMCID: PMC10458108 DOI: 10.3390/pharmaceutics15082113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-resistant bacteria and infectious diseases associated with biofilms pose a significant global health threat. The integration and advancement of nanotechnology in antibacterial research offer a promising avenue to combat bacterial resistance. Nanomaterials possess numerous advantages, such as customizable designs, adjustable shapes and sizes, and the ability to synergistically utilize multiple active components, allowing for precise targeting based on specific microenvironmental variations. They serve as a promising alternative to antibiotics with diverse medical applications. Here, we discuss the formation of bacterial resistance and antibacterial strategies, and focuses on utilizing the distinctive physicochemical properties of nanomaterials to achieve inherent antibacterial effects by investigating the mechanisms of bacterial resistance. Additionally, we discuss the advancements in developing intelligent nanoscale antibacterial agents that exhibit responsiveness to both endogenous and exogenous responsive stimuli. These nanomaterials hold potential for enhanced antibacterial efficacy by utilizing stimuli such as pH, temperature, light, or ultrasound. Finally, we provide a comprehensive outlook on the existing challenges and future clinical prospects, offering valuable insights for the development of safer and more effective antibacterial nanomaterials.
Collapse
Affiliation(s)
- Jinqiao Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Wantao Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Xinyi Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (J.Z.); (X.Z.)
| |
Collapse
|
2
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
3
|
Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W, Minglei Z. Implantable biomedical materials for treatment of bone infection. Front Bioeng Biotechnol 2023; 11:1081446. [PMID: 36793442 PMCID: PMC9923113 DOI: 10.3389/fbioe.2023.1081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The treatment of bone infections has always been difficult. The emergence of drug-resistant bacteria has led to a steady decline in the effectiveness of antibiotics. It is also especially important to fight bacterial infections while repairing bone defects and cleaning up dead bacteria to prevent biofilm formation. The development of biomedical materials has provided us with a research direction to address this issue. We aimed to review the current literature, and have summarized multifunctional antimicrobial materials that have long-lasting antimicrobial capabilities that promote angiogenesis, bone production, or "killing and releasing." This review provides a comprehensive summary of the use of biomedical materials in the treatment of bone infections and a reference thereof, as well as encouragement to perform further research in this field.
Collapse
Affiliation(s)
- Wang Shuaishuai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhu Tongtong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Dapeng
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Zhang Mingran
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Xukai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Yue
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dong Hengliang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wu Guangzhi
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| | - Zhang Minglei
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| |
Collapse
|
4
|
Banu Raza F, Vijayaragavalu S, Kandasamy R, Krishnaswami V, Kumar V A. Microbiome and the inflammatory pathway in peri-implant health and disease with an updated review on treatment strategies. J Oral Biol Craniofac Res 2023; 13:84-91. [PMID: 36504486 PMCID: PMC9730223 DOI: 10.1016/j.jobcr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crestal bone preservation around the dental implant for aesthetic and functional success is widely researched and documented over a decade. Several etiological factors were put forth for crestal bone loss; of which biofilm plays a major role. Biofilm is formed by the colonization of wide spectra of bacteria inhabited around dental implants. Bacterial adherence affects the regulators of bone growth and an early intervention preserves the peri-implant bone. Primary modes of therapy stated in early literature were either prevention or treatment of infection caused by biofilm. This narrative review overviews the microbiome during different stages of peri-implant health, the mechanism of bone destruction, and the expression of the biomarkers at each stage. Microbial contamination and the associated biomarkers varied depending on the stage of peri-implant infection. The comprehensive review helps in formulating a research plan, both in diagnostics and treatment aspects in improving peri-implant health.
Collapse
Key Words
- Antibiotics
- Biomarkers
- CD14, Cluster of Differentiation 14
- CSF, Colony-Stimulating Factor
- Gene expression
- IL, Interleukins
- MMP 8, Matrix MetalloProteinase 8
- Microbiota
- OPG, Osteoprotegerin
- PSMB 2, Proteasome subunit beta type-2
- Peri-implant
- RANK, Receptor Activator of Nuclear factor Kappa-Β
- RANKL, Receptor Activator of Nuclear factor Kappa-ΒLigand
- TIMP, Tissue inhibitor of Metalloproteinase
- TNF, Tumor Necrosis Factor
- TWEAK, TNF-related weak inducer of apoptosis
- VEGF, Vascular Endothelial Growth Factor
- sRANKL, soluble Receptor Activator of Nuclear Factor-κB Ligand
Collapse
Affiliation(s)
- Fathima Banu Raza
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Anand Kumar V
- Department of Prosthodontics, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
- Corresponding author. Department of Prosthodontics, Faculty of Dental Sciences, SRIHER (DU), Porur, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Guo F, Pan F, Zhang W, Liu T, Zuber F, Zhang X, Yu Y, Zhang R, Niederberger M, Ren Q. Robust Antibacterial Activity of Xanthan-Gum-Stabilized and Patterned CeO 2-x-TiO 2 Antifog Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44158-44172. [PMID: 36150021 DOI: 10.1021/acsami.2c11968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased occurrence of antimicrobial resistance leads to a huge burden on patients, the healthcare system, and society worldwide. Developing antimicrobial materials through doping rare-earth elements is a new strategy to overcome this challenge. To this end, we design antibacterial films containing CeO2-x-TiO2, xanthan gum, poly(acrylic acid), and hyaluronic acid. CeO2-x-TiO2 inks are additionally integrated into a hexagonal grid for prominent transparency. Such design yields not only an antibacterial efficacy of ∼100% toward Staphylococcus aureus and Escherichia coli but also excellent antifog performance for 72 h in a 100% humidity atmosphere. Moreover, FluidFM is employed to understand the interaction in-depth between bacteria and materials. We further reveal that reactive oxygen species (ROS) are crucial for the bactericidal activity of E. coli through fluorescent spectroscopic analysis and SEM imaging. We meanwhile confirm that Ce3+ ions are involved in the stripping phosphate groups, damaging the cell membrane of S. aureus. Therefore, the hexagonal mesh and xanthan-gum cross-linking chains act as a reservoir for ROS and Ce3+ ions, realizing a long-lasting antibacterial function. We hence develop an antibacterial and antifog dual-functional material that has the potential for a broad application in display devices, medical devices, food packaging, and wearable electronics.
Collapse
Affiliation(s)
- Fangwei Guo
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Wenchen Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian Liu
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
| | - Flavia Zuber
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Xing Zhang
- Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
| | - Yali Yu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiji Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
6
|
Xiao S, Zhao Y, Jin S, He Z, Duan G, Gu H, Xu H, Cao X, Ma C, Wu J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Building long-lasting antimicrobial and clean surfaces is one of the most effective strategies to inhibit bacterial infection, but obtaining an ideal smart surface with highly efficient, controllable, and regenerative properties still encounters many challenges. Herein, we fabricate an ultrathin brush–hydrogel hybrid coating (PSBMA-P(HEAA-co-METAC)) by integrating antifouling polyzwitterionic (PSBMA) brushes and antimicrobial polycationic (P(HEAA-co-METAC)) hydrogels. The smart bacterial killing–releasing properties can be achieved independently by the opposite volume and conformation changes between the swelling (shrinking) of P(HEAA-co-METAC) hydrogel layer and the shrinking (swelling) of PSBMA brushes. The friction test reveals that both METAC and SBMA components support great lubrication. By tuning the initial organosilane (BrTMOS:KH570) ratios, the prepared PSBMA-P(HEAA-co-METAC) coating exhibits different antibacterial abilities from single “capturing–killing” to versatile “capturing–killing–releasing.” Most importantly, 99% of the bacterial-releasing rate can be easily achieved via 0.5 M NaCl treatment. This smart surface not only possesses long-lasting antibacterial performance, only ∼1.09 × 105 cell·cm−2 bacterial residue even after 72 h exposure to bacteria solutions, but also can be regenerated and triggered between water and salt solution multiple times. This work provides a new way to fabricate antibacterial smart hydrogel coatings with bacterial “killing–releasing” functions and shows great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Yuyu Zhao
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Shuqi Jin
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Haining Gu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Hongshun Xu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Jun Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
7
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
8
|
Song YY, Zhang LH, Dong LM, Li HT, Yu ZP, Liu Y, Lv GJ, Ma HL. pH-Responsive Smart Wettability Surface with Dual Bactericidal and Releasing Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46065-46075. [PMID: 34533938 DOI: 10.1021/acsami.1c08263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomaterial-associated infections caused by pathogenic bacteria have important implications on human health. This study presents the design and preparation of a smart surface with pH-responsive wettability. The smart surface exhibited synergistic antibacterial function, with high liquid repellency against bacterial adhesion and highly effective bactericidal activity. The wettability of the surface can switch reversibly between superhydrophobicity and hydrophobicity in response to pH; this controls bacterial adhesion and release. Besides, the deposited silver nanoparticles of the surface were also responsible for bacterial inhibition. Benefiting from the excellent liquid repellency, the surface could highly resist bacterial adhesion after immersing in a bacterial suspension for 10 s (85%) and 1 h (71%). Adhered bacteria can be easily eliminated using deposited silver nanoparticles during the subsequent treatment of alkaline bacterial suspension, and the ratio of deactivated bacteria was above 75%. After the pH returned to neutral, the deactivated bacteria can be easily released from the surface. This antibacterial surface showed an improved bacterial removal efficiency of about 99%. The results shed light on future antibacterial applications of the smart surface combining both bactericidal and adhesion-resistant functionalities.
Collapse
Affiliation(s)
- Yun-Yun Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Li-Hui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Li-Ming Dong
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Zhao-Peng Yu
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| | - Guo-Jun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hai-le Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
9
|
Sun Y, Lei K, Lang M. Synthesis, structural characterization, antifouling and antibacterial properties of polypyridinium salt coated silica nanoparticles. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1936549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yunlong Sun
- Research Institute of Chemical Metallurgy, Jiangxi Copper Technology Research Institute Co., LTD., Nanchang, Jiang Xi, China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Meidong Lang
- Shanghai Key Laboratory Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Olsen MR, Colliard I, Rahman T, Miyaishi TC, Harper B, Harper S, Nyman M. Hybrid Polyoxometalate Salt Adhesion by Butyltin Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19497-19506. [PMID: 33856779 DOI: 10.1021/acsami.1c03269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyoxometalate (POM)-based ionic liquids, with nearly infinite compositional variations to fine-tune antimicrobial and physical properties, function as water purification filters, anticorrosion/antibacterial coatings for natural stones, self-repairing acid-resistant coatings, catalysts, and electroactive, stable solvents. By combining hydrophobic quaternary ammonium cations (QACs; tetraheptylammonium and trihexyltetradecylammonium) with butyltin-substituted polyoxotungstates [(BuSn)3(α-SiW9O37)] via repeated solvent extraction-ion exchange, we obtained phase-pure hybrid POM salts (referred to as such because they melt above room temperature). If the solvent extraction process is performed only once, then solids with high salt contamination and considerably lower melting temperatures are obtained. Solution-phase behavior, based on POM-QAC interactions, was similar for all formulations in polar and nonpolar organic solvents, as observed by X-ray scattering and multinuclear magnetic resonance spectroscopy. However, solid thin films of the butyltin-functionalized hybrid POM salts were significantly more stable and adhesive than their inorganic analogues. We attribute this to the favorable hydrophobic interactions between the butyltin groups and the QACs. All synthesized hybrid POM salts display a potent antimicrobial activity toward Escherichia coli. These studies provide fundamental form-function understanding of hybrid POM salts, based on interactions between ions in these complex hybrid phases.
Collapse
Affiliation(s)
- Morgan Rose Olsen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Tasnim Rahman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Taiki C Miyaishi
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
11
|
Ni Y, Zhang D, Wang Y, He X, He J, Wu H, Yuan J, Sha D, Che L, Tan J, Yang J. Host-Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14543-14551. [PMID: 33733728 DOI: 10.1021/acsami.0c21626] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Development of smart switchable surfaces to solve the inevitable bacteria attachment and colonization has attracted much attention; however, it proves very challenging to achieve on-demand regeneration for noncontaminated surfaces. We herein report a smart, host-guest interaction-mediated photo/temperature dual-controlled antibacterial surface, topologically combining stimuli-responsive polymers with nanobactericide. From the point of view of long-chain polymer design, the peculiar hydration layer generated by hydrophilic poly(2-hydroxyethyl methacrylate) (polyHEMA) segments severs the route of initial bacterial attachment and subsequent proliferation, while the synergistic effect on chain conformation transformation poly(N-isopropylacrylamide) (polyNIPAM) and guest complex dissociation azobenzene/cyclodextrin (Azo/CD) complex greatly promotes the on-demand bacterial release in response to the switch of temperature and UV light. Therefore, the resulting surface exhibits triple successive antimicrobial functions simultaneously: (i) resists ∼84.9% of initial bacterial attachment, (ii) kills ∼93.2% of inevitable bacteria attack, and (iii) releases over 94.9% of killed bacteria even after three cycles. The detailed results not only present a potential and promising strategy to develop renewable antibacterial surfaces with successive antimicrobial functions but also contribute a new antimicrobial platform to biomedical or surgical applications.
Collapse
Affiliation(s)
- Yifeng Ni
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yang Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian He
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Huimin Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jingfeng Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dongyong Sha
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
13
|
Qiu H, Si Z, Luo Y, Feng P, Wu X, Hou W, Zhu Y, Chan-Park MB, Xu L, Huang D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front Bioeng Biotechnol 2020; 8:910. [PMID: 33262975 PMCID: PMC7686044 DOI: 10.3389/fbioe.2020.00910] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs. Antibacterial polymers have attracted the interests of researchers due to their unique bactericidal mechanism and excellent antibacterial effect. This article reviews the mechanism and advantages of antimicrobial polymers and the consideration for their translation. Their applications and advances in medical device surface coating were also reviewed. The information will provide a valuable reference to design and develop antibacterial devices that are resistant to pathogenic infections.
Collapse
Affiliation(s)
- Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Luo
- School of Medicine, Ningbo University, Ningbo, China
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo, China
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Wenjia Hou
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| | - Mary B. Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Long Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Dongmei Huang
- Ningbo Baoting Biotechnology Co., Ltd., Ningbo, China
| |
Collapse
|
14
|
Qian Y, Deng S, Lu Z, She Y, Xie J, Cong Z, Zhang W, Liu R. Using In Vivo Assessment on Host Defense Peptide Mimicking Polymer-Modified Surfaces for Combating Implant Infections. ACS APPLIED BIO MATERIALS 2020; 4:3811-3829. [DOI: 10.1021/acsabm.0c01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuxin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziyi Lu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunrui She
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Cho HI, Yi S, Hwang JS, Seo JH, Lee JS. Roles of zwitterionic charges in polymers on synthesis of Ag seeds with anisotropic growth properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Pejman M, Dadashi Firouzjaei M, Aghapour Aktij S, Das P, Zolghadr E, Jafarian H, Arabi Shamsabadi A, Elliott M, Sadrzadeh M, Sangermano M, Rahimpour A, Tiraferri A. In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36287-36300. [PMID: 32677425 PMCID: PMC8009475 DOI: 10.1021/acsami.0c12141] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.
Collapse
Affiliation(s)
- Mehdi Pejman
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mostafa Dadashi Firouzjaei
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Parnab Das
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ehsan Zolghadr
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Hesam Jafarian
- Department of Mining and Metallurgical
Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Elliott
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marco Sangermano
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Ahmad Rahimpour
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Department of Chemical
Engineering, Babol Noshirvani University
of Technology, Shariati Avenue, Babol Mazandaran, 4714871167, Iran
| | - Alberto Tiraferri
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
17
|
Liu S, Zheng J, Hao L, Yegin Y, Bae M, Ulugun B, Taylor TM, Scholar EA, Cisneros-Zevallos L, Oh JK, Akbulut M. Dual-Functional, Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21311-21321. [PMID: 32023023 DOI: 10.1021/acsami.9b18928] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial pathogens are responsible for millions of cases of illnesses and deaths each year throughout the world. The development of novel surfaces and coatings that effectively inhibit and prevent bacterial attachment, proliferation, and growth is one of the crucial steps for tackling this global challenge. Herein, we report a dual-functional coating for aluminum surfaces that relies on the controlled immobilization of lysozyme enzyme (muramidase) into interstitial spaces of presintered, nanostructured thin film based on ∼200 nm silica nanoparticles and the sequential chemisorption of an organofluorosilane to the available interfacial areas. The mean diameter of the resultant lysozyme microdomains was 3.1 ± 2.5 μm with an average spacing of 8.01 ± 6.8 μm, leading to a surface coverage of 15.32%. The coating had an overall root-mean-square (rms) roughness of 539 ± 137 nm and roughness factor of 1.50 ± 0.1, and demonstrated static, advancing, and receding water contact angles of 159.0 ± 1.0°, 155.4 ± 0.6°, and 154.4 ± 0.6°, respectively. Compared to the planar aluminum, the coated surfaces produced a 6.5 ± 0.1 (>99.99997%) and 4.0 ± 0.1 (>99.99%) log-cycle reductions in bacterial surfaces colonization against Gram-negative Salmonella Typhimurium LT2 and Gram-positive Listeria innocua, respectively. We anticipate that the implementation of such a coating strategy on healthcare environments and surfaces and food-contact surfaces can significantly reduce or eliminate potential risks associated with various contamination and cross-contamination scenarios.
Collapse
Affiliation(s)
- Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jeremy Zheng
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, People's Republic of China
| | - Yagmur Yegin
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Beril Ulugun
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas Matthew Taylor
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843, United States
| | - Ethan A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21330-21341. [PMID: 32011846 PMCID: PMC7534184 DOI: 10.1021/acsami.9b19992] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infections, contaminations, and biofouling resulting from micro- and/or macro-organisms remained a prominent threat to the public health, food industry, and aqua-/marine-related applications. Considering environmental and drug resistance concerns as well as insufficient efficacy on biofilms associated with conventional disinfecting reagents, developing an antimicrobial surface potentially improved antimicrobial performance by directly working on the microbes surrounding the surface area. Here we provide an engineering perspective on the logic of choosing materials and strategies for designing antimicrobial surfaces, as well as an application perspective on their potential impacts. In particular, we analyze and discuss requirements and expectations for specific applications and provide insights on potential misconnection between the antimicrobial solution and its targeted applications. Given the high translational barrier for antimicrobial surfaces, future research would benefit from a comprehensive understanding of working mechanisms for potential materials/strategies, and challenges/requirements for a targeted application.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
19
|
Nastyshyn S, Raczkowska J, Stetsyshyn Y, Orzechowska B, Bernasik A, Shymborska Y, Brzychczy-Włoch M, Gosiewski T, Lishchynskyi O, Ohar H, Ochońska D, Awsiuk K, Budkowski A. Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv 2020; 10:10155-10166. [PMID: 35498562 PMCID: PMC9050227 DOI: 10.1039/c9ra10874b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Non-cytotoxic, temperature-responsive and antibacterial poly(di(ethylene glycol)methyl ether methacrylate) - POEGMA188 based nanocomposite coatings attached to a glass surface were successfully prepared using ATRP polymerization. The thickness, morphology and wettability of the resulting coatings were analyzed using ellipsometry, AFM and contact angle measurements, respectively. The strong impact of the thicknesses of the POEGMA188 grafted brush coatings and content of AgNPs on the morphology and temperature-induced wettability changes of the nanocomposite was demonstrated. In addition to the strong temperature-dependent antibacterial activity, the proposed nanocomposite coatings have no significant cytotoxic effect towards normal cells. Moreover, the slight anti-cancer effect of AgNPs may be suggested.
Collapse
Affiliation(s)
- Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152 31-342 Kraków Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Al. Mickiewicza 30 30-049 Kraków Poland
| | - Yana Shymborska
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Halyna Ohar
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| |
Collapse
|
20
|
Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth. ENGINEERED ANTIMICROBIAL SURFACES 2020. [DOI: 10.1007/978-981-15-4630-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
22
|
Raczkowska J, Stetsyshyn Y, Awsiuk K, Brzychczy-Włoch M, Gosiewski T, Jany B, Lishchynskyi O, Shymborska Y, Nastyshyn S, Bernasik A, Ohar H, Krok F, Ochońska D, Kostruba A, Budkowski A. "Command" surfaces with thermo-switchable antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109806. [PMID: 31349441 DOI: 10.1016/j.msec.2019.109806] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 01/11/2023]
Abstract
In the presented work "smart" antibacterial surfaces based on silver nanoparticles (AgNPs) embedded in temperature-responsive poly(di(ethylene glycol)methyl ether methacrylate) - (POEGMA188) as well as poly(4-vinylpyridine) - (P4VP) coatings attached to a glass surface were successfully prepared. The composition, thickness, morphology and wettability of the resulting coatings were analyzed using ToF-SIMS, XPS, EDX, ellipsometry, AFM, SEM and CA measurements, respectively. Temperature-switched killing of the bacteria was tested against Escherichia coli ATCC 25922 (representative of Gram-negative bacteria) and Staphylococcus aureus ATCC 25923 (representative of Gram-positive bacteria) at 4 and 37 °C. In general at 4 °C no significant difference was observed between the amounts of bacteria accounted on the grafted brush coatings and within the control sample. In contrast, at 37 °C almost no bacteria were visible for temperature-responsive coating with AgNPs, whereas the growth of bacteria remains not disturbed for "pure" coating, indicating strong temperature-dependent antibacterial properties of AgNPs integrated into brushes.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine.
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Benedykt Jany
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Halyna Ohar
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Franciszek Krok
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Andrij Kostruba
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Pekarska 50, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
23
|
Zou XN, Han X, Zhang Q, Yin JJ, Chu LQ. Preparation and antibacterial activity of silver-loaded poly(oligo(ethylene glycol) methacrylate) brush. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:756-768. [PMID: 30940009 DOI: 10.1080/09205063.2019.1603066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Herein, we report on a robust approach to fabricate antibacterial nanocomposite coating simply by immersing poly(oligo(ethylene glycol) methacrylate) (POEGMA) brush into a silver perchlorate solution without using any external reducing agents. The POEGMA brush of 48.3 nm in thickness is prepared via surface-initiated atom transfer radical polymerization method. Field-emission scanning electron microscope and Raman measurements indicate that silver nanoparticles of 14 ∼ 25 nm in diameter are successfully embedded into the POEGMA brush. Antibacterial activities of the resultant silver-loaded POEGMA brushes against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus are measured by zone of inhibition and colony-counting methods, respectively. The results show that the silver-loaded POEGMA coatings exhibit enhanced antibacterial efficiency compared to bare POEGMA brush. In order to elucidate their antibacterial mechanism, silver release behaviors of these silver-loaded POEGMA brushes are monitored via inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Xue-Na Zou
- a College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , TEDA , China
| | - Xiao Han
- a College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , TEDA , China
| | - Qian Zhang
- a College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , TEDA , China
| | - Jun-Jiao Yin
- a College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , TEDA , China
| | - Li-Qiang Chu
- a College of Chemical Engineering and Materials Science , Tianjin University of Science & Technology , TEDA , China
| |
Collapse
|
24
|
Wang F, He M, Gao K, Su Y, Zhang R, Liu Y, Shen J, Jiang Z, Kasher R. Constructing membrane surface with synergistic passive antifouling and active antibacterial strategies through organic-inorganic composite modifier. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Mohan A, Ashraf PM. Biofouling Control Using Nano Silicon Dioxide Reinforced Mixed-Charged Zwitterionic Hydrogel in Aquaculture Cage Nets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4328-4335. [PMID: 30813729 DOI: 10.1021/acs.langmuir.8b04071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biofouling in aquaculture cages negatively affects the farm productivity, and it requires huge sums of money and labor for its management. A superhydrophilic pseudozwitterionic hydrogel, N-isopropylacrylamide (NIPA) + [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) + 3-sulfopropyl methacrylate (SA) copolymer, is considered as a potential antifouling agent. The present study aimed to synthesize a nano silicon oxide reinforced NIPA-TMA-SA mixed-charged zwitterionic hydrogel over polyaniline-coated polyethylene aquaculture cage nets through the in situ microwave reaction and to test its biofouling resistance. The study highlighted the formation of stable coating over polyethylene, four different treatments, and their effective inhibition of fouling compared with the untreated one. Six month's immersions of treated nettings in the estuarine environments demonstrated that the biofouling inhibition by nano silicon oxide reinforced zwitterionic hydrogel-coated polyethylene was unable to satisfy the industrial standards but made the samples free from hard-shelled fouling organisms compared with untreated controls. More research is needed to improve the quality of the coatings. The mixed-charged zwitterionic hydrogel with nano silicon oxide showed medium hydrophilic nature. Fourier transform infrared, scanning electron microscopy, and spectroscopic evaluation showed the successful formation of hydrogel over the aquaculture cage net. Nano silicon oxide reinforced in the matrix through hydrogen and coordination bonding between NH2 and carbonyl of the polymeric chain, respectively.
Collapse
Affiliation(s)
- Ahana Mohan
- Fishing Technology Division , ICAR-Central Institute of Fisheries Technology , Matsyapuri PO, Cochin 682029 , India
| | - P Muhamed Ashraf
- Fishing Technology Division , ICAR-Central Institute of Fisheries Technology , Matsyapuri PO, Cochin 682029 , India
| |
Collapse
|
26
|
Xin X, Li P, Zhu Y, Shi L, Yuan J, Shen J. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1788-1797. [PMID: 30089363 DOI: 10.1021/acs.langmuir.8b01603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we designed and constructed a dual functional surface with antimicrobial and antifouling abilities to prevent protein and bacterial attachment that are significant challenges in biomedical devices. Primary amino-group-capped sulfobetaine of DMMSA was synthesized and then grafted onto polydopamine pretreated PET sheets via click chemistry. The sheets were subsequently immersed into silver ion solution, in which the absorbed silver ions were reduced to silver nanoparticles (AgNPs) in situ by a polydopamine layer. The antifouling assays demonstrated that the resultant PET/DMMSA/AgNPs sheets exhibited great antifouling performances against bovine serum albumin (BSA), bovine fibrinogen (BFG), platelets, and bacteria, the critical proteins/microorganisms leading to implant failure. The antibacterial data suggested that the sheets had dual functions as inhibitors of bacterial growth and bactericide and could efficiently delay the biofilm formation. This repelling and killing approach is green and simple, with potential biomedical applications.
Collapse
Affiliation(s)
- Xuanxuan Xin
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yinyan Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Leigang Shi
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
27
|
Meng L, Pan K, Zhu Y, Wei W, Li X, Liu X. Zwitterionic-Based Surface via the Coelectrodeposition of Colloid Particles and Tannic Acid with Bacterial Resistance but Cell Adhesion Properties. ACS Biomater Sci Eng 2018; 4:4122-4131. [DOI: 10.1021/acsbiomaterials.8b01239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Long Meng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Kai Pan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Ye Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Wei Wei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Xiaojie Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Xiaoya Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic of China
| |
Collapse
|
28
|
Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Li W, Cao F, He C, Ohno K, Ngai T. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8798-8806. [PMID: 29983064 DOI: 10.1021/acs.langmuir.8b01968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophilic or zwitterionic polymer-functionalized surfaces have become attractive biomaterials in bioscience and technology due to their excellent protein-resistant ability. Understanding the fundamental interactions between proteins and polymers plays an essential role in the surface design of biomaterials. In this work, we studied the interactions between bovine serum albumin (BSA) and two sorts of polymer brushes including zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) in NaCl aqueous solutions directly with a self-established total internal reflection microscope (TIRM) to provide a better understanding of the underlying nonfouling mechanism of polymers. Our results indicate that both the surface charge and brushes length can affect protein adsorption through electrostatic and steric repulsions, respectively. Both PCBMA- and POEGMA-coated surfaces display negative charge properties due to incomplete coverage and ionic adsorption. As a result, strong electrostatic repulsions between proteins and negatively charged polymer-coated surfaces could contribute to the resistance of protein-coated particles in solutions with low ionic strength (0.1, 0.5, and 1 mM) and disappear in solutions with high ionic strength (10 mM). The measured interaction profiles demonstrate that PCBMA brushes could provide apparent steric forces only at high ionic strength (10 mM), where zwitterionic brushes exhibit a relatively extended conformation with a lack of electrostatic forces between intra- and interpolymers. In contrast, the steric repulsion between proteins and POEGMA brushes appears when particles diffuse at low positions in all salt concentrations (0.1-10 mM) with similar steric decay lengths, which results from the unresponsiveness of POEGMA brushes to the salt stimulus.
Collapse
Affiliation(s)
- Wendi Li
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| | - Feng Cao
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| | - Chuanxin He
- College of Chemistry Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , PR China
| | - Kohji Ohno
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - To Ngai
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| |
Collapse
|
30
|
Milo S, Nzakizwanayo J, Hathaway HJ, Jones BV, Jenkins ATA. Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proc Inst Mech Eng H 2018; 233:68-83. [PMID: 29807465 DOI: 10.1177/0954411918776691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urinary catheters have been used on an intermittent or indwelling basis for centuries, in order to relieve urinary retention and incontinence. Nevertheless, the use of urinary catheters in the clinical setting is fraught with complication, the most common of which is the development of nosocomial urinary tract infections, known as catheter-associated urinary tract infections. Infections of this nature are not only significant owing to their high incidence rate and subsequent economic burden but also to the severe medical consecutions that result. A range of techniques have been employed in recent years, utilising various technologies in attempts to counteract the perilous medical cascade following catheter blockage. This review will focus on the current advancement (within the last 10 years) in prevention of encrustation and blockage of long-term indwelling catheters both from engineering and medical perspectives, with particular emphasis on the importance of stimuli-responsive systems.
Collapse
Affiliation(s)
- Scarlet Milo
- 1 Department of Chemistry, University of Bath, Bath, UK
| | - Jonathan Nzakizwanayo
- 2 School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | - Brian V Jones
- 4 Department of Biology and Biochemistry, University of Bath, UK
| | | |
Collapse
|
31
|
Rigo S, Cai C, Gunkel‐Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG. Nanoscience-Based Strategies to Engineer Antimicrobial Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700892. [PMID: 29876216 PMCID: PMC5979626 DOI: 10.1002/advs.201700892] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Microbial contamination and biofilm formation of medical devices is a major issue associated with medical complications and increased costs. Consequently, there is a growing need for novel strategies and exploitation of nanoscience-based technologies to reduce the interaction of bacteria and microbes with synthetic surfaces. This article focuses on surfaces that are nanostructured, have functional coatings, and generate or release antimicrobial compounds, including "smart surfaces" producing antibiotics on demand. Key requirements for successful antimicrobial surfaces including biocompatibility, mechanical stability, durability, and efficiency are discussed and illustrated with examples of the recent literature. Various nanoscience-based technologies are described along with new concepts, their advantages, and remaining open questions. Although at an early stage of research, nanoscience-based strategies for creating antimicrobial surfaces have the advantage of acting at the molecular level, potentially making them more efficient under specific conditions. Moreover, the interface can be fine tuned and specific interactions that depend on the location of the device can be addressed. Finally, remaining important challenges are identified: improvement of the efficacy for long-term use, extension of the application range to a large spectrum of bacteria, standardized evaluation assays, and combination of passive and active approaches in a single surface to produce multifunctional surfaces.
Collapse
Affiliation(s)
- Serena Rigo
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Chao Cai
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | | | - Lionel Maurizi
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Xiaoyan Zhang
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Jian Xu
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | - Cornelia G. Palivan
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
32
|
Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 2018; 13:2217-2263. [PMID: 29695904 PMCID: PMC5905846 DOI: 10.2147/ijn.s154748] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Local application of antibiotics might be a solution. In local application, materials need to act as the drug delivery system. The drug delivery system should be biodegradable and prolonged antibacterial effect should be provided to satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a synthesized polymer, which turns into gel according to the change in different signals such as temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies from the past 5 years were reviewed, and several types of antimicrobial hydrogels according to different ingredients, different preparations, different antimicrobial mechanisms, different antimicrobial agents they contained and different applications, were summarized. The hydrogels loaded with metal nanoparticles as a potential method to solve antibiotic resistance were highlighted. Finally, future prospects of development and application of antimicrobial hydrogels are suggested.
Collapse
Affiliation(s)
- Kerong Yang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing Han
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingpeng Chen
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhao Zheng
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Kesong Zhang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiang Li
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
33
|
Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Wei T, Tang Z, Yu Q, Chen H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37511-37523. [PMID: 28992417 DOI: 10.1021/acsami.7b13565] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-standing focus of considerable interest and research efforts. Recently, a promising "kill-release" strategy has been proposed and applied to construct so-called smart antibacterial surfaces, which can kill bacteria attached to their surface and then undergo on-demand release of the dead bacteria and other debris to reveal a clean surface under an appropriate stimulus, thereby maintaining effective long-term antibacterial activity. This Review focuses on the recent progress (particularly over the past 5 years) on such smart antibacterial surfaces. According to the different design strategies, these surfaces can be divided into three categories: (i) "K + R"-type surfaces, which have both a killing unit and a releasing unit; (ii) "K → R"-type surfaces, which have a surface-immobilized killing unit that can be switched to perform a releasing function; and (iii) "K + (R)"-type surfaces, which have only a killing unit but can release dead bacteria upon the addition of a release solution. In the end, a brief perspective on future research directions and the major challenges in this promising field is also presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Zengchao Tang
- Jiangsu Biosurf Biotech Company Ltd. , 218 Xinghu Street, Suzhou, 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| |
Collapse
|
35
|
Riga EK, Vöhringer M, Widyaya VT, Lienkamp K. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications. Macromol Rapid Commun 2017; 38:10.1002/marc.201700216. [PMID: 28846821 PMCID: PMC7611510 DOI: 10.1002/marc.201700216] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers.
Collapse
Affiliation(s)
- E. K. Riga
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - M. Vöhringer
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - V. T. Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - K. Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
36
|
Transparent and durable superhydrophobic coatings for anti-bioadhesion. J Colloid Interface Sci 2017; 501:222-230. [DOI: 10.1016/j.jcis.2017.04.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022]
|
37
|
In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application. MATERIALS 2017; 10:ma10080967. [PMID: 28820482 PMCID: PMC5578333 DOI: 10.3390/ma10080967] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/03/2022]
Abstract
To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application.
Collapse
|
38
|
Wu B, Zhang L, Huang L, Xiao S, Yang Y, Zhong M, Yang J. Salt-Induced Regenerative Surface for Bacteria Killing and Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7160-7168. [PMID: 28658955 DOI: 10.1021/acs.langmuir.7b01333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibacterial surfaces with both bacteria killing and release functions show great promise in biological and biomedical applications, in particular for reusable medical devices. However, these surfaces either require a sophisticated technique to create delicate structures or need rigorous stimuli to trigger the functions, greatly limiting their practical application. In this study, we made a step forward by developing a simple system based on a salt-responsive polyzwitterionic brush. Specifically, the salt-responsive brush of poly(3-(dimethyl (4-vinylbenzyl) ammonium) propyl sulfonate) (polyDVBAPS) was endowed with bactericidal function by grafting an effective bactericide, i.e., triclosan (TCS). This simple functionalization successfully integrated the bacteria attach/release function of polyDVBAPS and bactericidal function of TCS. As a result, the surface could kill more than 95% attached bacteria and, subsequently, could rapidly detach ∼97% bacteria after gently shaking in 1.0 M NaCl for 10 min. More importantly, such high killing efficiency and release rate could be well retained (unchanged effectiveness of both killing and release after four severe killing/release cycles), indicating the highly efficient regeneration and long-term reusability of this system. This study not only contributes zwitterionic polymers by conferring new functions but also provides a new, highly efficient and reliable surface for "killing-release" antibacterial strategy.
Collapse
Affiliation(s)
- Bozhen Wu
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Lixun Zhang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Lei Huang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Yin Yang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| |
Collapse
|
39
|
Excellent hydrophilic and anti-bacterial fouling PVDF membrane based on ag nanoparticle self-assembled PCBMA polymer brush. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Pombo‐García K, Rühl CL, Lam R, Barreto JA, Ang C, Scammells PJ, Comba P, Spiccia† L, Graham B, Joshi T, Stephan H. Zwitterionic Modification of Ultrasmall Iron Oxide Nanoparticles for Reduced Protein Corona Formation. Chempluschem 2017; 82:638-646. [DOI: 10.1002/cplu.201700052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Karina Pombo‐García
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Carmen L. Rühl
- Heidelberg University Institute of Inorganic Chemistry and Interdisciplinary Centre for Scientific Computing Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Raymond Lam
- Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - José A. Barreto
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Ching‐Seng Ang
- BIO21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne VIC 3010 Australia
| | - Peter J. Scammells
- Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Peter Comba
- Heidelberg University Institute of Inorganic Chemistry and Interdisciplinary Centre for Scientific Computing Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Leone Spiccia†
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| |
Collapse
|
41
|
Singha P, Locklin J, Handa H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater 2017; 50:20-40. [PMID: 27916738 PMCID: PMC5316300 DOI: 10.1016/j.actbio.2016.11.070] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
More than 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 15-25% of hospitalized patients. Among other purposes, urinary catheters are primarily used for draining urine after surgeries and for urinary incontinence. During catheter-associated urinary tract infections, bacteria travel up to the bladder and cause infection. A major cause of catheter-associated urinary tract infection is attributed to the use of non-ideal materials in the fabrication of urinary catheters. Such materials allow for the colonization of microorganisms, leading to bacteriuria and infection, depending on the severity of symptoms. The ideal urinary catheter is made out of materials that are biocompatible, antimicrobial, and antifouling. Although an abundance of research has been conducted over the last forty-five years on the subject, the ideal biomaterial, especially for long-term catheterization of more than a month, has yet to be developed. The aim of this review is to highlight the recent advances (over the past 10years) in developing antimicrobial materials for urinary catheters and to outline future requirements and prospects that guide catheter materials selection and design. STATEMENT OF SIGNIFICANCE This review article intends to provide an expansive insight into the various antimicrobial agents currently being researched for urinary catheter coatings. According to CDC, approximately 75% of urinary tract infections are caused by urinary catheters and 15-25% of hospitalized patients undergo catheterization. In addition to these alarming statistics, the increasing cost and health related complications associated with catheter associated UTIs make the research for antimicrobial urinary catheter coatings even more pertinent. This review provides a comprehensive summary of the history, the latest progress in development of the coatings and a brief conjecture on what the future entails for each of the antimicrobial agents discussed.
Collapse
Affiliation(s)
- Priyadarshini Singha
- School of Materials, Chemical and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Jason Locklin
- School of Materials, Chemical and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA; Department of Chemistry, University of Georgia, Athens, GA, USA.
| | - Hitesh Handa
- School of Materials, Chemical and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
42
|
Tripathi A, Melo JS. Development of Nano-Antimicrobial Biomaterials for Biomedical Applications. ADVANCES IN BIOMATERIALS FOR BIOMEDICAL APPLICATIONS 2017; 66. [PMCID: PMC7122509 DOI: 10.1007/978-981-10-3328-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around the globe, there is a great concern about controlling growth of pathogenic microorganisms for the prevention of infectious diseases. Moreover, the greater incidences of cross contamination and overuse of drugs has contributed towards the development of drug resistant microbial strains making conditions even worse. Hospital acquired infections pose one of the leading complications associated with implantation of any biomaterial after surgery and critical care. In this regard, developing non-conventional antimicrobial agents which would prevent the aforementioned causes is under the quest. The rapid development in nanoscience and nanotechnology has shown promising potential for developing novel biocidal agents that would integrate with a biomaterial to prevent bacterial colonization and biofilm formation. Metals with inherent antimicrobial properties such as silver, copper, zinc at nano scale constitute a special class of antimicrobials which have broad spectrum antimicrobial nature and pose minimum toxicity to humans. Hence, novel biomaterials that inhibit microbial growth would be of great significance to eliminate medical device/instruments associated infections. This chapter comprises the state-of-art advancements in the development of nano-antimicrobial biomaterials for biomedical applications. Several strategies have been targeted to satisfy few important concern such as enhanced long term antimicrobial activity and stability, minimize leaching of antimicrobial material and promote reuse. The proposed strategies to develop new hybrid antimicrobial biomaterials would offer a potent antibacterial solution in healthcare sector such as wound healing applications, tissue scaffolds, medical implants, surgical devices and instruments.
Collapse
Affiliation(s)
- Anuj Tripathi
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| | - Jose Savio Melo
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| |
Collapse
|
43
|
Liu C, Faria AF, Ma J, Elimelech M. Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:182-191. [PMID: 27976869 DOI: 10.1021/acs.est.6b03795] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We demonstrate the functionalization of thin-film composite membranes with zwitterionic polymers and silver nanoparticles (AgNPs) for combating biofouling. Combining hydrophilic zwitterionic polymer brushes and biocidal AgNPs endows the membrane with dual functionality: antiadhesion and bacterial inactivation. An atom transfer radical polymerization (ATRP) reaction is used to graft zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brushes to the membrane surface, while AgNPs are synthesized in situ through chemical reduction of silver. Two different membrane architectures (Ag-PSBMA and PSBMA-Ag TFC) are developed according to the sequence AgNPs, and PSBMA brushes are grafted on the membrane surface. A static adhesion assay shows that both modified membranes significantly reduced the adsorption of proteins, which served as a model organic foulant. However, improved antimicrobial activity is observed for PSBMA-Ag TFC (i.e., AgNPs on top of the polymer brush) in comparison to the Ag-PSBMA TFC membrane (i.e., polymer brush on top of AgNPs), indicating that architecture of the antifouling layer is an important factor in the design of zwitterion-silver membranes. Confocal laser scanning microscopy (CLSM) imaging indicated that PSBMA-Ag TFC membranes effectively inhibit biofilm formation under dynamic cross-flow membrane biofouling tests. Finally, we demonstrate the regeneration of AgNPs on the membrane after depletion of silver from the surface of the PSBMA-Ag TFC membrane.
Collapse
Affiliation(s)
- Caihong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | | | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | | |
Collapse
|
44
|
Xie Y, Tang C, Wang Z, Xu Y, Zhao W, Sun S, Zhao C. Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J Mater Chem B 2017; 5:7186-7193. [DOI: 10.1039/c7tb01516j] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bacterial attachment and the subsequent colonization on the surfaces of bio-materials usually result in biofilm formation, and thus lead to implant failure, inflammation and so on.
Collapse
Affiliation(s)
- Yi Xie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chengqiang Tang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zehao Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yuanting Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shudong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
45
|
Li P, Tong Z, Jia Z, Su W. Preparation and characterization of hemoglobin-silver composites as biocompatible antiseptics. J Biomater Appl 2016; 31:773-783. [PMID: 27538749 DOI: 10.1177/0885328216665237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microbial contamination has been a major challenge in a wide variety of fields such as biomedical and biomaterial applications. The development of biomaterials that possess excellent antibacterial ability and biocompatibility is of great importance to enhance the service life of biomaterials. In this study, the main protein component of red blood cells, hemoglobin (Hb), was employed to prepare Ag-Hb nanocomposites as novel biocompatible antiseptics. The formation of Ag-Hb nanocomposites on the titanium substrate are confirmed by field-emission scanning electron microscopy, Fourier transformed infrared spectroscopic, contact angles, and inductively coupled plasma atomic emission spectrometry analysis. The Ag-Hb titanium shows potent antibacterial ability against planktonic bacteria in the suspension and ability to prevent bacterial adhesion. Moreover, the Ag-Hb titanium shows excellent biocompatibility, which supports healthy osteoblast cellular activity and osteoblast differentiation. The results indicate that the Ag-Hb nanocomposites can be potentially useful for the fabrication of biomaterials for long-term applications.
Collapse
Affiliation(s)
- Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Zhangfa Tong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Guangxi Teachers Education University), Ministry of Education, China
| |
Collapse
|
46
|
Wang W, Lu Y, Luo M, Zhao Q, Wang Y, Liu Q, Li M, Wang D. Zwitterionic-polymer-functionalized poly(vinyl alcohol-co-ethylene) nanofiber membrane for resistance to the adsorption of bacteria and protein. J Appl Polym Sci 2016. [DOI: 10.1002/app.44169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenwen Wang
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Ying Lu
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Mengying Luo
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Qinghua Zhao
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Yuedan Wang
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Qiongzhen Liu
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Mufang Li
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Dong Wang
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| |
Collapse
|
47
|
Ultra-fine silver nanoparticles dispersed in mono-dispersed amino functionalized poly glycidyl methacrylate based microspheres as an effective anti-bacterial agent. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Silver nanoparticles well-dispersed in amine-functionalized, one-pot made vesicles as an effective antibacterial agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:92-99. [DOI: 10.1016/j.msec.2015.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023]
|
49
|
Wang R, Xiang T, Zhao WF, Zhao CS. A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:556-564. [DOI: 10.1016/j.msec.2015.10.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
50
|
Zhao S, Fan X, Li X, Lv X, Zhang W, Hu Z. Stable micelles formed through a stereocomplex of amphiphilic copolymers zwitterionic-(PLLA)2 and MPEG-(PDLA)2 for controlled drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra10825c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Y-Shaped amphiphilic copolymers (zwitterionic-(PLLA2.5K)2 and MPEG-(PDLA2.5K)2) were synthesized through click reaction. The aggregation behavior of the polymers and their stereocomplexes and the DOX release profile from the aggregates were studied.
Collapse
Affiliation(s)
- Shasha Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials
- School of Chemistry and Chemical Engineering
| | - Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials
- School of Chemistry and Chemical Engineering
| | - Xiaoyan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials
- School of Chemistry and Chemical Engineering
| | - Xianglin Lv
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials
- School of Chemistry and Chemical Engineering
| | - Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials
- School of Chemistry and Chemical Engineering
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials
- School of Chemistry and Chemical Engineering
| |
Collapse
|