1
|
Chakraborty S, Bansal AK. Application of Atomic Force Microscopy in the Development of Amorphous Solid Dispersion. J Pharm Sci 2024:S0022-3549(24)00484-2. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab-160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
2
|
Li M, Li J, Qin X, Cai J, Peng R, Zhang M, Zhang L, Zhao W, Chen M, Han D, Gong J. The effects of dextran in residual impurity on trehalose crystallization and formula in food preservation. Food Chem 2024; 442:138326. [PMID: 38219563 DOI: 10.1016/j.foodchem.2023.138326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
The residual dextran impurities in the upstream process significantly impact the crystallization of starch-based functional sugar and the related food properties. This study intends to reveal the mechanism of dextran's influence on trehalose crystallization, and build a relationship among the dextran in syrup and the physicochemical and functional properties of trehalose. Instead of incorporating into the crystal lattice, dextran changes the assembly rate of trehalose molecules on crystal surface. The different sensitivity and adsorption capacity of the crystal surface to the chain length of dextran determines the growth rate of crystal surfaces, resulting in different crystal morphology. The bulk trehalose crystals, which were obtained from syrups with short chain dextran, have excellent powder properties, including best flowability (35◦), highest crystal strength (2.7 N), lowest caking rate (62.22 %), and the most uniform mixing with other sweeteners (sucrose/xylitol) in food formulations, achieving more stable starch preservation.
Collapse
Affiliation(s)
- Mingxuan Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiahui Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xueyou Qin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jingwei Cai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ronghua Peng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mengdi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Leida Zhang
- Shandong Fuyang Biotechnology Co., Ltd., Shandong 253100, China
| | - Wei Zhao
- Shandong Fuyang Biotechnology Co., Ltd., Shandong 253100, China
| | - Mingyang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Wang Y, Chin CY, Shivashekaregowda NKH, Shi Q. Implications of Low-concentration Polymer on the Physical Stability of Glassy Griseofulvin: Role of the Segmental Mobility. AAPS PharmSciTech 2024; 25:103. [PMID: 38714634 DOI: 10.1208/s12249-024-02809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.
Collapse
Affiliation(s)
- Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chai-Yee Chin
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Malaysia.
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia.
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
4
|
Zhou Y, Yao Y, Zhai Z, Mohamed MA, Mazzini F, Qi Q, Bortner MJ, Taylor LS, Edgar KJ. Reductive amination of oxidized hydroxypropyl cellulose with ω-aminoalkanoic acids as an efficient route to zwitterionic derivatives. Carbohydr Polym 2024; 328:121699. [PMID: 38220336 DOI: 10.1016/j.carbpol.2023.121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Zwitterionic polymers, with their equal amounts of cationic and anionic functional groups, have found widespread utility including as non-fouling coatings, hydrogel materials, stabilizers, antifreeze materials, and drug carriers. Polysaccharide-derived zwitterionic polymers are attractive because of their sustainable origin, potential for lower toxicity, and possible biodegradability, but previous methods for synthesis of zwitterionic polysaccharide derivatives have been limited in terms of flexibility and attainable degree of substitution (DS) of charged entities. We report herein successful design and synthesis of zwitterionic polysaccharide derivatives, in this case based on cellulose, by reductive amination of oxidized 2-hydroxypropyl cellulose (Ox-HPC) with ω-aminoalkanoic acids. Reductive amination products could be readily obtained with DS(cation) (= DS(anion)) up to 1.6. Adduct hydrophilic/hydrophobic balance (amphiphilicity) can be influenced by selecting the appropriate chain length of the ω-aminoalkanoic acid. This strategy is shown to produce a range of amphiphilic, water-soluble, moderately high glass transition temperature (Tg) polysaccharide derivatives in just a couple of efficient steps from commercially available building blocks. The adducts were evaluated as crystallization inhibitors. They are strong inhibitors of crystallization even for the challenging, poorly soluble, fast-crystallizing prostate cancer drug enzalutamide, as supported by surface tension and Flory-Huggins interaction parameter results.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Yimin Yao
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mennatallah A Mohamed
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fiorella Mazzini
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
5
|
Saatkamp RH, Dos Santos BM, Sanches MP, Conte J, Rauber GS, Caon T, Parize AL. Drug-excipient compatibility studies in formulation development: A case study with benznidazole and monoglycerides. J Pharm Biomed Anal 2023; 235:115634. [PMID: 37595356 DOI: 10.1016/j.jpba.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Monoglycerides (MGs) such as glycerol monolaurate (GML) and glycerol monostearate (GMS) have been used as excipients in oral formulations because of their emulsifying effect as well as their ability to inhibit the precipitation and intestinal efflux of drugs. Excipient-drug compatibility studies, however, have been underexplored. In this study, benznidazole (BNZ) was selected as a drug model due to the difficulty in improving its solubility and because of the potential impact on public health (it is the only drug currently used to treat Chagas disease). The effect of different processing conditions (maceration, ball milling, and melting) on the physical-chemistry properties of BNZ/MGs mixtures was investigated to guide the rational development of new solid formulations. GML was more effective in improving the solubility of BNZ, which could be due to its more malleable structure, less hydrophobic nature, and greater interaction with BNZ. The formation of hydrogen bonds between the imidazole group of BNZ and the polar region of GML was confirmed by spectroscopy analyses (IR, 1H NMR). The higher the monoglyceride content in the mixture, the higher the BNZ solubility. Regardless of the method of processing the mixture, the drug was found to be crystalline. Polarized light microscopy analysis showed the presence of spherulites. Overall, these findings suggest that preparation methods of BNZ:MGs formulations that involve thermal or/and mechanical treatment have a low impact on the solid properties of the material, and this allows for the production of formulations with reproducible performance.
Collapse
Affiliation(s)
- Rodrigo Henrique Saatkamp
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Bruna Mattos Dos Santos
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Mariele Paludetto Sanches
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Julia Conte
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Gabriela Schneider Rauber
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 779 00 Olomouc, Czech Republic
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Alexandre Luis Parize
- Polymeric Materials Research Group, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Nguyen HT, Van Duong T, Taylor LS. Impact of Gastric pH Variations on the Release of Amorphous Solid Dispersion Formulations Containing a Weakly Basic Drug and Enteric Polymers. Mol Pharm 2023; 20:1681-1695. [PMID: 36730186 PMCID: PMC9997068 DOI: 10.1021/acs.molpharmaceut.2c00895] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enteric polymers are widely used in amorphous solid dispersion (ASD) formulations. The aim of the current study was to explore ASD failure mechanisms across a wide range of pH conditions that mimic in vivo gastric compartment variations where enteric polymers such as hydroxypropyl methylcellulose phthalate (HPMCP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) are largely insoluble. Delamanid (DLM), a weakly basic drug used to treat tuberculosis, was selected as the model compound. Both DLM free base and the edisylate salt were formulated with HPMCP, while DLM edisylate ASDs were also prepared with different grades of HPMCAS. Two-stage release testing was conducted with the gastric stage pH varied between pH 1.6 and 5.0, prior to transfer to intestinal conditions of pH 6.5. ASD particles were collected following suspension in the gastric compartment and evaluated using X-ray powder diffraction and scanning electron microscopy. Additional samples were also evaluated with polarized light microscopy. In general, ASDs with HPMCP showed improved overall release for all testing conditions, relative to ASDs with HPMCAS. ASDs with the edisylate salt likewise outperformed those with DLM free base. Impaired release for certain formulations at intestinal pH conditions was attributed to surface drug crystallization that initiated during suspension in the gastric compartment where the polymer is insoluble; crystallization appeared more extensive for HPMCAS ASDs. These findings suggest that gastric pH variations should be evaluated for ASD formulations containing weakly basic drugs and enteric polymers.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Supersaturation and phase behavior during dissolution of amorphous solid dispersions. Int J Pharm 2023; 631:122524. [PMID: 36549404 DOI: 10.1016/j.ijpharm.2022.122524] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Amorphous solid dispersion (ASD) is a promising strategy to enhance solubility and bioavailability of poorly water-soluble drugs. Due to higher free energy of ASD, supersaturated drug solution could be generated during dissolution. When amorphous solubility of a drug is exceeded, drug-rich nanodroplets could form and act as a reservoir to maintain the maximum free drug concentration in solution, facilitating the absorption of the drug in vivo. Dissolution behavior of ASD has received increasing interests. This review will focus on the recent advances in ASD dissolution, including the generation and maintenance of supersaturated drug solution in absence or presence of liquid-liquid phase separation. Mechanism of drug release from ASD including polymer-controlled dissolution and drug-controlled dissolution will be introduced. Formation of amorphous drug-rich nanodroplets during dissolution and the underlying mechanism will be discussed. Phase separation morphology of hydrated ASD plays a critical role in dissolution behavior of ASD, which will be highlighted. Supersaturated drug solution shows poor physical stability and tends to crystallize. The effect of polymer and surfactant on supersaturated drug solution will be demonstrated and some unexpected results will be shown. Physicochemical properties of drug and polymer could impact ASD dissolution and some of them even show opposite effect on dissolution and physical stability of ASD in solid state, respectively. This review will contribute to a better understanding of ASD dissolution and facilitate a rational design of ASD formulation.
Collapse
|
9
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|
10
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
11
|
Sharma A, Arora K, Mohapatra H, Sindhu RK, Bulzan M, Cavalu S, Paneshar G, Elansary HO, El-Sabrout AM, Mahmoud EA, Alaklabi A. Supersaturation-Based Drug Delivery Systems: Strategy for Bioavailability Enhancement of Poorly Water-Soluble Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092969. [PMID: 35566319 PMCID: PMC9101434 DOI: 10.3390/molecules27092969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
At present, the majority of APIs synthesized today remain challenging tasks for formulation development. Many technologies are being utilized or explored for enhancing solubility, such as chemical modification, novel drug delivery systems (microemulsions, nanoparticles, liposomes, etc.), salt formation, and many more. One promising avenue attaining attention presently is supersaturated drug delivery systems. When exposed to gastrointestinal fluids, drug concentration exceeds equilibrium solubility and a supersaturation state is maintained long enough to be absorbed, enhancing bioavailability. In this review, the latest developments in supersaturated drug delivery systems are addressed in depth.
Collapse
Affiliation(s)
- Arvind Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
- Correspondence: (R.K.S.); (S.C.)
| | - Madalin Bulzan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (R.K.S.); (S.C.)
| | - Gulsheen Paneshar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Hosam O. Elansary
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| |
Collapse
|
12
|
Goh CF, Lane ME. Advanced structural characterisation of pharmaceuticals using nano-thermal analysis (nano-TA). Adv Drug Deliv Rev 2022; 180:114077. [PMID: 34896130 DOI: 10.1016/j.addr.2021.114077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
The production of drug delivery systems fabricated at the nano scale comes with the challenges of identifying reliable characterisation tools, especially for solid dosage forms. A full understanding of physicochemical properties of solid-state systems at a high spatial resolution is essential to monitor their manufacturability, processability, performance (dissolution) and stability. Nano-thermal analysis (nano-TA), a hybrid of atomic force microscopy (AFM) and thermal analysis, has emerged as a solution to address the need for complete characterisation of samples with surface heterogeneity. Nano-TA provides not only physical information using conventional AFM but also the thermal behaviour of these systems as an additional chemical dimension. In this review, the principles and techniques of nano-TA are discussed with emphasis on recent pharmaceutical applications. Building on nano-TA, the combination of this approach with infrared spectroscopic analysis is briefly introduced. The challenges and considerations for future development of nano-TA characterisation are also outlined.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
13
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
14
|
Bristol AN, Lamm MS, Li Y. Impact of Hydroxypropyl Methylcellulose Acetate Succinate Critical Aggregation Concentration on Celecoxib Supersaturation. Mol Pharm 2021; 18:4299-4309. [PMID: 34738825 DOI: 10.1021/acs.molpharmaceut.1c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymers play an important role in amorphous solid dispersions (ASDs), enhancing stability in the solid state and maintaining supersaturation in aqueous solutions of intrinsically low-water-soluble drug candidates. Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is widely used in ASDs due to its hydrophobic/hydrophilic balance and ionizability of the substituent functionalities. While colloid formation of HPMCAS in solution due to this hydrophobic/hydrophilic balance has been studied, the impact of the polymer conformation (random coil vs aggregated) on drug supersaturation of ASDs is not well understood. To our knowledge, this is the first report where the critical aggregation concentration for three grades of HPMCAS (HF/MF/LF) has been determined via fluorescence spectroscopy using the environment-sensitive probe pyrene. The specific impact of polymer conformation (random coil vs aggregate) on the model drug celecoxib (CLX) has been elucidated with fluorescence quenching and nuclear magnetic resonance (NMR) spectroscopy. A negative deviation of the Stern-Volmer plot indicated that aggregated HPMCAS effectively blocked the quencher's access to CLX. This is further supported by NMR observations, where NMR spectra indicate a larger change of chemical shift of the -NH group of CLX when HPMCAS is above its aggregated concentration, suggesting strong H-bonding interactions between aggregated HPMCAS and CLX. Finally, the supersaturation-precipitation study shows that all three grades of HPMCAS in the aggregated state significantly enhanced CLX supersaturation compared to the nonaggregated state, indicating that polymer aggregation plays a critical role in maintaining drug supersaturation.
Collapse
Affiliation(s)
- Ashleigh N Bristol
- Preformulation, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew S Lamm
- Preformulation, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongjun Li
- Preformulation, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
15
|
Okamoto Y, Higashi K, Morita T, Ueda K, Mukaide S, Takeda J, Karashima M, Ikeda Y, Moribe K. Nanostructure and Molecular-Level Characterization of Aminoalkyl Methacrylate Copolymer and the Impact on Drug Solubilization Ability. Mol Pharm 2021; 18:4111-4121. [PMID: 34641686 DOI: 10.1021/acs.molpharmaceut.1c00526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of pH changes and saccharin (SAC) addition on the nanostructure and mobility of the cationic aminoalkyl methacrylate copolymer Eudragit E PO (EUD-E) and its drug solubilization ability were investigated. Small-angle X-ray scattering performed using synchrotron radiation and atomic force microscopy showed that the EUD-E nanostructure, which has a size of approximately several nanometers, changed from a random coil structure at low pH (pH 4.0-5.0) to a partially folded structure at high pH (pH 5.5-6.5). The EUD-E also formed a partially folded structure in a wide pH range of 4.5-6.5 when SAC was present, and the coil-to-globule transition was moderate with pH increase, compared with that when SAC was absent. The equilibrium solubility of the neutral drug naringenin (NAR) was enhanced in the EUD-E solution and further increased as the pH increased. The enlargement of the hydrophobic region of EUD-E in association with the coil-to-globule transition led to efficient solubilization of NAR. The interaction with SAC enhanced the mobility of the EUD-E chains in the hydrophobic region of EUD-E, resulting in changes in the drug-solubilizing ability. 1H high-resolution magic-angle spinning NMR measurements revealed that the solubilized NAR in the partially folded structure of EUD-E showed higher molecular mobility in the presence of SAC than in the absence of SAC. This study highlighted that solution pH and the presence of SAC significantly changed the drug solubilization ability of EUD-E, followed by changes in the EUD-E nanostructure, including its hydrophobic region.
Collapse
Affiliation(s)
- Yuta Okamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takeshi Morita
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Sayaka Mukaide
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junpei Takeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masatoshi Karashima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukihiro Ikeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
16
|
Zhou H, Wang Y, Li S, Lu M. Improving chemical stability of resveratrol in hot melt extrusion based on formation of eutectic with nicotinamide. Int J Pharm 2021; 607:121042. [PMID: 34450224 DOI: 10.1016/j.ijpharm.2021.121042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
Hot melt extrusion (HME) is a technique applied in the preparation of pharmaceutical amorphous solid dispersions (ASD). Notably it is important to prevent thermal degradation of heat-sensitive drugs during HME. In this study, we present a new strategy to improve chemical stability of pharmaceutical compounds during HME through the formation of eutectics with small molecules. Resveratrol (RES) was selected as the model compound because it is a heat-liable natural product with a very high melting point of 267 °C. When heated at its melting point for 3 min, it degrades by 40%. RES can co-crystallize with nicotinamide (NIC) in solution, however, it can only form a eutectic with NIC during heating. HPMCAS was selected as the polymer matrix and the drug loading of RES was fixed as 20% (weight ratio). The lowest extrusion temperature that can result to RES-HPMCAS ASD is 215 °C. At this temperature, RES shows 7.36% degradation during extrusion. Replacement of 21.4% HPMCAS with NIC decreased the melting temperature of NIC and thus lowered the minimal extrusion temperature to 155 °C. This effectively prevented thermal degradation of RES without negatively affecting non-sink dissolution. The only extra cost for this method is stricter storage conditions (low temperature and low humidity) due to the low glass transition temperature of NIC. Similar strategy may be applied to other heat-liable drugs in similar ways. This study demonstrates the use of eutectic formation for preventing thermal degradation of drug during extrusion of ASD.
Collapse
Affiliation(s)
- Huanyue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuting Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Chen XL, Liang XL, Zhao GW, Zeng QY, Dong W, Ou LQ, Zhang HN, Jiang QY, Liao ZG. Improvement of the bioavailability of curcumin by a supersaturatable self nanoemulsifying drug delivery system with incorporation of a hydrophilic polymer: in vitro and in vivo characterisation. J Pharm Pharmacol 2021; 73:641-652. [PMID: 33772289 DOI: 10.1093/jpp/rgaa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The current study was focused on preparing curcumin (CUR) supersaturated self-nano-emulsion (PI-CUR-SNEDDS) using hydrophilic polymer and to study the influence of polymer precipitation inhibitor on the physicochemical and biopharmaceutical properties of the PI-CUR-SNEDDS. METHODS PI-CUR-SNEDDS were prepared using hydrophilic polymer in order to maintain the supersaturation of CUR in nano-emulsion solution, artificial gastrointestinal fluid (AGF), and the precipitates formed, and characterised by in vitro dispersion tests, in vitro intestinal absorption and in vivo pharmacokinetic and compared with CUR-SNEDDS. KEY FINDINGS PI-CUR-SNEDDS prepared with 2% hydroxypropyl methylcellulose 55-60 (HPMC55-60) as precipitation inhibitor (PI) significantly improved the viscosity, physical stability and CUR's equilibrium solubility of nanoemulsion. HPMC55-60 and CUR interact in AGF through intermolecular interactions, form hydrogen bonds, and produce amorphous precipitates. Compared with CUR-SNEDDS, the proportion of CUR in the hydrophilic phase increased by about 3-fold, and apparent permeability coefficient (Papp) in duodenum, jejunum, ileum, and colon increased by 2.30, 3.65, 1.54 and 2.08-fold, respectively, and the area under the plasma concentration-time curve0-12h of PI-CUR-SNEDDS also increased by 3.50-fold. CONCLUSIONS Our results suggested that HPMC55-60 maintained the CUR supersaturation state by forming hydrogen bonds with CUR, increasing the solution's viscosity and drug solubilisation, thus improving the absorption and bioavailability of CUR.
Collapse
Affiliation(s)
- Xu-Long Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xin-Li Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guo-Wei Zhao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing-Yun Zeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li-Quan Ou
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao-Nan Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qie-Ying Jiang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Gen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Wilson VR, Mugheirbi NA, Mosquera-Giraldo LI, Deac A, Moseson DE, Smith DT, Novo DC, Borca CH, Slipchenko LV, Edgar KJ, Taylor LS. Interaction of Polymers with Enzalutamide Nanodroplets-Impact on Droplet Properties and Induction Times. Mol Pharm 2021; 18:836-849. [PMID: 33539105 DOI: 10.1021/acs.molpharmaceut.0c00833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amorphous solid dispersions (ASDs), which consist of a drug dispersed in a polymeric matrix, are increasingly being applied to improve the in vivo performance of poorly water-soluble drugs delivered orally. The polymer is a critical component, playing several roles including facilitating drug release from the ASD, as well as delaying crystallization from the supersaturated solution generated upon dissolution. Certain ASD formulations dissolve to produce amorphous drug-rich nanodroplets. The interaction of the polymer with these nanodroplets is poorly understood but is thought to be important for inhibiting crystallization in these systems. In this study, the impact of ionic polymers on the crystallization kinetics of enzalutamide from supersaturated solutions containing different amounts of amorphous nanodroplets was evaluated by determination of nucleation induction times. The amount of the polymer associated with the drug nanodroplets was also determined. When comparing two polymers, hydroxypropylmethyl cellulose acetate succinate (HPMCAS) and Eudragit E PO, it was found that the crystallization tendency and physical properties of the drug nanodroplets varied in the presence of these two polymers. Both polymers distributed between the aqueous phase and the drug-rich nanodroplets. A greater amount of Eudragit E PO was associated with the drug-rich nanodroplets. Despite this, Eudragit E PO was a less-effective crystallization inhibitor than HPMCAS in systems containing nanodroplets. In conclusion, in supersaturated solutions containing amorphous nanodroplets, the extent of association of a polymer with the drug nanodroplet does not solely predict crystallization inhibition.
Collapse
Affiliation(s)
- Venecia R Wilson
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Naila A Mugheirbi
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Laura I Mosquera-Giraldo
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Alexandru Deac
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Dana E Moseson
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Daniel T Smith
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Diana C Novo
- Department of Chemistry, College of Science, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Carlos H Borca
- Department of Chemical and Biological Engineering, School of Engineering and Applied Science, Princeton University, 41 Olden Street, Princeton, New Jersey 08544, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, College of Science, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kevin J Edgar
- Department of Chemistry, College of Science, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Lynne S Taylor
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Cetindag E, Pentangelo J, Arrieta Cespedes T, Davé RN. Effect of solvents and cellulosic polymers on quality attributes of films loaded with a poorly water-soluble drug. Carbohydr Polym 2020; 250:117012. [PMID: 33049873 PMCID: PMC7575819 DOI: 10.1016/j.carbpol.2020.117012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
The combined effect of solvent, cellulosic polymer, and a poorly water-soluble drug, fenofibrate (FNB) on solution-cast pharmaceutical film quality attributes, e.g., morphology, drug recrystallization, content uniformity, mechanical properties, dissolution rate and supersaturation level, was investigated. Film morphology, content uniformity, and mechanical properties were impacted by the extent of FNB recrystallization which was strongly affected by FNB solubility in the solvent as compared to the polymer type, hydroxypropyl methylcellulose or hydroxypropyl cellulose. FNB recrystallization affected drug dissolution rates and supersaturation under non-sink conditions. Specifically, the area under the curve linearly correlated with recrystallization. After one-year storage, FNB recrystallization reached very high levels even for the films with no initial recrystallization, suggesting low initial crystallinity does not guarantee stability. Thus, uncontrolled recrystallization and poor time-stability would be unavoidable for solution-cast films. Overall, both the polymer and the solvent strongly impact drug recrystallization, film structure, mechanical properties, dissolution rate, and supersaturation.
Collapse
Affiliation(s)
- Eylul Cetindag
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - John Pentangelo
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Thierry Arrieta Cespedes
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Rajesh N Davé
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| |
Collapse
|
20
|
Wilson VR, Lou X, Osterling DJ, Stolarik DF, Jenkins GJ, Nichols BLB, Dong Y, Edgar KJ, Zhang GGZ, Taylor LS. Amorphous solid dispersions of enzalutamide and novel polysaccharide derivatives: investigation of relationships between polymer structure and performance. Sci Rep 2020; 10:18535. [PMID: 33116200 PMCID: PMC7595150 DOI: 10.1038/s41598-020-75077-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
Amorphous solid dispersion (ASD) is a widely employed formulation technique for drugs with poor aqueous solubility. Polymers are integral components of ASDs, but mechanisms by which polymers lead to the generation and maintenance of supersaturated solutions, which enhance oral absorption in vivo, are poorly understood. Herein, a diverse group of newly synthesized cellulose derivatives was evaluated for their ability to inhibit crystallization of enzalutamide, a poorly soluble compound used to treat prostate cancer. ASDs were prepared from selected polymers, specifically a somewhat hydrophobic polymer that was extremely effective at inhibiting drug crystallization, and a less effective, but more hydrophilic, crystallization inhibitor, that might afford better release. Drug membrane transport rate was evaluated in vitro and compared to in vivo performance, following oral dosing in rats. Good correlation was noted between the in vitro diffusion cell studies and the in vivo data. The ASD formulated with the less effective crystallization inhibitor outperformed the ASD prepared with the highly effective crystallization inhibitor in terms of the amount and rate of drug absorbed in vivo. This study provides valuable insight into key factors impacting oral absorption from enabling ASD formulations, and how best to evaluate such formulations using in vitro approaches.
Collapse
Affiliation(s)
- Venecia R Wilson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, Lafayette, IN, 47907, USA
| | - Xiaochun Lou
- Drug Product Development, Research & Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Donald J Osterling
- Drug Metabolism and Pharmacokinetics, Research & Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - DeAnne F Stolarik
- Drug Metabolism and Pharmacokinetics, Research & Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Gary J Jenkins
- Drug Metabolism and Pharmacokinetics, Research & Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Brittany L B Nichols
- Department of Chemistry, College of Science, Virginia Tech, 240 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Yifan Dong
- Department of Chemistry, College of Science, Virginia Tech, 240 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, 230A Cheatham Hall, Blacksburg, VA, 24061, USA
| | - Geoff G Z Zhang
- Drug Product Development, Research & Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
El Sayed M, Alhalaweh A, Bergström CAS. Insights into Dissolution and Solution Chemistry of Multidrug Formulations of Antihypertensive Drugs. Mol Pharm 2020; 17:4018-4028. [PMID: 32870692 DOI: 10.1021/acs.molpharmaceut.0c00835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using fixed dose combinations of drugs instead of administering drugs separately can be beneficial for both patients and the health care system, but the current understanding of how multidrug formulations work at the molecular level is still in its infancy. Here, we explore dissolution, solubility, and supersaturation of various drug combinations in amorphous formulations. The effect of chemical structural similarity on combination behavior was investigated by using structurally related compounds of both drugs. The effect of polymer type on solution behavior was also evaluated using chemically diverse polymers. Indapamide (IPM) concentration decreased when combined with felodipine (FDN) or its analogues, which occurred even when the IPM solution was undersaturated. The extent of solubility decrease of FDN was less than that of IPM from the dissolution of an equimolar formulation of the drugs. No significant solubility decrease was observed for FDN at low contents of IPM which was also observed for other dihydropyridines, whereas FDN decreases at high contents of IPM. This was explained by the complex nature of the colloidal precipitates of the combinations which impacts the chemical potential of the drugs in solution at different levels. The maximum achievable concentration of FDN and IPM during dissolution of the polyvinylpyrrolidone-based amorphous solid dispersion was higher than the value measured with the hydroxypropyl methylcellulose acetate succinate-based formulation. This emphasizes the significance of molecular properties and chemical diversity of drugs and polymers on solution chemistry and solubility profiles. These findings may apply to drugs administered as a single dosage form or in separate dosage forms and hence need to be well controlled to assure effective treatments and patient safety.
Collapse
Affiliation(s)
- Mira El Sayed
- Department of Pharmacy, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden.,Recipharm OT Chemistry AB, SE-754 50 Uppsala, Sweden
| | | | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden
| |
Collapse
|
22
|
Saraf R, Mathur A, Maheshwari V. Polymer-Controlled Growth and Wrapping of Perovskite Single Crystals Leading to Better Device Stability and Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25011-25019. [PMID: 32388977 DOI: 10.1021/acsami.0c04346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A commodity-scale polymer is used for controlling the nucleation and growth of single crystals of organolead halide perovskite. The polymer [polystyrene (PS)] cross-links and strongly interacts with PbI2 and MAI (MAPbI3 perovskite precursors) resulting in the control of the crystallization process. The PS concentration modulates the nucleation time, crystal size, and the number of perovskite single crystals. In addition, the PS-based MAPbI3 crystals show an enhanced performance as well as improved thermal and environmental stability. Specifically, the PS-MAPbI3 crystals show 3 times higher photocurrent than plain MAPbI3 crystals and maintain a stable structure for more than 50 days (1200 h) under continuous 0.1 sun illumination in the air with a relative humidity of 40-45%. The improved performance and stability are attributed to the direct interaction between the PS and perovskite, which greatly reduces the ion migration, defect traps, and charge recombination and improves the carrier mobility and lifetime.
Collapse
Affiliation(s)
- Rohit Saraf
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avi Mathur
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Vivek Maheshwari
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Elucidation of alginate-drug miscibility on its crystal growth inhibition effect in supersaturated drug delivery system. Carbohydr Polym 2020; 230:115601. [DOI: 10.1016/j.carbpol.2019.115601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/29/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022]
|
24
|
Zhang W, Hate SS, Russell DJ, Hou HH, Nagapudi K. Impact of Surfactant and Surfactant-Polymer Interaction on Desupersaturation of Clotrimazole. J Pharm Sci 2019; 108:3262-3271. [DOI: 10.1016/j.xphs.2019.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
|
25
|
Tuning the Crystal Habits of Organic Explosives by Antisolvent Crystallization: The Case Study of 2,6-dimaino-3,5-dinitropyrazine-1-oxid (LLM-105). CRYSTALS 2019. [DOI: 10.3390/cryst9080392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Crystallization is one of the most important methods in the crystal habit control of explosive products. For this study, the antisolvent crystallization experiments were carried out to tune the crystal habits of 2,6-dimaino-3,5-dinitropyrazine-1-oxid (LLM-105). Dimethyl sulphoxide (DMSO) was used as an organic solvent. Water, methanol, acetic acid, nitromethane, acetone, ethanol, methylene chloride, o-dichlorobenzene, and toluene were selected as antisolvents. The X-shaped, spherical cluster-like, rod-like, needle-like, and dendritic crystals were successfully produced by varying the kind of the antisolvent. These results manifested that the polarity and functional groups of antisolvent molecules played important roles in the crystal habits of LLM-105 explosive. The powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) measurements indicated that these antisolvents just tuned the crystal habit of LLM-105 but did not change the crystal structure. The differential scanning calorimetry (DSC) and thermogravimetry (TG) results of the obtained crystals showed that the crystal habits significantly affected the thermal properties. This study can contribute to the investigation of the mechanism of antisolvent-induced crystal habit modification and screen out the efficient antisolvents.
Collapse
|
26
|
Guan J, Huan X, Liu Q, Jin L, Wu H, Zhang X, Mao S. Synergetic effect of nucleation and crystal growth inhibitor on in vitro-in vivo performance of supersaturable lacidipine solid dispersion. Int J Pharm 2019; 566:594-603. [PMID: 31175988 DOI: 10.1016/j.ijpharm.2019.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Limited supersaturation maintaining duration is the main challenge for amorphous solid dispersion design. Nucleation or crystal growth inhibitors may function in different ways but the combination use of nucleation and crystal growth inhibitors in supersaturated system is rarely explored. Thus, using Lacidipine (LCDP) as a Biopharmaceutical Classification System (BCS) II model drug, the aim of this study was to explore whether the combination use of nucleation and crystal growth inhibitors could provide a synergistic effect on the in vitro-in vivo performance of poorly water-soluble drugs. First of all, based on compatibility screening using solubility parameter (Δδ) and crystallization inhibition efficiency as criteria, soluplus (SOL) and gum arabic (GA) were selected as the most effective nucleation and crystal growth inhibitor respectively. Thereafter, the supersaturated drug solutions were spray dried and characterized. The in vitro release, physical stability as well as pharmacokinetic behavior were investigated. It was found that the combination use of SOL and GA did not present remarkable advantage in prolonging the supersaturation time in solution state. However, their synergistic effect in equilibrium solubility and dissolution enhancement was noticed at SOL/GA ratio 3:1, with 5-7 times higher dissolution rate observed for LCDP/SOL/GA based formulation compared with that of LCDP/SOL, which was maintained even after three months accelerated stability test under non-sink condition. Moreover, compared to the LCDP/SOL formulation, approximately 2.8 and 2.5-fold increase in the maximum plasma concentration (Cmax) and the area under the plasma-time curve (AUC0-∞) was achieved with LCDP/SOL/GA based formulation. Possible mechanism of the synergistic effect was elucidated, indicating GA may penetrate into SOL particles providing both electrostatic and steric stabilization. In conclusion, the combination use of screened nucleation and crystal growth inhibitors might be an efficient approach to design supersaturated drug delivery system.
Collapse
Affiliation(s)
- Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Huan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liwei Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyang Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Price DJ, Nair A, Kuentz M, Dressman J, Saal C. Calculation of drug-polymer mixing enthalpy as a new screening method of precipitation inhibitors for supersaturating pharmaceutical formulations. Eur J Pharm Sci 2019; 132:142-156. [DOI: 10.1016/j.ejps.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 11/24/2022]
|
28
|
Chen Y, Pui Y, Chen H, Wang S, Serno P, Tonnis W, Chen L, Qian F. Polymer-Mediated Drug Supersaturation Controlled by Drug-Polymer Interactions Persisting in an Aqueous Environment. Mol Pharm 2018; 16:205-213. [PMID: 30452278 DOI: 10.1021/acs.molpharmaceut.8b00947] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We investigated the drug-polymer interactions in nonaqueous and aqueous environments between a poorly water-soluble drug, BAY1161909 (909), and two commonly used polymers in amorphous solid dispersions, i.e., PVP and HPMC-AS. In an nonaqueous state, with a drug-polymer Flory-Huggins interaction parameter, solution NMR and FT-IR results revealed that strong specific interactions existed between 909 and PVP, while not between 909 and HPMC-AS. After prolonged moisture exposure under 95% RH, 909/PVP intermolecular interaction no longer existed, while hydrophobic interaction between 909 and HPMC-AS occurred and persisted. In an aqueous supersaturation study of 909, codissolved PVP significantly outperformed predissolved PVP in maintaining 909 supersaturation. We hypothesized that the codissolved PVP formed a specific interaction with 909, and thus, it was able to prolong 909 supersaturation before disruption of the interaction in aqueous medium, while predissolved PVP formed hydrogen bonds with water, and thus, it was no longer able to form specific interactions with 909 to prolong its supersaturation. In contrast, HPMC-AS effectively mediated 909 supersaturation through hydrophobic interaction, which became pronounced in an aqueous environment and was independent of how HPMC-AS was added. This hypothesis was supported by dynamic light scattering analysis, wherein the formation of nanosized drug/polymer aggregations was found to be correlating with the supersaturation of 909. In summary, we concluded that polymer-mediated drug supersaturation was controlled by drug-polymer interactions persisting in an aqueous environment. Therefore, the physical nature of the drug-polymer interaction as well as the dissolution kinetic of the drug and polymer are all critically important to achieve an optimal ASD formulation design.
Collapse
Affiliation(s)
- Yuejie Chen
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , P.R. China
| | - Yipshu Pui
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , P.R. China
| | - Huijun Chen
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , P.R. China
| | - Shan Wang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , P.R. China
| | - Peter Serno
- Chemical and Pharmaceutical Development, Research and Development , Bayer AG , 42096 Elberfeld , Germany
| | - Wouter Tonnis
- Chemical and Pharmaceutical Development, Research and Development , Bayer AG , 13342 Berlin , Germany
| | - Linc Chen
- Chemical and Pharmaceutical Development, Research and Development , Bayer AG , Beijing 100020 , China
| | - Feng Qian
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , P.R. China
| |
Collapse
|
29
|
Ditzinger F, Scherer U, Schönenberger M, Holm R, Kuentz M. Modified Polymer Matrix in Pharmaceutical Hot Melt Extrusion by Molecular Interactions with a Carboxylic Coformer. Mol Pharm 2018; 16:141-150. [DOI: 10.1021/acs.molpharmaceut.8b00920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, B-2340 Beerse, Belgium
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | |
Collapse
|
30
|
Stabilizing supersaturated drug-delivery system through mechanism of nucleation and crystal growth inhibition of drugs. Ther Deliv 2018; 9:873-885. [DOI: 10.4155/tde-2018-0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A supersaturated drug-delivery system is capable of enhancing oral bioavailability of hydrophobic drugs. Maintenance of the supersaturated system both in vitro and in vivo is one of the most challenging parts, for that it is required to keenly understand the nucleation and crystal growth behavior. Polymers are widely used to stabilize supersaturated solutions; screening of polymers is done on the basis of their interaction with drug. Nucleation and crystal growth inhibition and drug–polymer interactions can be investigated by using various spectroscopic methods. Various formulations are prepared as supersaturated systems using different drug-delivery systems utilizing different polymers, which illustrates that supersaturation is worthwhile to increase the solubility and hence oral bioavailability of poorly soluble drugs.
Collapse
|
31
|
Mosquera-Giraldo LI, Borca CH, Parker AS, Dong Y, Edgar KJ, Beaudoin SP, Slipchenko LV, Taylor LS. Crystallization Inhibition Properties of Cellulose Esters and Ethers for a Group of Chemically Diverse Drugs: Experimental and Computational Insight. Biomacromolecules 2018; 19:4593-4606. [PMID: 30376299 DOI: 10.1021/acs.biomac.8b01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laura I. Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Carlos H. Borca
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana, United States
| | - Andrew S. Parker
- Department of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, United States
| | - Yifan Dong
- Department of Chemistry, College of Science, Virginia Tech, Blacksburg, Virginia, United States
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia, United States
| | - Stephen P. Beaudoin
- Department of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, United States
| | - Lyudmila V. Slipchenko
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana, United States
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
32
|
Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci 2018; 14:248-264. [PMID: 32104456 PMCID: PMC7032228 DOI: 10.1016/j.ajps.2018.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have been approved for marketing consist of cellulose derivatives as stabilizers, thus highlighting their importance in generation of amorphous solid dispersions. These polymers offer numerous advantages like drug solubilization, crystallization inhibition and improvement in release patterns of drugs. Exploring their potential and exploiting their chemistry and pH responsive behaviour have led to the synthesis of new derivatives that has broadened the scope of the use of cellulose derivatives in amorphous formulation development. The present review aims to provide an overview of different mechanisms by which these cellulose derivatives inhibit the crystallization of drugs in the solid state and from supersaturated solution. A summary of different categories of cellulose derivatives along with the newly explored polymers has been provided. A special segment on strengths, weaknesses, opportunities, and threats (SWOT) analysis and critical quality attributes (CQAs) which affect the performance of the cellulose based amorphous solid dispersion will aid the researchers in identifying the major challenges in the development of cellulose based solid dispersion and serve as a guide for further formulation development.
Collapse
Affiliation(s)
| | | | | | - Nalini R Shastri
- Corresponding author. Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad 500037, India. Tel.: +91 040 23423749.
| |
Collapse
|
33
|
Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M. Effect of Polymer Chain Length on the Physical Stability of Amorphous Drug-Polymer Blends at Ambient Pressure. Mol Pharm 2018; 15:2807-2815. [PMID: 29791165 DOI: 10.1021/acs.molpharmaceut.8b00312] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rational selection of polymers for amorphous drug stabilization is necessary for further successful development of solid dispersion technology. In this paper, we investigate the effect of polymer chain length on the inhibition of amorphous drug recrystallization. To consider this problem, we prepared a drug-polymer blend (in 10:1 drug to polymer ratio) containing bicalutamide (BIC) and polyvinylpyrrolidone (PVP) with different chain lengths K10, K30, and K90. We applied broadband dielectric spectroscopy to compare the molecular dynamics of investigated samples and thoroughly recognize their crystallization tendencies from supercooled liquid state. Despite the lack of differences in molecular dynamics, we noticed significant changes in their crystallization rates. To rationalize such behavior, we performed positron annihilation lifetime spectroscopy measurements. The results showed that the value of free volume was the highest for blend with PVP K90, which at the same time was characterized by the greatest tendency to crystallize. We postulate that the polymer chain, depending on its length, can have different configurations in the space, leading to better or worse sample stabilization. Our results highlight how important is detailed understanding of physical properties of polymers for judicious selection of the best stabilization approach.
Collapse
Affiliation(s)
- Justyna Pacułt
- Institute of Physics , University of Silesia , 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland
| | - Marzena Rams-Baron
- Institute of Physics , University of Silesia , 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland
| | - Beata Chrząszcz
- Institute of Material Science , University of Silesia 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland
| | - Renata Jachowicz
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics , Jagiellonian University , Medyczna 9 , 30-688 Kraków , Poland
| | - Marian Paluch
- Institute of Physics , University of Silesia , 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland.,Silesian Center for Education and Interdisciplinary Research , 75 Pulku Piechoty 1A , 41-500 Chorzow , Poland
| |
Collapse
|
34
|
Price DJ, Ditzinger F, Koehl NJ, Jankovic S, Tsakiridou G, Nair A, Holm R, Kuentz M, Dressman JB, Saal C. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations – a PEARRL review. J Pharm Pharmacol 2018; 71:483-509. [DOI: 10.1111/jphp.12927] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection.
Key findings
Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection.
Summary
Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.
Collapse
Affiliation(s)
- Daniel J Price
- Merck KGaA, Darmstadt, Germany
- Frankfurt Goethe University, Frankfurt, Germany
| | - Felix Ditzinger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sandra Jankovic
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Georgia Tsakiridou
- Pharmathen SA, Product Design & Evaluation, Athens, Greece
- Department of Pharmacy, University of Athens, Athens, Greece
| | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, Beerse, Belgium
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | | | |
Collapse
|
35
|
Lu J, Obara S, Liu F, Fu W, Zhang W, Kikuchi S. Melt Extrusion for a High Melting Point Compound with Improved Solubility and Sustained Release. AAPS PharmSciTech 2018; 19:358-370. [PMID: 28741140 DOI: 10.1208/s12249-017-0846-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
The objective of the current study was to develop an amorphous solid dispersion for a high melting point compound, griseofulvin (GRF), with an enhanced solubility and a controlled release pattern utilizing hot melt extrusion (HME) technology. Hypromellose acetate succinate (HPMCAS, Shin-Etsu AQOAT®, medium particle size) was explored as the polymeric carrier, while hypromellose (HPMC, Metolose® SR) was chosen as the release rate control agent. GRF presented an HPMCAS grade-dependent solubility: AS-HMP > AS-MMP > AS-LMP. At 10 wt.% loading, the release of GRF was prolonged to 6 h with the incorporation of 10% HPMC 90SH-100SR, while its solubility was enhanced up to sevenfold. Fourier transform infrared spectroscopy (FT-IR) identified the H-bonding between drug and polymers. Element analysis utilizing X-ray photoelectron spectroscopy (XPS) discovered that less GRF aggregated on the surface of binary powders compared with ternary powders containing HPMC, indicating the relatively poor wettability of the latter one. The morphology of extrudates was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), illustrating a much smoother and uniform surface of binary extrudates. Immediate release tablets including 10% super-disintegrant L-HPC were able to achieve identical dissolution profile as the powders of extrudates.
Collapse
|
36
|
Shi Q, Zhang J, Zhang C, Jiang J, Tao J, Zhou D, Cai T. Selective Acceleration of Crystal Growth of Indomethacin Polymorphs by Low-Concentration Poly(ethylene oxide). Mol Pharm 2017; 14:4694-4704. [DOI: 10.1021/acs.molpharmaceut.7b00854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qin Shi
- State Key Laboratory
of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Zhang
- State Key Laboratory
of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chen Zhang
- Department of Polymer Science and Engineering,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Jiang
- Department of Polymer Science and Engineering,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jun Tao
- State Key Laboratory
of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ting Cai
- State Key Laboratory
of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic
Diseases, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
37
|
Xiong H, Fu J, Sun H, Wang E, Ding Y, Ren G, Jing Q, Ren F. The Physicochemical Investigation of 17β-Estradiol Crystalline Prepared by In Situ pH-Dependent Solubility Technique with Polyvinylpyrrolidone. AAPS PharmSciTech 2017; 18:2889-2897. [PMID: 28424978 DOI: 10.1208/s12249-017-0773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Micro-particles of 17β-estradiol (ED) were prepared with polyvinylpyrrolidone (PVP) by in situ pH-dependent solubility technique. Products were characterized using multiple instruments, and molecular interactions between ED and PVP were explored. Powder X-ray diffraction and thermal analysis revealed crystalline ED in the micro-particles is hemihydrated. PVP was also present in the micro-particles. Laser particle size analysis and scanning electron microscopy revealed thin slice morphology, which might have resulted from the influence of PVP. Moreover, the results of contact angle, specific surface area, and dynamic vapor sorption showed that the surface properties of products were improved. These physicochemical properties of the micro-particles resulted in an obvious improvement in dissolution rate. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance revealed hydrogen bonding between ED and PVP. A method was established for the preparation of micro-particles through the addition of PVP during the reaction process.
Collapse
Affiliation(s)
- Hui Xiong
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China
| | - Jinping Fu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China
| | - Hanjing Sun
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China
| | - Enfu Wang
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China
| | - Yunhui Ding
- Shanghai Zhongxi Sunve Pharmaceutical Co., Ltd, Shanghai, 201806, China
| | - Guobin Ren
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China
| | - Qiufang Jing
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China
| | - Fuzheng Ren
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 363#, No. 130, Meilong Rd., Shanghai, 200237, China.
| |
Collapse
|
38
|
Determination of Nonspherical Morphology of Doxorubicin-Loaded Liposomes by Atomic Force Microscopy. J Pharm Sci 2017; 107:717-726. [PMID: 29031955 DOI: 10.1016/j.xphs.2017.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
The 3-D morphology of doxorubicin (DOX)-loaded liposomes with a size of circa 100 nm was characterized by atomic force microscopy in an aqueous environment. Prolate liposomes appear in accordance with linear expansion of DOX fiber bundles precipitated inside liposomes. Oblate and concave liposomes were simultaneously observed with increased DOX concentrations; however, their morphologies were not readily determined by 2-D cryo-TEM imaging. Precise data analysis of the 3-D parameters of each liposome allowed semiquantitative evaluation of the transformation of spherical liposomes into nonspherical-prolate, oblate, and concave liposomes. In addition, nonspherical liposomes became spherical on the replacement of the liposomal outer phase consisting of a sucrose solution, with water and subsequent water influx. All spherical liposomes transformed into oblate and concave liposomes with a return to hyperosmotic conditions, when transferred from water to sucrose solution. Furthermore, the concave liposomes did not appear under DOX incubation conditions (65°C), which could be due to the amorphous and supersaturated DOX inside the liposomes that restrained liposomal shrinkage. As atomic force microscopy has improved our ability to image 3-D morphologies of liposomes in various conditions, it is an alternative analytical tool to cryo-TEM and may have future applications in regulatory tests for quality control and assurance.
Collapse
|
39
|
Li J, Wang X, Li C, Fan N, Wang J, He Z, Sun J. Viewing Molecular and Interface Interactions of Curcumin Amorphous Solid Dispersions for Comprehending Dissolution Mechanisms. Mol Pharm 2017; 14:2781-2792. [DOI: 10.1021/acs.molpharmaceut.7b00319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Wang
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Fan
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key
Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Wenhua Road, No. 103, Shenyang 110016, China
| | - Zhonggui He
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
40
|
Van Duong T, Reekmans G, Venkatesham A, Van Aerschot A, Adriaensens P, Van Humbeeck J, Van den Mooter G. Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions. Mol Pharm 2017; 14:1726-1741. [DOI: 10.1021/acs.molpharmaceut.6b01172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tu Van Duong
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49 b921, 3000 Leuven, Belgium
- Department
of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
| | - Gunter Reekmans
- Applied
and Analytical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek BE-3590, Belgium
| | - Akkaladevi Venkatesham
- Medicinal
Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 b1041, 3000 Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal
Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 b1041, 3000 Leuven, Belgium
| | - Peter Adriaensens
- Applied
and Analytical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek BE-3590, Belgium
| | - Jan Van Humbeeck
- Department
of Materials Engineering, KU Leuven, Campus Arenberg, Kasteelpark Arenberg
44 b2450, 3001 Heverlee, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N2, Herestraat 49 b921, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Radu M, Kremer K. Enhanced Crystal Growth in Binary Lennard-Jones Mixtures. PHYSICAL REVIEW LETTERS 2017; 118:055702. [PMID: 28211741 DOI: 10.1103/physrevlett.118.055702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 06/06/2023]
Abstract
We study the crystal growth in binary Lennard-Jones mixtures by molecular dynamics simulations. Growth dynamics, the structure of the liquid-solid interfaces as well as droplet incorporation into the crystal vary with solution properties. For demixed systems we observe a strongly enhanced crystal growth at the cost of enclosed impurities. Furthermore, we find different interface morphologies depending on solubility. We relate our observations to growth mechanisms based on the Gibbs-Thomson effect as well as to predictions of the Kardar-Parisi-Zhang theory in 2+1 dimensions.
Collapse
Affiliation(s)
- M Radu
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
| | - K Kremer
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
42
|
Zhu N, Li JC, Zhu JX, Wang X, Zhang J. Characterization and Bioavailability of Wogonin by Different Administration Routes in Beagles. Med Sci Monit 2016; 22:3737-3745. [PMID: 27744456 PMCID: PMC5070617 DOI: 10.12659/msm.897621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background With the gradually accumulating research on pharmacological activity of wogonin, the in vitro analysis research on wogonin has become more and more popular, but there are very few reports about in vivo detection, and there are no solid dispersions (SDs) of Wogonin. The aim of this study was to explore the formation of solid dispersions (SDs) of wogonin. The reasons for the low bioavailability were studied through different routes of administration. Material/Methods SDs was formulated using the solvent evaporation method via polyvinylpyrrolidone K30 (PVP). The characterization of the drug and its carrier was detected by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The serum concentrations of Wogonin were detected using the LC-MS/MS method. Six beagles were fed 3 different formulations of wogonin in 3 cycles. Results The SDs of wogonin had a higher solubility than the physical mixtures. Based on XRD and DSC, wogonin was transformed from a crystalline morphology to an amorphous structure. The main pharmacokinetic parameters of i.g. administration (crude material and SD) and i.v. route were as follows: Cmax (2.5±1.1), (7.9±3.3), and (6838.7±1322.1) μg/L, tmax (0.7±0.3) and (0.3±0.2) h for the former, AUC0-t (7.1±2.0), (21.0±3.2) and (629.7±111.8) μg·h/L. The absolute bioavailability of native wogonin and wogonin arginine solution were (0.59±0.35)% and (3.65±2.60)%. Further research showed that the low bioavailability of wogonin might be associated with low solubility and rapid combination with glucuronic acid in vivo. Conclusions The significantly increased solubility of SDs and the further preparation of arginine solution could significantly increase the bioavailability of wogonin.
Collapse
Affiliation(s)
- Na Zhu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jian-Chun Li
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jin-Xiu Zhu
- Department of Pharmacy, The 1st Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Xiu Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jin Zhang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
43
|
Mosquera-Giraldo LI, Borca CH, Meng X, Edgar KJ, Slipchenko LV, Taylor LS. Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery. Biomacromolecules 2016; 17:3659-3671. [PMID: 27715018 DOI: 10.1021/acs.biomac.6b01156] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymers play a key role in stabilizing amorphous drug formulations, a recent strategy employed to improve solubility and bioavailability of drugs delivered orally. However, the molecular mechanism of stabilization is unclear, therefore, the rational design of new crystallization-inhibiting excipients remains a substantial challenge. This article presents a combined experimental and computational approach to elucidate the molecular features that improve the effectiveness of cellulose polymers as solution crystallization inhibitors, a crucial first step toward their rational design. Polymers with chemically diverse substituents including carboxylic acids, esters, ethers, alcohols, amides, amines, and sulfides were synthesized. Measurements of nucleation induction times of the model drug, telaprevir, show that the only effective polymers contained carboxylate groups in combination with an optimal hydrocarbon chain length. Computational results indicate that polymer conformation as well as solvation free energy are important determinants of effectiveness at inhibiting crystallization and show that simulations are a promising predictive tool in the screening of polymers. This study suggests that polymers need to have an adequate hydrophilicity to promote solvation in an aqueous environment, and sufficient hydrophobic regions to drive interactions with the drug. Particularly, the right balance between key substituent groups and lengths of hydrocarbon side chains is needed to create effective materials.
Collapse
Affiliation(s)
- Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, Indiana, United States
| | - Carlos H Borca
- Department of Chemistry, College of Science, Purdue University , West Lafayette, Indiana, United States
| | - Xiangtao Meng
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech , Blacksburg, Virginia, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech , Blacksburg, Virginia, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, College of Science, Purdue University , West Lafayette, Indiana, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, Indiana, United States
| |
Collapse
|
44
|
Hens B, Corsetti M, Brouwers J, Augustijns P. Gastrointestinal and Systemic Monitoring of Posaconazole in Humans After Fasted and Fed State Administration of a Solid Dispersion. J Pharm Sci 2016; 105:2904-2912. [DOI: 10.1016/j.xphs.2016.03.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 10/21/2022]
|
45
|
Punčochová K, Prajzlerová M, Beránek J, Štěpánek F. The impact of polymeric excipients on the particle size of poorly soluble drugs after pH-induced precipitation. Eur J Pharm Sci 2016; 95:138-144. [PMID: 27539142 DOI: 10.1016/j.ejps.2016.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/24/2016] [Accepted: 08/13/2016] [Indexed: 01/25/2023]
Abstract
Active pharmaceutical ingredients (APIs) with strongly pH-dependent aqueous solubility can face the problem of precipitating from solution when the pH changes from acidic in the stomach to neutral in the intestine. The present work investigates the effect of two polymeric excipients - polyvinylpyrrolidone (PVP) and Soluplus - on the ability to either prevent precipitation, or to control the size distribution of precipitated particles when precipitation cannot be prevented. Two different APIs were compared, Dabigatran etexilate mesylate and Rilpivirine hydrochloride. The effect of excipient concentration on the precipitation behaviour during pH titration was systematically investigated and qualitatively different trends were observed: in case of Soluplus, which forms a micellar solution when critical micelle concentration is exceeded, precipitation was inhibited in the case of Dabigatran etexilate, which partitioned into the micelles. On the other hand, Rilpivirine precipitated independently of Soluplus concentration. In the case of PVP, which does not form micelles, precipitation could not be avoided. Increased polymer concentration, however prevented the aggregation of precipitated particles into larger cluster. The observed effect of PVP was especially pronounced for Rilpivirine. The main conclusion of this study is that a suitably chosen polymeric excipient can either prevent precipitation altogether or reduce the size of the resulting particles. The mechanism of action, however, seems-specific to a given molecule. It was also shown that the polymer-stabilised particles have a potential to redissolve.
Collapse
Affiliation(s)
- Kateřina Punčochová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague 6, Czech Republic; Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | - Marie Prajzlerová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague 6, Czech Republic
| | - Josef Beránek
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Prague 6, Czech Republic.
| |
Collapse
|
46
|
Van Duong T, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin Drug Deliv 2016; 13:1681-1694. [DOI: 10.1080/17425247.2016.1198769] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tu Van Duong
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Pharmaceutics, Hanoi University of Pharmacy, Ha Noi, Vietnam
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven – University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Schram CJ, Taylor LS, Beaudoin SP. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11279-11287. [PMID: 26390362 DOI: 10.1021/acs.langmuir.5b02486] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.
Collapse
Affiliation(s)
- Caitlin J Schram
- School of Chemical Engineering, College of Engineering, and ‡Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- School of Chemical Engineering, College of Engineering, and ‡Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| | - Stephen P Beaudoin
- School of Chemical Engineering, College of Engineering, and ‡Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
48
|
Ting JM, Navale TS, Jones SD, Bates FS, Reineke TM. Deconstructing HPMCAS: Excipient Design to Tailor Polymer-Drug Interactions for Oral Drug Delivery. ACS Biomater Sci Eng 2015; 1:978-990. [PMID: 33429529 DOI: 10.1021/acsbiomaterials.5b00234] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spray-dried dispersions (SDDs) are fascinating polymer-drug mixtures that exploit the amorphous state of a drug to dramatically elevate its apparent aqueous solubility above equilibrium. For practical usage in oral delivery, understanding how polymers mechanistically provide physical stability during storage and prevent supersaturated drugs from succumbing to precipitation during dissolution remains a formidable challenge. To this end, we developed a versatile polymeric platform with functional groups analogous to hydroxypropyl methyl cellulose acetate succinate (HPMCAS, a heterogeneous leading excipient candidate for SDDs) and studied its interactions with Biopharmaceutical Classification System Class II drug models probucol, danazol, and phenytoin at various dosages. By conducting reversible addition-fragmentation chain transfer polymerizations with monomeric components chemically analogous to HPMCAS, we synthetically dismantled the highly polydisperse architecture of HPMCAS into well-defined polymer systems (i.e., targetable Mn, Đ < 1.3, tunable Tg). In the powdered SDD form, by wide-angle X-ray diffraction all HPMCAS analogs yielded amorphous danazol and phenytoin up to 50 wt % loading, whereas for probucol, hydrophobic methoxy functionality and high polymeric Tg were key to inhibit immediate partitioning into crystalline domains. Nonsink in vitro dissolution tests revealed distinct release profiles. The polymer containing only acetyl and succinoyl substituents spray-dried with probucol increased the area under the dissolution curve by a factor of 180, 112, and 26 over pure drug at 10, 25, and 50 wt % loading, respectively. For crystallization-prone danazol and phenytoin, we observed that the water-soluble polymer with hydroxyl groups inhibited crystal growth and enabled high burst release and supersaturation maintenance. Our findings provide fundamental insight into how excipient microstructures can complex with drugs for excipient formulation applications.
Collapse
Affiliation(s)
- Jeffrey M Ting
- Departments of Chemistry and ‡Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tushar S Navale
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Seamus D Jones
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Departments of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|