1
|
Dai S, Hu M, Zhang W, Lei Z. Selective colorimetric detection of carbosulfan based on its hydrolysis behavior and Ti 3C 2/AuPt nanozyme. Anal Chim Acta 2025; 1336:343519. [PMID: 39788672 DOI: 10.1016/j.aca.2024.343519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection. Current electrochemical and colorimetric methods for detection of pesticides based on the cascade catalytic reactions between acetylcholinesterase (AChE) and nanozymes, which exhibit inferior selectivity. Hence, selective, sensitive and fast detection of CBS is still challenging. RESULTS In this work, an AChE-free colorimetric method was proposed for selective detection of CBS based on its unique hydrolysis behavior and nanozyme. Ti3C2 nanosheets/AuPt nanoparticles (Ti3C2/AuPt NPs) with enhanced peroxidase-like activity were prepared via one-step self-reduction reaction. CBS can be hydrolyzed under acidic condition and produce -SH moieties, which could bond to Pt atoms of Ti3C2/AuPt NPs and shield the active sites of nanozyme, resulting in decreased catalytic activity. Based on the inhibitory effect on the peroxidase-like activity of Ti3C2/AuPt NPs, a colorimetric method was proposed for direct detection of CBS. Under optimal conditions, the method showed wide linear range (0.5 ng mL-1-5 μg mL-1), low limit of detection (0.342 nM), good selectivity and anti-interference ability. The feasibility of this method for practical use was confirmed by analysis of CBS in real lake water samples. SIGNIFICANCE This work proposed a simple colorimetric method for selective and fast detection of CBS, which avoided employing AChE and cascade catalytic reactions, significantly lowering the detection cost and improving detection efficiency. The method showed great potential for accurate detection of CBS in actual samples, and provided a new avenue for developing nanozyme-based colorimetric method for detection of other pesticide residues.
Collapse
Affiliation(s)
- Shuxian Dai
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mengting Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wen Zhang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Pushparajah S, Shafiei M, Yu A. A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection. BIOSENSORS 2025; 15:15. [PMID: 39852066 DOI: 10.3390/bios15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability. Herein, we report the development of an electrochemical aptasensor for CBZ detection. The sensor was fabricated through a one-step electrodeposition of platinum nanoparticles (Pt NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE). Then, a CBZ-specific aptamer was attached via Pt-sulfur bonds. Upon combining CBZ with the aptamer on the electrode surface, the redox reaction of the electrochemical probe K4[Fe(CN)6] is hindered, resulting in a current drop. Under optimized conditions (pH of 7.5 and 25 min of incubation time), the proposed aptasensor showed a linear current reduction to CBZ concentrations between 0.5 and 15 nM. The limit of detection (LOD) for this proposed aptasensor is 0.41 nM. Along with its repeatable character, the aptasensor demonstrated better selectivity for CBZ compared to other potential compounds. The recovery rates for detecting CBZ in skim milk and tap water using the standard addition method were 98% and 96%, respectively. The proposed aptasensor demonstrated simplicity, sensitivity, and selectivity for detecting CBZ with satisfactory repeatability. It establishes a strong foundation for environmental monitoring of CBZ.
Collapse
Affiliation(s)
- Suthira Pushparajah
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mahnaz Shafiei
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Aimin Yu
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
3
|
Campos-Lendinez Á, Faraudo J, García-Antón J, Sala X, Muñoz J. Direct Covalent Functionalization of H-Terminated 2D Germanane with Thiolated Molecules: Passivation and Tuning of Optoelectronic Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66280-66289. [PMID: 39561093 PMCID: PMC11622187 DOI: 10.1021/acsami.4c17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Covalent molecular functionalization allows the physicochemical properties of 2D materials to be precisely tuned and modulated on-demand. Nonetheless, research on the molecular functionalization of 2D monoelemental graphene-like materials─known as Xenes─remains scarce, being mainly restricted to a specific type of solid-state chemical reaction based on the topotactic transformation of bulkier Zintl phases. Herein, a robust and general chemical approach is reported for the direct functionalization of commercially available H-terminated 2D germanene (2D-GeH) with thiolated molecules (R-SH) via Ge-S bond formation. While the material characterization data provide direct experimental evidence of the Ge-S chemical bonding, density functional theory (DFT) calculations also predict its existence. Remarkably, the anchored thiolated molecules also favor the passivation of the 2D Xene against air oxidation, enlarging its benefits for real implementation. As a proof-of-principle, a redox-responsive molecular moiety such as 6-(ferrocenyl)hexanethiol (Fc6-SH) has been exploited to induce changes in the optoelectronic properties of the resulting 2D-GeFc6 heterostructure by simply modulating the external bias potential, making it possible to optically and electrically read out a molecular switch on 2D Xene via implanting molecular responsiveness. Remarkably, the ON/OFF ratio has been shown to be dependent on the distance between the redox-responsive Fc moiety and the 2D Xene surface through the alkyl chain length. Overall, the reported a-la-carte molecular engineering approach provides the basis toward the rapid development of stable 2D-GeR derivatives exhibiting molecule-programmable properties.
Collapse
Affiliation(s)
- Ángel Campos-Lendinez
- Chemistry
Department, Universitat Autònoma
de Barcelona, Campus UAB, Bellaterra 08193, Spain
| | - Jordi Faraudo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Jordi García-Antón
- Chemistry
Department, Universitat Autònoma
de Barcelona, Campus UAB, Bellaterra 08193, Spain
| | - Xavier Sala
- Chemistry
Department, Universitat Autònoma
de Barcelona, Campus UAB, Bellaterra 08193, Spain
| | - Jose Muñoz
- Chemistry
Department, Universitat Autònoma
de Barcelona, Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
4
|
Jansman MMT, Norkute E, Jin W, Kempen PJ, Douka D, Thulstrup PW, Hosta-Rigau L. Nitric oxide-triggering activity of gold-, platinum- and cerium oxide-nanozymes from S-nitrosothiols and diazeniumdiolates. Colloids Surf B Biointerfaces 2024; 244:114161. [PMID: 39191113 DOI: 10.1016/j.colsurfb.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Cardiovascular diseases pose a significant global health challenge, contributing to high mortality rates and impacting overall well-being and quality of life. Nitric oxide (NO) plays a pivotal role as a vasodilator, regulating blood pressure and enhancing blood flow-crucial elements in preventing cardiovascular diseases, making it a prime therapeutic target. Herein, metal-based nanozymes (NZs) designed to induce NO release from both endogenous and exogenous NO-donors are investigated. Successful synthesis of gold, platinum (Pt) and cerium oxide NZs is achieved, with all three NZs demonstrating the ability to catalyze the NO release from various NO sources, namely S-nitrosothiols and diazeniumdiolates. Pt-NZs exhibit the strongest performance among the three NZ types. Further exploration involved investigating encapsulation and coating techniques using poly(lactic-co-glycolic acid) nanoparticles as experimental carriers for Pt-NZs. Both strategies showed efficiency in serving as platforms for Pt-NZs, successfully showing the ability to trigger NO release.
Collapse
Affiliation(s)
- Michelle Maria Theresia Jansman
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Evita Norkute
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Paul Joseph Kempen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark; DTU Nanolab, National Center for Nano Fabrication and Characterization Technical University of Denmark, Ørsteds Plads, Building 347, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
5
|
Yoshikawa K, Kato T, Suzuki Y, Shiota A, Ohnishi T, Amezawa K, Nakao A, Yajima T, Iriyama Y. Origin of O 2 Generation in Sulfide-Based All-Solid-State Batteries and its Impact on High Energy Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402528. [PMID: 38973316 PMCID: PMC11425888 DOI: 10.1002/advs.202402528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The cathode surface of sulfide-based all-solid-state batteries (SBs) is commonly coated with amorphous-LiNbO3 in order to stabilize charge-discharge reactions. However, high-voltage charging diminishes the advantages, which is caused by problems with the amorphous-LiNbO3 coating layer. This study has investigated the degradation of amorphous-LiNbO3 coating layer directly during the high-voltage charging of SBs. O2 generation via Li extraction from the amorphous-LiNbO3 coating layer is observed using electrochemical gas analysis and electrochemical X-ray photoelectron spectroscopy. This O2 leads to the formation of an oxidative solid electrolyte (SE) around the coating layer and degrades the battery performance. On the other hand, elemental substitution (i.e., amorphous-LiNbxP1- xO3) reduces O2 release, leading to stable high-voltage charge-discharge reactions of SBs. The results have emphasized that the suppression of O2 generation is a key factor in improving the energy density of SBs.
Collapse
Affiliation(s)
- Keisuke Yoshikawa
- Department of Material Design Innovation Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Takeshi Kato
- Department of Material Design Innovation Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Yasuhiro Suzuki
- Department of Material Design Innovation Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Akihiro Shiota
- Consortium for Lithium Ion Battery Technology and Evaluation Center (LIBTEC), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Tsuyoshi Ohnishi
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Amezawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
| | - Aiko Nakao
- Department of Material Design Innovation Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Takeshi Yajima
- Department of Material Design Innovation Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Yasutoshi Iriyama
- Department of Material Design Innovation Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
6
|
Ma M, Wang W, Li Z, Wang Z, Wang X, Zhang Y, Wang X, Zhu X. Linear-Organic-Ions In Situ-Intercalated MoS 2 for Unveiling Capacitive Energy Storage Relies on the Chain Length. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066694 DOI: 10.1021/acsami.4c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intercalating linear-organic-ions into the MoS2 interlayer is beneficial for optimizing electrons/ions' capacitive storage behavior. The chain length, as an important parameter of linear organic ions, can lead to differences in the dispersion, polarity, critical micelle concentration of organic ions, and steric hindrance to the growth of MoS2 nanosheets. Up until now, the relationship between chain length, synthesis of intercalated-MoS2, and capacitive energy storage has not been unveiled. Herein, we have designed an in situ-intercalation route that is simple, efficient, and high yield for inserting four types of linear organic ions into the interlayer of MoS2 to synthesize four types of in situ-intercalated MoS2 samples. After organic-ion intercalation, the expanded interlayer spacing achieved the introduction of intercalation-type pseudocapacitors, as confirmed by ex situ XRD. Improved extra capacitance is verified due to the enlarged ion storage space from a synergistic spatial effect in the broken-shell-hollow ball. Additionally, the generation of high-valent Mo (+5 and +6) and S-vacancies is beneficial for energy storage. More importantly, according to density functional theory (DFT) calculations, as the chain length increases, the number of negative adsorption sites and the total adsorption ability also increase, leading to significantly improved specific capacitance. This work will provide an archetype for the preparation of in situ-intercalated layered materials and unveil capacitive energy storage that relies on the organic-ion chain length.
Collapse
Affiliation(s)
- Mingzhu Ma
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Weixin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Ziyu Li
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Zhongliao Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Xin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Yongxing Zhang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P.R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China
| |
Collapse
|
7
|
Shin H, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. Thermocatalytic oxidation of a binary mixture of formaldehyde and toluene at ambient levels by a titanium dioxide supported platinum catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169612. [PMID: 38154644 DOI: 10.1016/j.scitotenv.2023.169612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
The thermocatalytic oxidative potential of various supported noble metal catalysts (SNMCs) is well-known for hazardous volatile organic compounds (VOCs), e.g., formaldehyde (FA) and toluene. However, little is known about SNMC performance against ambient VOC pollution with low concentration (subppm levels) relative to industrial effuluents with high concentrations (several hundred ppm). Here, the thermocatalytic oxidation performance of a titanium dioxide (TiO2)-supported platinum catalyst (Pt/TiO2) has been evaluated for a low-concentration binary mixture of FA and toluene at low temperatures and in the dark. A sample of TiO2 containing 1 wt% Pt with thermal reduction pre-treatment under hydrogen achieved 100 % conversion of FA (500 ppb) and toluene (100 ppb) at 130 °C and a gas hourly velocity of 59,701 h-1. Its catalytic activity was lowered by either a decrease in catalyst mass or an increase in VOC concentration, relative humidity, or flow rate. In situ diffuse reflectance infrared Fourier transform spectroscopy, density functional theory simulations, and molecular oxygen (O2) temperature-programmed desorption experiments were used to identify possible VOC oxidation pathways, reaction mechanisms, and associated surface phenomena. The present work is expected to offer insights into the utility of metal oxide-supported Pt catalysts for the low-temperature oxidative removal of gaseous VOCs in the dark, primarily for indoor air quality management.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research, Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
8
|
Golvari P, Alkameh K, Rahmani A, Jurca T, Kuebler SM. Pt-Coated Silicon Nanoparticles: An Investigation into the Hydrosilylation on Hydrogen-Terminated Silicon Surfaces Using Pt(dvs). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37326507 DOI: 10.1021/acs.langmuir.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction of hydrogen-terminated silicon nanoparticles (H-SiNPs) with Karstedt's catalyst at various temperatures was investigated. The results indicate that at room temperature, the oxidative addition of Pt(0) onto H-SiNPs is irreversible, and the catalyst is not eliminated from the surface of H-SiNPs, enabling a facile synthesis of Pt-loaded SiNPs that can undergo ligand exchange. The nature of the Pt-on-Si ensemble is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Reaction conditions that enable effective hydrosilylation are discussed. It is found that higher temperatures favor reductive elimination of the catalyst and hydrosilylation of 1-octene onto the surface of the H-SiNPs.
Collapse
Affiliation(s)
- Pooria Golvari
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Khaled Alkameh
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Stephen M Kuebler
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
9
|
Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor. Int J Biol Macromol 2023; 233:123273. [PMID: 36646349 DOI: 10.1016/j.ijbiomac.2023.123273] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Noble metals as high atomic number elements can localize X-ray radiation within tumor cells by exploiting different mechanisms. Here, alginate (Alg)-coated platinum nanoparticles (Pt@Alg) were synthesized, characterized, and implemented as a radiosensitizer to enhance X-ray therapeutic efficacy in breast cancer in vitro and in vivo. Alg not only improves the biocompatibility of the radioenhancer, but also stabilizes the nanoparticles. Pt@Alg was studied by different characterization methods including DLS, STEM, Fe-SEM, XRD, XPS, FT-IR and UV-Vis spectrophotometry. The nanosystem provided a higher level of intracellular ROS in malignant cells and enhanced cancer cell death under X-Ray irradiation. Clonogenic assay also demonstrated the radiosensitizing properties of the nanosystem, in vitro. In vivo result show tumor growth restraining properties of the nanosystem when it was administrated along with X-Ray irradiation. Histopathology results confirmed the impact of nanosystem and X-ray co-treatment, as well. Altogether, the importance of radiosensitizers for improving radiotherapy outcomes was highlighted.
Collapse
|
10
|
Alvien GM, Xuan Long D, Yolthida K, Hee Jang Y, Hong J. Combustion-Assisted Polyol Reduction Method to Prepare Highly Transparent and Efficient Pt Counter Electrodes for Bifacial Dye-Sensitized Solar Cells. Chem Asian J 2023; 18:e202201142. [PMID: 36710260 DOI: 10.1002/asia.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
A combustion-assisted polyol reduction (CPR) method has been developed to deposit electrocatalytically efficient and transparent Pt counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSSCs). Compared with conventional thermal decomposition of Pt precursors, CPR allows for a decrease in reduction temperature to 150 °C. The low-temperature processing is attributed to adding an organic fuel, acetylacetone (Hacac), which provides extra heat to lower reduction energy. In addition, the stable Pt complexes can simultaneously be formed in ethylene glycol (EG) and Hacac system, which leads to Pt nanoparticle size regulation. A ratio of Hacac to EG is optimized to achieve excellent electrocatalytic activity and high visible light transmittance for CEs. The bifacial DSSCs fabricated with CPR-Pt CEs (EG : Hacac=1 : 16) reach efficiencies of 6.71±0.16% and 6.41±0.15% in front and back irradiations, respectively.
Collapse
Affiliation(s)
- Ghifari M Alvien
- Department of Science, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, 35365, Lampung Selatan, Lampung, Indonesia
| | - Dang Xuan Long
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea.,Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea
| | - Kantapa Yolthida
- Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea
| | - Yoon Hee Jang
- Advanced Photovoltaic Research Center, Korea Institute of Science and Technology 5 Hawarang-ro 14-gil, Seongbuk-gu, 02792, Seoul, Republic of Korea
| | - Jongin Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea.,Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea
| |
Collapse
|
11
|
He L, Li B, Ma Z, Chen L, Gong S, Zhang M, Bai Y, Guo Q, Wu F, Zhao F, Li J, Zhang D, Sheng D, Dai X, Chen L, Shu J, Chai Z, Wang S. Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Pan H, Miao X, Deng J, Pan C, Cheng X, Wang X. Bimetallic Metal-Organic Framework for Mitigating Aseptic Osteolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4935-4946. [PMID: 36657969 DOI: 10.1021/acsami.2c19449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The disability rate of joint diseases can be reduced by the use of artificial joints, but joint loosening at a late state limits the lifespan and surgical efficacy of the joints. Wear particles can be recognized by macrophages and induce cells to produce reactive oxygen species (ROS) and inflammatory factors, causing persistent inflammation and decreased osteogenic activity, which ultimately leads to loosening of joint prostheses. Here, the platinum (Pt) nanozymes with excellent ROS scavenging and anti-inflammatory capabilities were encapsulated in zinc imidazolium zeolite framework-8 (ZIF-8), and then the osteogenic active element lanthanum (La) was introduced through ion exchange to finally construct a bimetallic metal-organic framework (Pt@ZIF-8@La). In vitro and in vivo experiments demonstrated that this multifunctional nanoplatform possessed the functions of efficient scavenging of ROS, immune regulation, and promotion of osteogenic differentiation. Meanwhile, the mechanism is explored that Pt@ZIF-8@La can also promote osteogenic mineralization by upregulating the ratio of the osteoprotegerin (OPG)/receptor activator of the NF-κB ligand (RANKL), which can achieve a synergistic therapeutic effect of immunomodulation and osteogenesis, thereby realizing the purpose of relieving aseptic osteolysis.
Collapse
Affiliation(s)
- Huajun Pan
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Xinxin Miao
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Jianjian Deng
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Chongzhi Pan
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Xigao Cheng
- Department of Orthopedics, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi330006, P. R. China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| |
Collapse
|
13
|
In Situ DRIFTS Study of Single-Atom, 2D, and 3D Pt on γ-Al2O3 Nanoflakes and Nanowires for C2H4 Oxidation. Processes (Basel) 2022. [DOI: 10.3390/pr10091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Up to now, a great number of catalysts have been reported that are active in the oxidation of volatile organic compounds (VOCs). However, supported noble-metal catalysts (especially Pt-based catalysts) are still the most excellent ones for this reaction. In this study, Pt species supported on γ-Al2O3 and ranging from single-atom sites to clusters (less than 1 nm) and 1–2 nm nanoparticles were prepared and investigated for oxidizing C2H4. The Pt-loaded γ-Al2O3 nanoflakes (PtAl-NF) and Pt-loaded γ-Al2O3 nanowires (PtAl-NW) were successfully prepared. The samples were characterized using XRD, TEM, XPS, HAADF-STEM, and in situ DRIFTS. Based on in situ DRIFTS, a simple surface reaction mechanism was developed. The stable intermediates CO on single-atom Pt, subnanometer Pt particles, and fully exposed Pt clusters could be explained by the strong binding of CO molecule poisoning Pt sites. Moreover, the oxidation of C2H4 was best achieved by Pt particles that were 1–2 nm in size and the catalytic activity of PtAl-NF was better when it had less Pt. Lastly, the most exposed (110) facets of γ-Al2O3 nanoflakes were more resistant to water than the majorly exposed (100) facets of γ-Al2O3 nanowires.
Collapse
|
14
|
Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High purity methyl tert-butyl ether (MTBE) can be used to adjust gasoline octane values. However, an isomer, methyl sec-butyl ether (MSBE), is the main by-product of its industrial production, and this affects the purity of MTBE. Pt/Au NPs@Co3O4 composites with a hollow dodecahedron three-dimensional structure were synthesized using ZIF-67 as a template, with Pt and Au nanoparticles (NPs) evenly distributed on the shell of the hollow structure. A CTL sensor was established for the determination of MSBE based on the specificity of Pt/Au NPs@Co3O4. The experimental results showed that Pt/Au NPs@Co3O4 had a strong specific cataluminescence (CTL) response to MSBE, with no interference from MTBE. The linear range was 0.10–90 mg/L, the limit of detection was 0.031 mg/L (S/N = 3), the RSD was 2.5% (n = 9), and a complete sample test could be completed in five minutes. The sensor was used to detect MSBE in MTBE of different purity grades, with recoveries ranging from 92.0% to 109.2%, and the analytical results were consistent with those determined by gas chromatography. These results indicate that the established method was accurate and reliable, and could be used for rapid analysis of MTBE gasoline additive.
Collapse
|
15
|
Three-Dimensional Pinecone-like Binder-Free Pt-TiO 2 Nanorods on Ti Mesh Structures: Synthesis, Characterization and Electroactivity towards Ethanol Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061921. [PMID: 35335284 PMCID: PMC8955681 DOI: 10.3390/molecules27061921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022]
Abstract
We report here the synthesis of binderless and template-less three-dimensional (3D) pinecone-shaped Pt/TiO2/Ti mesh structure. The TiO2 hydrothermally synthesized onto Ti mesh is composed of a mixture of flower-like nanorods and vertically aligned bar-shaped structures, whereas Pt film grown by pulsed laser deposition displays a smooth surface. XRD analyses reveal an average crystallite size of 41.4 nm and 68.5 nm of the TiO2 nanorods and Pt, respectively. In H2SO4 solution, the platinum oxide formation at the Pt/TiO2/Ti mesh electrode is 180 mV more negative than that at the Pt/Ti mesh electrode, indicating that TiO2 provides oxygeneous species at lower potentials, which will facilitate the removal of CO-like intermediates and accelerate an ethanol oxidation reaction (EOR). Indeed, the Pt/TiO2/Ti mesh catalyst exhibits current activity of 1.19 mA towards an EOR at a remarkably superior rate of 4.4 times that of the Pt/Ti mesh electrode (0.27 mA). Moreover, the presence of TiO2 as a support to Pt delivers a steady-state current of 2.1 mA, with an increment in durability of 6.6 times compared to Pt/Ti mesh (0.32 mA). Pt is chosen here as a benchmark catalyst and we believe that with catalysts that perform better than Pt, such 3D pinecone structures can be useful for a variety of catalytic or photoelectrochemical reactions.
Collapse
|
16
|
Bonet-Aleta J, Garcia-Peiro JI, Irusta S, Hueso JL. Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:755. [PMID: 35269243 PMCID: PMC8911670 DOI: 10.3390/nano12050755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
Nanozymes, defined as nanomaterials that can mimic the catalytic activity of natural enzymes, have been widely used to develop analytical tools for biosensing. In this regard, the monitoring of glutathione (GSH), a key antioxidant biomolecule intervening in the regulation of the oxidative stress level of cells or related with Parkinson's or mitochondrial diseases can be of great interest from the biomedical point of view. In this work, we have synthetized a gold-platinum Au@Pt nanoparticle with core-shell configuration exhibiting a remarkable oxidase-like mimicking activity towards the substrates 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD). The presence of a thiol group (-SH) in the chemical structure of GSH can bind to the Au@Pt nanozyme surface to hamper the activation of O2 and reducing its oxidase-like activity as a function of the concentration of GSH. Herein, we exploit the loss of activity to develop an analytical methodology able to detect and quantify GSH up to µM levels. The system composed by Au@Pt and TMB demonstrates a good linear range between 0.1-1.0 µM to detect GSH levels with a limit of detection (LoD) of 34 nM.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose I Garcia-Peiro
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| |
Collapse
|
17
|
Norouz Dizaji A, Ali Z, Ghorbanpoor H, Ozturk Y, Akcakoca I, Avci H, Dogan Guzel F. Electrochemical-based ''antibiotsensor'' for the whole-cell detection of the vancomycin-susceptible bacteria. Talanta 2021; 234:122695. [PMID: 34364491 DOI: 10.1016/j.talanta.2021.122695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
In this study, we aim to develop an antibiotic-based biosensor platform 'Antibiotsensor' for the specific detection of gram-positive bacteria using vancomycin modified Screen Printed Gold Electrodes (SPGEs). Through this pathway, vancomycin molecules were first functionalized with thiol groups and characterized with quadrupole time of flight (q-TOF) mass spectroscopy analysis. Immobilization of thiolated vancomycin molecules (HS-Van) onto SPGEs was carried out based on self-assembled monolayer (SAM) phenomenon. Electrochemical impedance spectroscopy (EIS) was employed to test the detection and showed a considerable change in impedance value upon the binding of HS-Van molecules onto the electrode surface. Atomic Force Microscopy analysis indicated that SPGE was successfully modified upon the treatment with HS-Van molecules based on the shift in surface roughness from 173 ± 2 nm to 301 ± 3 nm. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy proved the EIS and AFM results as well by showing characteristic peaks of immobilized HS-Van molecule. As a proof-of-concept, EIS-based susceptibility testing was performed using Escherichia coli, Staphylococcus aureus and Mycobacterium smegmatis bacteria to prove the specificity of obtained SPGE-Van. EIS data showed that the charge transfer resistance (Rct) values changed from 1.08, 1.18 to 26.5, respectively, indicating that vancomycin susceptible S. aureus was successfully attached onto SPGE-Van surface strongly, while vancomycin resistance E. coli and M. smegmatis did not show any significant attachment properties. In addition, different concentration (108-10 CFU/mL) of S. aureus was performed to investigate sensitivity of proposed sensor platform. Limit of detection and limit of quantitation was calculated as 101.58 and 104.81 CFU/mL, respectively. Scanning electron microscopy (SEM) analysis also confirmed that only S. aureus bacteria was attached to the surface in a dense monolayer distribution. We believe that the proposed approach is selective and sensitive towards the whole-cell detection of vancomycin-susceptible bacteria and can be modified for different purposes in the future.
Collapse
Affiliation(s)
- Araz Norouz Dizaji
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Zahraa Ali
- Department of Material Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Hamed Ghorbanpoor
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey; Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Yasin Ozturk
- Department of Material Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Iremnur Akcakoca
- Department of Material Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Huseyin Avci
- Department of Metallurgical and Materials Engineering & Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.
| |
Collapse
|
18
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
19
|
Fang R, Chen L, Shen Z, Li Y. Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized metal catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Majeed A, Javed F, Akhtar S, Saleem U, Anwar F, Ahmad B, Nadhman A, Shahnaz G, Hussain I, Hussain SZ, Sohail MF. Green synthesized selenium doped zinc oxide nano-antibiotic: synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J Mater Chem B 2021; 8:8444-8458. [PMID: 32812631 DOI: 10.1039/d0tb01553a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile, green synthesis of selenium doped zinc oxide nano-antibiotic (Se-ZnO-NAB) using the Curcuma longa extract is reported to combat the increased emergence of methicillin-resistant Staphylococcus aureus (MRSA). The developed Se-ZnO-NAB were characterized for their physicochemical parameters and extensively evaluated for their toxicological potential in an animal model. The prepared Se-ZnO-NABs were characterized via Fourier transformed infrared spectroscopy to get functional insight into their surface chemistry, scanning electron microscopy revealing the polyhedral morphology with a size range of 36 ± 16 nm, having -28.9 ± 6.42 mV zeta potential, and inductively coupled plasma optical emission spectrometry confirming the amount of Se and Zn to be 14.43 and 71.70 mg L-1 respectively. Moreover, the antibacterial activity against MRSA showed significantly low minimum inhibitory concentration at 6.2 μg mL-1 when compared against antibiotics. Also, total protein content and reactive oxygen species production in MRSA, under the stressed environment of Se-ZnO-NAB, significantly (p < 0.05) decreased compared to the negative control. Moreover, the results of acute oral toxicity in rats showed moderate variations in blood biochemistry and histopathology of vital organs. The teratogenicity and fetal evaluations also revealed some signs of toxicity along with changes in biochemical parameters. The overall outcomes suggest that Se-ZnO-NAB can be of significant importance for combating multi-drug resistance but must be used with extreme caution, particularly in pregnancy, as moderate toxicity was observed at a toxic dose of 2000 mg kg-1.
Collapse
Affiliation(s)
- Abdul Majeed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Faryal Javed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Sundus Akhtar
- Department of Biotechnology, Minhaj University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacy, Government College University (GCU), Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Phase VI, Hayatabad, Peshawar, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan. and Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan and Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| |
Collapse
|
21
|
Chen L, Azeem S, Ruan M, Xu W, Barck A, Kornowski A, Parak WJ, Chakraborty I. Rapid template‐guided ligand‐free synthesis of ultrasmall Pt nanoclusters with efficient hydrogen evolution reaction activity and their versatile release. NANO SELECT 2021. [DOI: 10.1002/nano.202000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lizhen Chen
- Fachbereich Physik Center for Hybrid Nanostructures (CHyN) Universität Hamburg Hamburg Germany
| | - Shoaib Azeem
- Fachbereich Physik Philipps Universität Marburg Marburg Germany
| | - Mingbo Ruan
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun P. R. China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun P. R. China
| | - Almut Barck
- Fachbereich Chemie Universität Hamburg Hamburg Germany
| | | | - Wolfgang J. Parak
- Fachbereich Physik Center for Hybrid Nanostructures (CHyN) Universität Hamburg Hamburg Germany
- Fachbereich Chemie Universität Hamburg Hamburg Germany
- CIC Biomagune San Sebastian Spain
| | - Indranath Chakraborty
- Fachbereich Physik Center for Hybrid Nanostructures (CHyN) Universität Hamburg Hamburg Germany
| |
Collapse
|
22
|
Gillet A, Cher S, Tassé M, Blon T, Alves S, Izzet G, Chaudret B, Proust A, Demont P, Volatron F, Tricard S. Polarizability is a key parameter for molecular electronics. NANOSCALE HORIZONS 2021; 6:271-276. [PMID: 33507203 DOI: 10.1039/d0nh00583e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying descriptors that govern charge transport in molecular electronics is of prime importance for the elaboration of devices. The effects of molecule characteristics, such as size, bulkiness or charge, have been widely reported. Herein, we show that the molecule polarizability can be a crucial parameter to consider. To this end, platinum nanoparticle self-assemblies (PtNP SAs) are synthesized in solution, including a series of polyoxometalates (POMs). The charge of the POM unit can be modified according to the nature of the central heteroatom while keeping its size constant. POM hybrids that display remote terminal thiol functions strongly anchor the PtNP surface to form robust SAs. IV curves, recorded by conductive AFM, show a decrease in Coulomb blockade as the dielectric constant of the POMs increases. In this system, charge transport across molecular junctions can be interpreted as variations in polarizability, which is directly related to the dielectric constant.
Collapse
Affiliation(s)
- Angélique Gillet
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tekin V, Aweda T, Kozgus Guldu O, Biber Muftuler FZ, Bartels J, Lapi SE, Unak P. A novel anti-angiogenic radio/photo sensitizer for prostate cancer imaging and therapy: 89Zr-Pt@TiO 2-SPHINX, synthesis and in vitro evaluation. Nucl Med Biol 2021; 94-95:20-31. [PMID: 33482596 DOI: 10.1016/j.nucmedbio.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common malignancy and leading cause of cancer deaths in men. Thus, the development of novel strategies for performing combined prostate cancer imaging and therapy methods is crucial and could have a significant impact on patient care. This current study aimed to design a multimodality nanoconjugate to be used for both PET and optical imaging and as a therapeutic radio/photo sensitizer and anti-angiogenesis agent. Initial characterization of this novel nanoconjugate was performed via HPLC, FTIR, TEM and DLS analyses. Pt@TiO2-SPHINX was further evaluated using fluorometric and radiochromatographic methods. Cytotoxicity, cell uptake and internalization were also investigated as well as therapy with photodynamic/radio therapy combinations. Both nanoparticles and nanoconjugates were robustly synthesized according to literature methods. Radiochemistry and cell culture assays showed high 89Zr radiolabeling efficiency with sufficient stability for studies at later time points. Pt@TiO2-SPHINX was shown to target prostate cancer cells (PC3 and LNCaP), and was non-toxic to normal prostate cells (RWPE-1). This finding was supported by the WST-8 assay and AFM images. The uptake of the compound in prostate cancer cells is significantly higher than prostate normal cells and according to ELISA results, Pt@TiO2-SPHINX can increase anti-angiogenic VEGFA165b. Additionally, Pt@TiO2-SPHINX dramatically decreased the cell viability of prostate cancer cells when photodynamic and radio therapy were performed at the same time. In vitro results are promising for future studies of Pt@TiO2-SPHINX as a PET imaging agent and anti-angiogenic radio sensitizer.
Collapse
Affiliation(s)
- Volkan Tekin
- Institute of Nuclear Science, Ege University, Izmir, Turkey.
| | - Tolulope Aweda
- Department of Radiology, University of Alabama at Birmingham, AL, United States of America
| | | | | | - Jennifer Bartels
- Department of Radiology, University of Alabama at Birmingham, AL, United States of America
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, AL, United States of America
| | - Perihan Unak
- Institute of Nuclear Science, Ege University, Izmir, Turkey
| |
Collapse
|
24
|
Zhang F, Gutiérrez RA, Lustemberg PG, Liu Z, Rui N, Wu T, Ramírez PJ, Xu W, Idriss H, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA. Metal-Support Interactions and C1 Chemistry: Transforming Pt-CeO 2 into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catal 2021; 11:1613-1623. [PMID: 34164226 PMCID: PMC8210818 DOI: 10.1021/acscatal.0c04694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Indexed: 12/21/2022]
Abstract
![]()
There
is an ongoing search for materials which can accomplish the
activation of two dangerous greenhouse gases like carbon dioxide and
methane. In the area of C1 chemistry, the reaction between CO2 and CH4 to produce syngas (CO/H2),
known as methane dry reforming (MDR), is attracting a lot of interest
due to its green nature. On Pt(111), high temperatures must be used
to activate the reactants, leading to a substantial deposition of
carbon which makes this metal surface useless for the MDR process.
In this study, we show that strong metal–support interactions
present in Pt/CeO2(111) and Pt/CeO2 powders
lead to systems which can bind CO2 and CH4 well
at room temperature and are excellent and stable catalysts for the
MDR process at moderate temperature (500 °C). The behavior of
these systems was studied using a combination of in situ/operando methods (AP-XPS, XRD, and XAFS) which pointed to an active Pt-CeO2-x interface. In this interface, the
oxide is far from being a passive spectator. It modifies the chemical
properties of Pt, facilitating improved methane dissociation, and
is directly involved in the adsorption and dissociation of CO2 making the MDR catalytic cycle possible. A comparison of
the benefits gained by the use of an effective metal-oxide interface
and those obtained by plain bimetallic bonding indicates that the
former is much more important when optimizing the C1 chemistry associated
with CO2 and CH4 conversion. The presence of
elements with a different chemical nature at the metal-oxide interface
opens the possibility for truly cooperative interactions in the activation
of C–O and C–H bonds.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Ramón A. Gutiérrez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - Pablo G. Lustemberg
- Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, Rosario, Santa Fe S2000EZP, Argentina
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Madrid 28049, Spain
| | - Zongyuan Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianpin Wu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, Monterrey 64770, México
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Hicham Idriss
- SABIC Corporate Research & Development (CRD), KAUST, Thuwal 29355, Saudi Arabia
| | | | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
25
|
Quinson J, Jensen KM. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv Colloid Interface Sci 2020; 286:102300. [PMID: 33166723 DOI: 10.1016/j.cis.2020.102300] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Platinum (Pt) is one of the most studied materials in catalysis today and considered for a wide range of applications: chemical synthesis, energy conversion, air treatment, water purification, sensing, medicine etc. As a limited and non-renewable resource, optimized used of Pt is key. Nanomaterial design offers multiple opportunities to make the most of Pt resources down to the atomic scale. In particular, colloidal syntheses of Pt nanoparticles are well documented and simple to implement, which accounts for the large interest in research and development. For further breakthroughs in the design of Pt nanomaterials, a deeper understanding of the intricate synthesis-structures-properties relations of Pt nanoparticles must be obtained. Understanding how Pt nanoparticles form from molecular precursors is both a challenging and rewarding area of investigation. It is directly relevant to develop improved Pt nanomaterials but is also a source of inspiration to design other precious metal nanostructures. Here, we review the current understanding of Pt nanoparticle formation. This review is aimed at readers with interest in Pt nanoparticles in general and their colloidal syntheses in particular. Readers with a strongest interest on the study of nanomaterial formation will find here the case study of Pt. The preferred model systems and characterization techniques used to perform the study of Pt nanoparticle syntheses are discussed. In light of recent achievements, further direction and areas of research are proposed.
Collapse
|
26
|
Usmani S, Mikolasek M, Gillet A, Sanchez Costa J, Rigoulet M, Chaudret B, Bousseksou A, Lassalle-Kaiser B, Demont P, Molnár G, Salmon L, Carrey J, Tricard S. Spin crossover in Fe(triazole)-Pt nanoparticle self-assembly structured at the sub-5 nm scale. NANOSCALE 2020; 12:8180-8187. [PMID: 32248213 DOI: 10.1039/d0nr02154g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A main goal of molecular electronics is to relate the performance of devices to the structure and electronic state of molecules. Among the variety of possibilities that organic, organometallic and coordination chemistries offer to tune the energy levels of molecular components, spin crossover phenomenon is a perfect candidate for elaboration of molecular switches. The reorganization of the electronic state population of the molecules associated to the spin crossover can indeed lead to a significant change in conductivity. However, molecular spin crossover is very sensitive to the environment and can disappear once the molecules are integrated into devices. Here, we show that the association of ultra-small 1.2 nm platinum nanoparticles with FeII triazole-based spin crossover coordination polymers leads to self-assemblies, extremely well organized at the sub-3 nm scale. The quasi-perfect alignment of nanoparticles observed by transmission electron microscopy, in addition to specific signature in infrared spectroscopy, demonstrates the coordination of the long-chain molecules with the nanoparticles. Spin crossover is confirmed in such assemblies by X-ray absorption spectroscopic measurements and shows unambiguous characteristics both in magnetic and charge transport measurements. Coordinating polymers are therefore ideal candidates for the elaboration of robust, well-organized, hybrid self-assemblies with metallic nanoparticles, while maintaining sensitive functional properties, such as spin crossover.
Collapse
Affiliation(s)
- Suhail Usmani
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells. NANOMATERIALS 2020; 10:nano10030502. [PMID: 32168882 PMCID: PMC7153251 DOI: 10.3390/nano10030502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Pt catalytic nanoparticles on F-doped SnO2/glass substrates were prepared by polyol reduction below 200 °C. The polyol reduction resulted in better transparency of the counter electrode and high power-conversion efficiency (PCE) of the resultant dye-sensitized solar cells (DSSCs) compared to conventional thermal reduction. The PCEs of the DSSCs with 5 μm-thick TiO2 photoanodes were 6.55% and 5.01% under front and back illumination conditions, respectively. The back/front efficiency ratio is very promising for efficient bifacial DSSCs.
Collapse
|
28
|
In situ synthesis and preconcentration of cetylpyridinium complexed hexaiodo platinum nanoparticles from spent automobile catalytic converter leachate using cloud point extraction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Pu L, Fan H, Maheshwari V. Formation of microns long thin wire networks with a controlled spatial distribution of elements. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02365h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
By controlling the spatial distribution of elements using a simple self-assembly process, the catalytic performance can be enhanced.
Collapse
Affiliation(s)
- Long Pu
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| | - Hua Fan
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| | - Vivek Maheshwari
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| |
Collapse
|
30
|
Norouz Dizaji A, Ding D, Kutsal T, Turk M, Kong D, Piskin E. In vivo imaging/detection of MRSA bacterial infections in mice using fluorescence labelled polymeric nanoparticles carrying vancomycin as the targeting agent. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:293-309. [PMID: 31762403 DOI: 10.1080/09205063.2019.1692631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aims to develop fluorescence labelled polymeric nanoparticle (NP) carrying vancomycin as the targeting agent for in vivo imaging of Methicillin-resistant Staphylococcus aureus bacterial infections in animal models. Maleimide functionalized 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide (polyethylene glycol)-2000] as the main was carrier matrix to prepare the NPs. A fluorescence probe, namely, poly[9,9'-bis (6″-N,N,N-trimethylammonium) hexyl) fluorene-co-alt-4,7-(2,1,3-benzothiadiazole) dibromide] was encapsulated within these NPs by ultrasonication successfully. UV-Vis spectro- photometry of the NPs showed the characteristic shifting on the peak of conjugated polymers indicating successful packaging of this compound with lipid bilayers in nanoscales. Zeta-sizer and TEM analysis showed that the prepared NPs have a diameter of 80-100 nm in a narrow size distribution. Thiolated vancomycin was synthesized and attached to the NPs as the targeting agent. FTIR and MALDI-TOF spectroscopy analysis confirmed the immobilization. The specific targeting properties of the vancomycin conjugated NPs to the target bacteria were first confirmed in in vitro bacterial cultures in which Escherichia coli was the non-target bacteria - using confocal microscopy and TEM. Imaging of bacterial infections in vivo was investigated in mice model using a non-invasive live animal fluorescence imaging technique. The results confirmed that bacterial infections can be detected using these novel polymeric NPs carrying fluorescence probes for imaging and vancomycin as the targeting agent - in vivo successfully.
Collapse
Affiliation(s)
- Araz Norouz Dizaji
- Bioengineering Division, Institute of Graduate Studies, Hacettepe University, Beytepe, Ankara, Turkey
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Tulin Kutsal
- Faculty of Engineering, Chemical Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Mustafa Turk
- Faculty of Engineering, Department of Bioengineering, Kirikkale University, Yahsihan, Kirikkale, Turkey
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Erhan Piskin
- Bioengineering Division, Institute of Graduate Studies, Hacettepe University, Beytepe, Ankara, Turkey.,NanoBMT: Nanobiyomedtek Biyomedikal ve Biyoteknoloji San.Tic.Ltd.Şti, Bilkent, Ankara, Turkey
| |
Collapse
|
31
|
|
32
|
Yin XT, Zhou WD, Li J, Wang Q, Wu FY, Dastan D, Wang D, Garmestani H, Wang XM, Ţălu Ş. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. JOURNAL OF ALLOYS AND COMPOUNDS 2019. [DOI: 10.1016/j.jallcom.2019.07.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
A ternary quenching electrochemiluminescence insulin immunosensor based on Mn2+ released from MnO2@Carbon core-shell nanospheres with ascorbic acid quenching AuPdPt–MoS2@TiO2 enhanced luminol. Biosens Bioelectron 2019; 142:111551. [DOI: 10.1016/j.bios.2019.111551] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023]
|
34
|
Li J, Zhang Y, Zheng J. Intermolecular energy flows between surface molecules on metal nanoparticles. Phys Chem Chem Phys 2019; 21:4240-4245. [PMID: 30747170 DOI: 10.1039/c8cp05932b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three model systems are designed to investigate energy transport between molecules on metal nanoparticle surfaces. Energy is rapidly transferred from one carbon monoxide (CO) molecule to another CO molecule or an organic molecule on adjacent surface sites of 2 nm Pt particles within a few picoseconds. On the contrary, energy flow from a surface organic molecule to an adjacent CO molecule is significantly slower and, in fact, within experimental sensitivity and uncertainty the transfer is not observed. The energy transport on particle surfaces (about 2 km s-1) is almost ten times faster than inside a molecule (200 m s-1). The seemingly perplexing observations can be well explained by the combination of electron/vibration and vibration/vibration coupling mechanisms, which mediate molecular energy dynamics on metal nanoparticle surfaces: the strong electron/vibration coupling rapidly converts CO vibrational energy into heat that can be immediately sensed by nearby molecules; but the vibration/vibration coupling dissipates the vibrational excitation in the organic molecule as low-frequency intramolecular vibrations that may or may not couple to surface electronic motions.
Collapse
Affiliation(s)
- Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | | | | |
Collapse
|
35
|
Singh M, Jaiswal N, Tiwari I, Foster CW, Banks CE. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Functionalization of Silk with In-Situ Synthesized Platinum Nanoparticles. MATERIALS 2018; 11:ma11101929. [PMID: 30309006 PMCID: PMC6213640 DOI: 10.3390/ma11101929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022]
Abstract
After platinum nanoparticles (PtNPs) were in-situ synthesized on silk fabrics through heat treatment, it was determined that the treatment of the silk fabrics with PtNPs imparted multiple functions, including coloring, catalysis, and antibacterial activity. The formation of PtNPs on fabrics was affected by the Pt ion concentration, pH value of solution, and reaction temperature. Acidic condition and high temperature were found to facilitate the formation of PtNPs on silk. The color strength of silk fabrics increased with the concentration of Pt ions. The PtNP treated silk fabrics exhibited reasonably good washing color fastness and excellent rubbing color fastness. The morphologies and chemical components of the treated silk fabrics were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy. The PtNP treated silk fabric exhibited significant catalytic function and a notable antibacterial effect against Escherichia coli (E. coli).
Collapse
|
37
|
Vakili R, Gibson EK, Chansai S, Xu S, Al‐Janabi N, Wells PP, Hardacre C, Walton A, Fan X. Understanding the CO Oxidation on Pt Nanoparticles Supported on MOFs by Operando XPS. ChemCatChem 2018; 10:4238-4242. [PMID: 31007773 PMCID: PMC6470863 DOI: 10.1002/cctc.201801067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs) are playing a key role in developing the next generation of heterogeneous catalysts. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied to study in operando the CO oxidation on Pt@MOFs (UiO-67) and Pt@ZrO2 catalysts, revealing the same Pt surface dynamics under the stoichiometric CO/O2 ambient at 3 mbar. Upon the ignition at ca. 200 °C, the signature Pt binding energy (BE) shift towards the lower BE (from 71.8 to 71.2 eV) is observed for all catalysts, confirming metallic Pt nanoparticles (NPs) as the active phase. Additionally, the plug-flow light-off experiments show the superior activity of the Pt@MOFs catalyst in CO oxidation than the control Pt@ZrO2 catalyst with ca. 28 % drop in the T 50% light-off temperature, as well as high stability, due to their sintering-resistance feature. These results provide evidence that the uniqueness of MOFs as the catalyst supports lies in the structural confinement effect.
Collapse
Affiliation(s)
- Reza Vakili
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Emma K. Gibson
- School of ChemistryUniversity of Glasgow University AvenueGlasgowG12 8QQUK
- UK Catalysis HubResearch Complex at Harwell Rutherford Appleton Laboratory Harwell OxonDidcotOX11 0FAUK
| | - Sarayute Chansai
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Shaojun Xu
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Nadeen Al‐Janabi
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Peter P. Wells
- UK Catalysis HubResearch Complex at Harwell Rutherford Appleton Laboratory Harwell OxonDidcotOX11 0FAUK
- ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Christopher Hardacre
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alex Walton
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
- Institution Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Xiaolei Fan
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
38
|
Fiévet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal JY, Sicard L, Viau G. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem Soc Rev 2018; 47:5187-5233. [PMID: 29901663 DOI: 10.1039/c7cs00777a] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After about three decades of development, the polyol process is now widely recognized and practised as a unique soft chemical method for the preparation of a large variety of nanoparticles which can be used in important technological fields. It offers many advantages: low cost, ease of use and, very importantly, already proven scalability for industrial applications. Among the different classes of inorganic nanoparticles which can be prepared in liquid polyols, metals were the first reported. This review aims to give a comprehensive account of the strategies used to prepare monometallic nanoparticles and multimetallic materials with tailored size and shape. As regards monometallic materials, while the preparation of noble as well as ferromagnetic metals is now clearly established, the scope of the polyol process has been extended to the preparation of more electropositive metals, such as post-transition metals and semi-metals. The potential of this method is also clearly displayed for the preparation of alloys, intermetallics and core-shell nanostructures with a very large diversity of compositions and architectures.
Collapse
Affiliation(s)
- F Fiévet
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, CNRS UMR 7086, 15 rue J.-A. de Baïf, 75205 Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
San KA, Shon YS. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E346. [PMID: 29783714 PMCID: PMC5977360 DOI: 10.3390/nano8050346] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium S-alkylthiosulfates) allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir) capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols. The high selectivity of Pd nanoparticles is driven by the controlled electronic properties of the Pd surface limiting the formation of Pd⁻alkene adducts (or intermediates) necessary for (additional) hydrogenation. The synthesis of water soluble Pd nanoparticles using ω-carboxylate-S-alkanethiosulfate salts is successfully achieved and these Pd nanoparticles are examined for the hydrogenation of various unsaturated compounds in both homogeneous and heterogeneous environments. Alkanethiolate-capped Pt nanoparticles are also successfully synthesized and further investigated for the hydrogenation of various alkynes to understand their geometric and electronic surface properties. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, are observed for Pt nanoparticles.
Collapse
Affiliation(s)
- Khin Aye San
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
| | - Young-Seok Shon
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
| |
Collapse
|
40
|
Burman D, Santra S, Pramanik P, Guha PK. Pt decorated MoS 2 nanoflakes for ultrasensitive resistive humidity sensor. NANOTECHNOLOGY 2018; 29:115504. [PMID: 29408801 DOI: 10.1088/1361-6528/aaa79d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this work, we report the fabrication of a low power, humidity sensor where platinum nanoparticles (NPs) decorated few-layered molybdenum disulphide (MoS2) nanoflakes have been used as the sensing layer. A mixed solvent was used to exfoliate the nanoflakes from the bulk powder. Then the Pt/MoS2 composites were prepared by reducing Pt NPs from chloroplatinic acid hexahydrate using a novel reduction technique using sulphide salt. The successful reduction and composite preparation were confirmed using various material characterization tools like scanning electron microscopy, atomic force microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy and UV-visible spectroscopy. The humidity sensors were prepared by drop-coating the Pt-decorated MoS2 on gold interdigitated electrodes and then exposed to various levels of relative humidity (RH). Composites with different weight ratios of Pt were tested and the best response was shown by the Pt/MoS2 (0.25:1) sample with a record high response of ∼4000 times at 85% RH. The response and recovery times were ∼92 s and ∼154 s respectively with repeatable behaviour. The sensor performance was found to be stable when tested over a few months. The underlying sensing mechanisms along with detailed characterization of the various composites have been discussed.
Collapse
Affiliation(s)
- Debasree Burman
- Department of Electronics & Electrical Communication Engineering, IIT Kharagpur-721302, India
| | | | | | | |
Collapse
|
41
|
Yang B, Agrios AG. Attachment of Pt nanoparticles to a metal oxide surface using a thiol–carboxyl bifunctional molecule. J Colloid Interface Sci 2018; 513:464-469. [DOI: 10.1016/j.jcis.2017.11.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
|
42
|
Malmir M, Heravi MM, Sadjadi S, Hosseinnejad T. Ultrasonic and bio-assisted synthesis of Ag@HNTs-T as a novel heterogeneous catalyst for the green synthesis of propargylamines: A combination of experimental and computational study. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Masoumeh Malmir
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals; Iran Polymer and Petrochemicals Institute; PO Box 14975-112 Tehran Iran
| | - Tayebeh Hosseinnejad
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| |
Collapse
|
43
|
Jiao X, Tanner EEL, Sokolov SV, Palgrave RG, Young NP, Compton RG. Understanding nanoparticle porosity via nanoimpacts and XPS: electro-oxidation of platinum nanoparticle aggregates. Phys Chem Chem Phys 2018; 19:13547-13552. [PMID: 28504288 DOI: 10.1039/c7cp01737e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The porosity of platinum nanoparticle aggregates (PtNPs) is investigated electrochemically via particle-electrode impacts and by XPS. The mean charge per oxidative transient is measured from nanoimpacts; XPS shows the formation of PtO and PtO2 in relative amounts defined by the electrode potential and an average oxidation state is deduced as a function of potential. The number of platinum atoms oxidised per PtNP is calculated and compared with two models: solid and porous spheres, within which there are two cases: full and surface oxidation. This allows insight into extent to which the internal surface of the aggregate is 'seen' by the solution and is electrochemically active.
Collapse
Affiliation(s)
- Xue Jiao
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Rasmussen K, Rauscher H, Mech A, Riego Sintes J, Gilliland D, González M, Kearns P, Moss K, Visser M, Groenewold M, Bleeker EAJ. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul Toxicol Pharmacol 2018; 92:8-28. [PMID: 29074277 PMCID: PMC5817049 DOI: 10.1016/j.yrtph.2017.10.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 11/27/2022]
Abstract
Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted.
Collapse
Affiliation(s)
- Kirsten Rasmussen
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Hubert Rauscher
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Agnieszka Mech
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Juan Riego Sintes
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Douglas Gilliland
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Mar González
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775 Paris CEDEX 16, France.
| | - Peter Kearns
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775 Paris CEDEX 16, France.
| | - Kenneth Moss
- United States Environmental Protection Agency (US-EPA), Office of Pollution Prevention and Toxics (7405M), 1200 Pennsylvania Avenue, NW, Washington DC, 20460 United States.
| | - Maaike Visser
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Monique Groenewold
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
45
|
Klauke K, Gruber I, Knedel TO, Schmolke L, Barthel J, Breitzke H, Buntkowsky G, Janiak C. Silver, Gold, Palladium, and Platinum N-heterocyclic Carbene Complexes Containing a Selenoether-Functionalized Imidazol-2-ylidene Moiety. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00678] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Karsten Klauke
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Irina Gruber
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Tim-Oliver Knedel
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Laura Schmolke
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Juri Barthel
- Gemeinschaftslabor für Elektronenmikroskopie RWTH-Aachen, Ernst-Ruska-Centrum für Mikroskopie und Spektroskopie mit
Elektronen, D-52425 Jülich, Germany
| | - Hergen Breitzke
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
46
|
Li S, Yang Y, Wang Y, Liu H, Tai J, Zhang J, Han B. A route to support Pt sub-nanoparticles on TiO2 and catalytic hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at room temperature. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00969d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a method to support Pt sub-nanoparticles on TiO2.
Collapse
Affiliation(s)
- Shaopeng Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Youdi Yang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yanyan Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jing Tai
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jing Zhang
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
47
|
Gao S, Zhao H, Feng J, Chen Y, Yang X, Cao R. Platinum Nanoparticles Loaded on Metal–Organic Complexes as New and Recyclable Catalysts for the Hydrogenation of Nitroarenes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuiying Gao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hui Zhao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
- College
of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jifei Feng
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanning Chen
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
- College
of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xue Yang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
48
|
CO electro-oxidation reaction on Pt nanoparticles: Understanding peak multiplicity through thiol derivative molecule adsorption. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Bhanja P, Liu X, Modak A. Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Hypercrosslinked Porous Polymer Nanotubes as Selective Hydrogenation Catalyst for α,β-Unsaturated Aldehydes. ChemistrySelect 2017. [DOI: 10.1002/slct.201701761] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Piyali Bhanja
- Department of Materials science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata-700032 India
| | - Xiao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Arindam Modak
- Department of Materials science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata-700032 India
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
- S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake; Kolkata 700106 India
| |
Collapse
|
50
|
Zhang J, Zhang C, Sha J, Fei H, Li Y, Tour JM. Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26840-26847. [PMID: 28753271 DOI: 10.1021/acsami.7b06727] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Electrically splitting water to H2 and O2 is a preferred method for energy storage as long as no CO2 is emitted during the supplied electrical input. Here we report a laser-induced graphene (LIG) process to fabricate efficient catalytic electrodes on opposing faces of a plastic sheet, for the generation of both H2 and O2. The high porosity and electrical conductivity of LIG facilitates the efficient contact and charge transfer with the requisite electrolyte. The LIG-based electrodes exhibit high performance for hydrogen evolution reaction and oxygen evolution reaction with excellent long-term stability. The overpotential reaches 100 mA/cm2 for HER, and OER is as low as 214 and 380 mV with relatively low Tafel slopes of 54 and 49 mV/dec, respectively. By serial connecting of the electrodes with a power source in an O-ring setup, H2 and O2 are simultaneously generated on either side of the plastic sheet at a current density of 10 mA/cm2 at 1.66 V and can thereby be selectively captured. The demonstration provides a promising route to simple, efficient, and complete water splitting.
Collapse
Affiliation(s)
| | | | - Junwei Sha
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | | | | | | |
Collapse
|