1
|
Sülzle J, Elfeky L, Manley S. Surface passivation and functionalisation for mass photometry. J Microsc 2024; 295:14-20. [PMID: 38606461 DOI: 10.1111/jmi.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Interferometric scattering (iSCAT) microscopy enables the label-free observation of biomolecules. Consequently, single-particle imaging and tracking with the iSCAT-based method known as mass photometry (MP) is a growing area of study. However, establishing reliable cover glass passivation and functionalisation methods is crucial to reduce nonspecific binding and prepare surfaces for in vitro single-molecule binding experiments. Existing protocols for fluorescence microscopy can contain strongly scattering or mobile components, which make them impractical for MP-based microscopy. In this study, we characterise several different surface coatings using MP. We present approaches for cover glass passivation using 3-aminopropyltriethoxysilane (APTES) and polyethylene glycol (PEG, 2k) along with functionalisation via a maleimide-thiol linker. These coatings are compatible with water or salt buffers, and show low background scattering; thus, we are able to measure proteins as small as 60 kDa. In this technical note, we offer a surface preparation suitable for in vitro experiments with MP.
Collapse
Affiliation(s)
- Jenny Sülzle
- Laboratory of Experimental Biophysics (LEB), Institute of Physics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laila Elfeky
- Laboratory of Experimental Biophysics (LEB), Institute of Physics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics (LEB), Institute of Physics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Kocheril PA, Lenz KD, Mascareñas DDL, Morales-Garcia JE, Anderson AS, Mukundan H. Portable Waveguide-Based Optical Biosensor. BIOSENSORS 2022; 12:195. [PMID: 35448255 PMCID: PMC9025188 DOI: 10.3390/bios12040195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/31/2023]
Abstract
Rapid, on-site diagnostics allow for timely intervention and response for warfighter support, environmental monitoring, and global health needs. Portable optical biosensors are being widely pursued as a means of achieving fieldable biosensing due to the potential speed and accuracy of optical detection. We recently developed the portable engineered analytic sensor with automated sampling (PEGASUS) with the goal of developing a fieldable, generalizable biosensing platform. Here, we detail the development of PEGASUS's sensing hardware and use a test-bed system of identical sensing hardware and software to demonstrate detection of a fluorescent conjugate at 1 nM through biotin-streptavidin chemistry.
Collapse
Affiliation(s)
- Philip A. Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| | - Kiersten D. Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| | - David D. L. Mascareñas
- National Security Education Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (D.D.L.M.); (J.E.M.-G.)
| | - John E. Morales-Garcia
- National Security Education Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (D.D.L.M.); (J.E.M.-G.)
| | - Aaron S. Anderson
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| |
Collapse
|
3
|
Ettabib MA, Marti A, Liu Z, Bowden BM, Zervas MN, Bartlett PN, Wilkinson JS. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sens 2021; 6:2025-2045. [PMID: 34114813 DOI: 10.1021/acssensors.1c00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Waveguide enhanced Raman spectroscopy (WERS) utilizes simple, robust, high-index contrast dielectric waveguides to generate a strong evanescent field, through which laser light interacts with analytes residing on the surface of the waveguide. It offers a powerful tool for the direct identification and reproducible quantification of biochemical species and an alternative to surface enhanced Raman spectroscopy (SERS) without reliance on fragile noble metal nanostructures. The advent of low-cost laser diodes, compact spectrometers, and recent progress in material engineering, nanofabrication techniques, and software modeling tools have made realizing portable and cheap WERS Raman systems with high sensitivity a realistic possibility. This review highlights the latest progress in WERS technology and summarizes recent demonstrations and applications. Following an introduction to the fundamentals of WERS, the theoretical framework that underpins the WERS principles is presented. The main WERS design considerations are then discussed, and a review of the available approaches for the modification of waveguide surfaces for the attachment of different biorecognition elements is provided. The review concludes by discussing and contrasting the performance of recent WERS implementations, thereby providing a future roadmap of WERS technology where the key opportunities and challenges are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Ettabib
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Almudena Marti
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Zhen Liu
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Bethany M. Bowden
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Michalis N. Zervas
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip N. Bartlett
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James S. Wilkinson
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Abstract
Surface modification is recognized as one of the fundamental techniques to fabricate biosensing interfaces. This review focuses on the surface modification of carbon substrates (GC and HOPG) and silica with a close-packed monolayer, in particular. In the cases of carbon substrates, GC and HOPG, it was demonstrated that surface modification of carbon substrates with diazonium derivatives could create a close-packed monolayer similar to the self-assembled monolayer (SAM) formation with mercapto derivatives. Similarly, the potential of trialkoxysilanes to form a close-packed monolayer was evaluated, and modification with a close-packed monolayer tended to occur under milder conditions when the trialkoxysilanes had a longer alkyl chain. In these studies, we synthesized surface modification materials having ferrocene as a redox active moiety to explore features of the modified surfaces by an electrochemical method using cyclic voltammetry, where surface concentrations of immobilized molecules and blocking effect were studied to obtain insight for density leading to a close-packed layer. Based on those findings, fabrication of a biosensing interface on the silica sensing chip of the waveguide-mode sensor was carried out using triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties to immobilize antibodies and to suppress nonspecific adsorption of proteins, respectively. The results demonstrate that the waveguide-mode sensor powered by the biosensing interface fabricated with those triethoxysilane derivatives and antibody has the potential to detect several tens ng/mL of biomarkers in human serum with unlabeled detection method.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Department of Life Science & Green Chemistry, Saitama Institute of Technology
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology
| |
Collapse
|
5
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
6
|
Imani SM, Badv M, Shakeri A, Yousefi H, Yip D, Fine C, Didar TF. Micropatterned biofunctional lubricant-infused surfaces promote selective localized cell adhesion and patterning. LAB ON A CHIP 2019; 19:3228-3237. [PMID: 31468050 DOI: 10.1039/c9lc00608g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Micropatterned biofunctional surfaces provide a wide range of applications in bioengineering. A key characteristic which is sought in these types of bio-interfaces is prevention of non-specific adhesion for enhanced biofunctionality and targeted binding. Lubricant-infused omniphobic coatings have exhibited superior performance in attenuating non-specific adhesion; however, these coatings completely block the surfaces and do not support targeted adhesion or patterning. In this work, we introduce a novel lubricant-infused surface with biofunctional micropatterned domains integrated within an omniphobic layer. This new class of micropatterned lubricant-infused surfaces simultaneously promotes localized and directed binding of desired targets, as well as repellency of undesired species, especially in human whole blood. Furthermore, this modification method is easily translatable to microfluidic devices offering a wider range of applications and improved performance for immunoassays in whole blood and inhibition of clot formation in microfluidic channels. The biofunctional micropatterned lubricant-infused surfaces were created through a bench-top straight forward process by integrating microcontact printing, chemical vapor deposition (CVD) of self-assembled monolayers (SAMs) of fluorosilanes, and further infusion of the SAMs with a bio-compatible fluorocarbon-based lubricant layer. The developed surfaces, patterned with anti-CD34 antibodies, yield enhanced adhesion and controlled localized binding of target biomolecules (e.g. antibodies) and CD34 positive cells (e.g. HUVECs) inside microfluidic devices, outperforming conventional blocking methods (e.g. bovine serum albumin (BSA) or poly(ethylene glycol) (PEG)) in buffer and human whole blood. These surfaces offer a straightforward and effective way to enhance blocking capabilities while preserving the biofunctionality of a micropatterned system in complex biological environments such as whole blood. We anticipate that these micropatterned biofunctional interfaces will find a wide range of applications in microfluidic devices and biosensors for enhanced and localized targeted binding while preventing non-specific adhesion.
Collapse
Affiliation(s)
- Sara M Imani
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE-308A, Hamilton, Ontario L8S 4L7, Canada.
| | - Hanie Yousefi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Darren Yip
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE-308A, Hamilton, Ontario L8S 4L7, Canada.
| | - Claire Fine
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE-308A, Hamilton, Ontario L8S 4L7, Canada.
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada and Department of Mechanical Engineering, McMaster University, 1280 Main Street West, JHE-308A, Hamilton, Ontario L8S 4L7, Canada. and Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Kubicek-Sutherland JZ, Vu DM, Noormohamed A, Mendez HM, Stromberg LR, Pedersen CA, Hengartner AC, Klosterman KE, Bridgewater HA, Otieno V, Cheng Q, Anyona SB, Ouma C, Raballah E, Perkins DJ, McMahon BH, Mukundan H. Direct detection of bacteremia by exploiting host-pathogen interactions of lipoteichoic acid and lipopolysaccharide. Sci Rep 2019; 9:6203. [PMID: 30996333 PMCID: PMC6470174 DOI: 10.1038/s41598-019-42502-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteremia is a leading cause of death in sub-Saharan Africa where childhood mortality rates are the highest in the world. The early diagnosis of bacteremia and initiation of treatment saves lives, especially in high-disease burden areas. However, diagnosing bacteremia is challenging for clinicians, especially in children presenting with co-infections such as malaria and HIV. There is an urgent need for a rapid method for detecting bacteremia in pediatric patients with co-morbidities to inform treatment. In this manuscript, we have developed and clinically validated a novel method for the direct detection of amphiphilic pathogen biomarkers indicative of bacteremia, directly in aqueous blood, by mimicking innate immune recognition. Specifically, we have exploited the interaction of amphiphilic pathogen biomarkers such as lipopolysaccharides (LPS) from Gram-negative bacteria and lipoteichoic acids (LTA) from Gram-positive bacteria with host lipoprotein carriers in blood, in order to develop two tailored assays – lipoprotein capture and membrane insertion – for their direct detection. Our assays demonstrate a sensitivity of detection of 4 ng/mL for LPS and 2 ng/mL for LTA using a waveguide-based optical biosensor platform that was developed at LANL. In this manuscript, we also demonstrate the application of these methods for the detection of LPS in serum from pediatric patients with invasive Salmonella Typhimurium bacteremia (n = 7) and those with Staphylococcal bacteremia (n = 7) with 100% correlation with confirmatory culture. Taken together, these results demonstrate the significance of biochemistry in both our understanding of host-pathogen biology, and development of assay methodology, as well as demonstrate a potential new approach for the rapid, sensitive and accurate diagnosis of bacteremia at the point of need.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Dung M Vu
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Aneesa Noormohamed
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Heather M Mendez
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States
| | - Loreen R Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States.,Department of Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, United States
| | - Christine A Pedersen
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Astrid C Hengartner
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Katja E Klosterman
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Haley A Bridgewater
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Vincent Otieno
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Samuel B Anyona
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya and University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya and University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Evans Raballah
- Department of Medical Laboratory Science, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya and University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Douglas J Perkins
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States.
| |
Collapse
|
8
|
Sarma D, Carl P, Climent E, Schneider RJ, Rurack K. Multifunctional Polystyrene Core/Silica Shell Microparticles with Antifouling Properties for Bead-Based Multiplexed and Quantitative Analysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1321-1334. [PMID: 30507151 DOI: 10.1021/acsami.8b10306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Commercial bead-based assays are commonly built upon polystyrene particles. The polymeric carrier can be encoded with organic dyes and has ideal material properties for cytometric applications such as low density and high refractive index. However, functional groups are conventionally integrated during polymerization and subsequent modification is limited to the reactivity of those groups. Additionally, polystyrene as the core material leads to many hydrophobic areas still being present on the beads' surfaces even after functionalization, rendering the particles prone to nonspecific adsorption during an application. The latter calls for several washing steps and the use of additives in (bio)analytical assays. In this contribution, we show how these limitations can be overcome by using monodisperse polystyrene (PS) core/silica (SiO2) shell particles (SiO2@PS). Two different hydrophobic BODIPY (boron-dipyrromethene) dyes were encapsulated inside a poly(vinylpyrrolidone) (PVP) -stabilized polystyrene core in different concentrations to create 5-plex arrays in two separate detection channels of a cytometer. A subsequent modification of the silica shell with an equimolar APTES/PEGS (aminopropyltriethoxysilane/polyethylene glycol silane) blend added multifunctional properties to the hybrid core/shell microparticles in a single step: APTES provides amino groups for the attachment of a caffeine derivative (as a hapten) to create antigen-coupled microspheres; the PEG moiety effectively suppresses nonspecific binding of antibodies, endowing the surface with antifouling properties. The particles were applied in a competitive fluorescence immunoassay in suspension, and a highly selective wash-free assay for the detection of caffeine in beverages was developed as a proof of concept.
Collapse
Affiliation(s)
- Dominik Sarma
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Peter Carl
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Estela Climent
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| | - Rudolf J Schneider
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
- Technische Universität Berlin , Straße des 17. Juni 135 , 10623 Berlin , Germany
| | - Knut Rurack
- Department of Analytical Chemistry; Reference Materials , Bundesanstalt für Materialforschung und -prüfung (BAM) , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| |
Collapse
|
9
|
Lee SH, Kang JS, Kim D. A Mini Review: Recent Advances in Surface Modification of Porous Silicon. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2557. [PMID: 30558344 PMCID: PMC6316318 DOI: 10.3390/ma11122557] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/05/2023]
Abstract
Porous silicon has been utilized within a wide spectrum of industries, as well as being used in basic research for engineering and biomedical fields. Recently, surface modification methods have been constantly coming under the spotlight, mostly in regard to maximizing its purpose of use. Within this review, we will introduce porous silicon, the experimentation preparatory methods, the properties of the surface of porous silicon, and both more conventional as well as newly developed surface modification methods that have assisted in attempting to overcome the many drawbacks we see in the existing methods. The main aim of this review is to highlight and give useful insight into improving the properties of porous silicon, and create a focused description of the surface modification methods.
Collapse
Affiliation(s)
- Seo Hyeon Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jae Seung Kang
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, College of Medicine, Seoul National University, Seoul 03080, Korea.
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul 03080, Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
10
|
Badv M, Imani SM, Weitz JI, Didar TF. Lubricant-Infused Surfaces with Built-In Functional Biomolecules Exhibit Simultaneous Repellency and Tunable Cell Adhesion. ACS NANO 2018; 12:10890-10902. [PMID: 30352507 DOI: 10.1021/acsnano.8b03938] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lubricant-infused omniphobic surfaces have exhibited outstanding effectiveness in inhibiting nonspecific adhesion and attenuating superimposed clot formation compared with other coated surfaces. However, such surfaces blindly thwart adhesion, which is troublesome for applications that rely on targeted adhesion. Here we introduce a new class of lubricant-infused surfaces that offer tunable bioactivity together with omniphobic properties by integrating biofunctional domains into the lubricant-infused layer. These novel surfaces promote targeted binding of desired species while simultaneously preventing nonspecific adhesion. To develop these surfaces, mixed self-assembled monolayers (SAMs) of aminosilanes and fluorosilanes were generated. Aminosilanes were utilized as coupling molecules for immobilizing capture ligands, and nonspecific adhesion of cells and proteins was prevented by infiltrating the fluorosilane molecules with a thin layer of a biocompatible fluorocarbon-based lubricant, thus generating biofunctional lubricant-infused surfaces. This method yields surfaces that (a) exhibit highly tunable binding of anti-CD34 and anti-CD144 antibodies and adhesion of endothelial cells, while repelling nonspecific adhesion of undesirable proteins and cells not only in buffer but also in human plasma or human whole blood, and (b) attenuate blood clot formation. Therefore, this straightforward and simple method creates biofunctional, nonsticky surfaces that can be used to optimize the performance of devices such as biomedical implants, extracorporeal circuits, and biosensors.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Sara M Imani
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Thrombosis & Atherosclerosis Research Institute (TaARI) , Hamilton , Ontario L8S 4L7 , Canada
| | - Tohid F Didar
- School of Biomedical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Department of Mechanical Engineering , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
- Institute for Infectious Disease Research (IIDR) , McMaster University , Hamilton , Ontario L8S 4L7 , Canada
| |
Collapse
|
11
|
Electrochemical cytosensor for detection of cell surface sialic acids based on 3D biointerface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Vu DM, Sakamuri RM, Waters WR, Swanson BI, Mukundan H. Detection of Lipomannan in Cattle Infected with Bovine Tuberculosis. ANAL SCI 2018; 33:457-460. [PMID: 28392519 DOI: 10.2116/analsci.33.457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early and rapid detection of bovine tuberculosis (bTB) is critical to controlling the spread of this disease in cattle and other animals. In this study, we demonstrate the development of an immunoassay for the direct detection of the bovine bTB biomarker, lipomannan (LM) in serum using a waveguide-based optical biosensor. We apply an ultra-sensitive detection strategy developed by our team, termed lipoprotein capture, that exploits the pull-down of high-density lipoprotein (HDL) nanodiscs from cattle blood that allows for the recovery and detection of associated LM. We also profile the change in the expression of these TB biomarkers as a function of time from a small set of samples collected from studies of bovine TB-infected cattle. We demonstrate for the first time the direct detection of bovine LM in serum, and clearly show that the biomarker is expressed in detectable concentrations during the entire course of the infection.
Collapse
Affiliation(s)
- Dung M Vu
- Chemistry Division, MS J567, Los Alamos National Laboratory
| | | | | | | | | |
Collapse
|
13
|
Fetterly CR, Olsen BC, Luber EJ, Buriak JM. Vapor-Phase Nanopatterning of Aminosilanes with Electron Beam Lithography: Understanding and Minimizing Background Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4780-4792. [PMID: 29614858 DOI: 10.1021/acs.langmuir.8b00679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electron beam lithography (EBL) is a highly precise, serial method for patterning surfaces. Positive tone EBL resists enable patterned exposure of the underlying surface, which can be subsequently functionalized for the application of interest. In the case of widely used native oxide-capped silicon surfaces, coupling an activated silane with electron beam lithography would enable nanoscale chemical patterning of the exposed regions. Aminoalkoxysilanes are extremely useful due to their reactive amino functionality but have seen little attention for nanopatterning silicon surfaces with an EBL resist due to background contamination. In this work, we investigated three commercial positive tone EBL resists, PMMA (950k and 495k) and ZEP520A (57k), as templates for vapor-phase patterning of two commonly used aminoalkoxysilanes, 3-aminopropyltrimethoxysilane (APTMS) and 3-aminopropyldiisopropylethoxysilane (APDIPES). The PMMA resists were susceptible to significant background reaction within unpatterned areas, a problem that was particularly acute with APTMS. On the other hand, with both APTMS and APDIPES exposure, unpatterned regions of silicon covered by the ZEP520A resist emerged pristine, as shown both with SEM images of the surfaces of the underlying silicon and through the lack of electrostatically driven binding of negatively charged gold nanoparticles. The ZEP520A resist allowed for the highly selective deposition of these alkoxyaminosilanes in the exposed areas, leaving the unpatterned areas clean, a claim also supported by contact angle measurements with four probe liquids and X-ray photoelectron spectroscopy (XPS). We investigated the mechanistic reasons for the stark contrast between the PMMA resists and ZEP520A, and it was found that the efficacy of resist removal appeared to be the critical factor in reducing the background functionalization. Differences in the molecular weight of the PMMA resists and the resulting influence on APTMS diffusion through the resist films are unlikely to have a significant impact. Area-selective nanopatterning of 15 nm gold nanoparticles using the ZEP520A resist was demonstrated, with no observable background conjugation noted in the unexposed areas on the silicon surface by SEM.
Collapse
Affiliation(s)
- Christopher R Fetterly
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| | - Brian C Olsen
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| | - Erik J Luber
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| | - Jillian M Buriak
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
14
|
Meillan M, Buffeteau T, Le Bourdon G, Thomas L, Degueil M, Heuzé K, Bennetau B, Vellutini L. Mixed Self-Assembled Monolayers with Internal Urea Group on Silica Surface. ChemistrySelect 2017. [DOI: 10.1002/slct.201702434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthieu Meillan
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Thierry Buffeteau
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Gwenaëlle Le Bourdon
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Laurent Thomas
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Marie Degueil
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Karine Heuzé
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Bernard Bennetau
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Luc Vellutini
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| |
Collapse
|
15
|
Markov A, Wolf N, Yuan X, Mayer D, Maybeck V, Offenhäusser A, Wördenweber R. Controlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29265-29272. [PMID: 28783310 DOI: 10.1021/acsami.7b08481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modifying the surfaces of oxides using self-assembled monolayers offers an exciting possibility to tailor their surface properties for various applications ranging from organic electronics to bioelectronics applications. The simultaneous use of different molecules in particular can extend this approach because the surface properties can be tuned via the ratio of the chosen molecules. This requires the composition and quality of the monolayers to be controlled on an organic level, that is, on the nanoscale. In this paper, we present a method of modifying the surface and surface properties of silicon oxide by growing self-assembled monolayers comprising various compositions of two different molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane, by means of in situ controlled gas-phase deposition. The properties of the resulting mixed molecular monolayers (e.g., effective thickness, hydrophobicity, and surface potential) exhibit a perfect linear dependence on the composition of the molecular layer. Finally, coating the mixed layer with poly(l-lysine) proves that the density of proteins can be controlled by the composition as well. This indicates that the method might be an ideal way to optimize inorganic surfaces for bioelectronics applications.
Collapse
Affiliation(s)
- Aleksandr Markov
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Nikolaus Wolf
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Xiaobo Yuan
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Vanessa Maybeck
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Roger Wördenweber
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich , Jülich 52425, Germany
| |
Collapse
|
16
|
Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. BIOSENSORS-BASEL 2017; 7:bios7030025. [PMID: 28677660 PMCID: PMC5618031 DOI: 10.3390/bios7030025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Dung M Vu
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
- The New Mexico Consortium, Los Alamos, NM 87544, USA.
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
18
|
Qin G, Yam CM, Kumar A, Lopez-Romero JM, Li S, Huynh T, Li Y, Yang B, Contreras-Caceres R, Cai C. Preparation, characterization, and protein-resistance of films derived from a series of α-oligo(ethylene glycol)-ω-alkenes on H–Si(111) surfaces. RSC Adv 2017. [DOI: 10.1039/c6ra28497c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Films on Si(111) were prepared by photo-activated grafting of CH2CH(CH2)m(OCH2CH2)nOCH3 (m = 8, 9; n = 3–7) by using different vacuum conditions. High vacuum produced a higher thickness (40 Å) and <0.8% fibrinogen adsorption (C10EG7). Films were stable even after 28 days.
Collapse
Affiliation(s)
- Guoting Qin
- College of Optometry
- University of Houston
- Houston
- USA
| | - Chi Ming Yam
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Amit Kumar
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - J. Manuel Lopez-Romero
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
- Spain
| | - Sha Li
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Toan Huynh
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Yan Li
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Bin Yang
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | | | - Chengzhi Cai
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| |
Collapse
|
19
|
Markov A, Greben K, Mayer D, Offenhäusser A, Wördenweber R. In Situ Analysis of the Growth and Dielectric Properties of Organic Self-Assembled Monolayers: A Way To Tailor Organic Layers for Electronic Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16451-16456. [PMID: 27268402 DOI: 10.1021/acsami.6b04021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic nanoscale science and technology relies on the control of phenomena occurring at the molecular level. This is of particular importance for the self-assembly of molecular monolayers (SAM) that can be used in various applications ranging from organic electronics to bioelectronic applications. However, the understanding of the elementary nanoscopic processes in molecular film growth is still in its infancy. Here, we developed a novel in situ and extremely sensitive detection method for the analysis of the electronic properties of molecular layer during molecular layer deposition. This low-frequency sensor (1 kHz) is employed to analyze the standard vapor deposition process of SAMs of molecules and, subsequently, it is used to optimize the growth process itself. By combining this method with an ex situ determination of the effective thickness of the resulting layers via ellipsometry, we observe a large difference of the permittivity (1 kHz) of the examined aminosilanes in the liquid state (εliquid = 5.5-8.8) and in SAMs (εSAM = 22-52, electric field in the plane of the layer). We ascribe this difference to either the different orientation and order of the molecules, the different density of molecules, or a combination of both effects. Our novel in situ analyses not only allows monitoring and optimizing the deposition of organic layers but also demonstrates the high potential of organic SAMs as organic high-k layers in electronic devices.
Collapse
Affiliation(s)
- Aleksandr Markov
- Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Kyrylo Greben
- Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Dirk Mayer
- Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Andreas Offenhäusser
- Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Roger Wördenweber
- Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich , Jülich 52425, Germany
| |
Collapse
|
20
|
Chen F, Neupane B, Li P, Su W, Wang G. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy. Electrophoresis 2016; 37:2129-38. [PMID: 27196052 DOI: 10.1002/elps.201600158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/17/2016] [Accepted: 05/02/2016] [Indexed: 02/05/2023]
Abstract
We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions.
Collapse
Affiliation(s)
- Fang Chen
- Chemistry Department, North Carolina State University, Raleigh, NC, USA
| | - Bhanu Neupane
- Chemistry Department, North Carolina State University, Raleigh, NC, USA
| | - Peiyuan Li
- Chemistry Department, North Carolina State University, Raleigh, NC, USA
| | - Wei Su
- Chemistry Department, North Carolina State University, Raleigh, NC, USA
| | - Gufeng Wang
- Chemistry Department, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Zhao L, Zhong Y, Wei Y, Ortiz N, Chen F, Wang G. Microscopic Movement of Slow-Diffusing Nanoparticles in Cylindrical Nanopores Studied with Three-Dimensional Tracking. Anal Chem 2016; 88:5122-30. [DOI: 10.1021/acs.analchem.5b04944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Luyang Zhao
- Chemistry Department, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yaning Zhong
- Chemistry Department, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yanli Wei
- Chemistry Department, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nathalia Ortiz
- Chemistry Department, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Fang Chen
- Chemistry Department, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gufeng Wang
- Chemistry Department, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens Bioelectron 2016; 76:103-12. [PMID: 26232145 PMCID: PMC5012222 DOI: 10.1016/j.bios.2015.07.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein.
Collapse
Affiliation(s)
- Chris Rowe Taitt
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - Frances S Ligler
- UNC-Chapel Hill and NC State University Department of Biomedical Engineering, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
23
|
Batz NG, Mellors JS, Alarie JP, Ramsey JM. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 2014; 86:3493-500. [PMID: 24655020 DOI: 10.1021/ac404106u] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.
Collapse
Affiliation(s)
- Nicholas G Batz
- Department of Chemistry, ‡Department of Biomedical Engineering, and §Carolina Center for Genome Sciences, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
24
|
Zaccari I, Catchpole B, Laurenson SX, Davies AG, Wälti C. Improving the dielectric properties of ethylene-glycol alkanethiol self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1321-6. [PMID: 24447311 PMCID: PMC4065163 DOI: 10.1021/la403983b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/20/2013] [Indexed: 05/11/2023]
Abstract
Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor.
Collapse
Affiliation(s)
- Irene Zaccari
- University
of Leeds, School
of Electronic and Electrical Engineering, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Benjamin
G. Catchpole
- University
of Leeds, School
of Electronic and Electrical Engineering, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | | | - A. Giles Davies
- University
of Leeds, School
of Electronic and Electrical Engineering, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Christoph Wälti
- University
of Leeds, School
of Electronic and Electrical Engineering, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
25
|
Heo Y, Lee S, Lee SW, Kang SH. Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.9.2725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Tanaka M, Sawaguchi T, Kuwahara M, Niwa O. Surface modification of silicon oxide with trialkoxysilanes toward close-packed monolayer formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6361-6368. [PMID: 23668922 DOI: 10.1021/la4009834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to scrutinize potential of trialkoxysilanes to form close-packed monolayer, surface modification of silicon oxide was carried out with the trialkoxysilanes bearing a ferrocene moiety for analysis by electrochemical methods. As it was found that hydrogen-terminated silicon reacts with trialkoxysilane through natural oxidation in organic solvents, where the silicon oxide layer is thin enough to afford conductivity for electrochemical analysis, hydrogen-terminated silicon wafer was immersed in trialkoxysilane solution for surface modification without oxidation treatment. Cyclic voltammetry measurements to determine surface concentrations of the immobilized ferrocene-silane on silicon surface were carried out with various temperature, concentration, solvent, and molecular structure, while the blocking effect in the cyclic voltammogram was investigated to obtain insight into density leading to the close-packed layer. The results suggested that a monolayer modification tended to occur under milder conditions when the ferrocene-silane had a longer alkyl chain, and formation of a close-packed layer to show significant blocking effect was observed. However, the surface modification proceeded even when surface concentration of the immobilized ferrocene-silane was greater than that expected for the monolayer. On the basis of these tendencies, the surface of silicon oxide modified with trialkoxysilane is considered to be a partial multilayer rather than monolayer although a close-packed layer is formed. This result is supported by the comparison with carbon surface modified with ferrocene-diazonium, in which a significant blocking effect was observed when surface concentrations of the immobilized ferrocene moiety are lower than that for silicon oxide modified with ferrocene-silane.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Biomedical Research Institute, Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | |
Collapse
|
27
|
Sakamuri RM, Price DN, Lee M, Cho SN, Barry CE, Via LE, Swanson BI, Mukundan H. Association of lipoarabinomannan with high density lipoprotein in blood: implications for diagnostics. Tuberculosis (Edinb) 2013; 93:301-7. [PMID: 23507184 DOI: 10.1016/j.tube.2013.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/27/2022]
Abstract
Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We have also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum, and demonstrate that the circulating concentrations of 'monomeric' LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. This phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host-pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.
Collapse
Affiliation(s)
- Rama Murthy Sakamuri
- Chemistry Division, Los Alamos National Laboratory, MS J567, C-PCS, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Local control of protein binding and cell adhesion by patterned organic thin films. Anal Bioanal Chem 2013; 405:3673-91. [DOI: 10.1007/s00216-013-6748-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
|
29
|
Pilolli R, Ditaranto N, Cioffi N, Sabbatini L. Non-destructive depth profile reconstruction of bio-engineered surfaces by parallel-angle-resolved X-ray photoelectron spectroscopy. Anal Bioanal Chem 2012; 405:713-24. [DOI: 10.1007/s00216-012-6179-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/14/2012] [Accepted: 06/02/2012] [Indexed: 11/30/2022]
|
30
|
Mukundan H, Kumar S, Price DN, Ray SM, Lee YJ, Min S, Eum S, Kubicek-Sutherland J, Resnick JM, Grace WK, Anderson AS, Hwang SH, Cho SN, Via LE, Barry C, Sakamuri R, Swanson BI. Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis (Edinb) 2012; 92:407-16. [PMID: 22710249 DOI: 10.1016/j.tube.2012.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Early diagnosis of active tuberculosis (TB) remains an elusive challenge, especially in individuals with disseminated TB and HIV co-infection. Recent studies have shown a promise for the direct detection of pathogen-specific biomarkers such as lipoarabinomannan (LAM) for the diagnosis of TB in HIV-positive individuals. Currently, traditional immunoassay platforms that suffer from poor sensitivity and high non-specific interactions are used for the detection of such biomarkers. In this manuscript, we demonstrate the development of sandwich immunoassays for the direct detection of three TB-specific biomarkers, namely LAM, early secretory antigenic target 6 (ESAT6) and antigen 85 complex (Ag85), using a waveguide-based optical biosensor platform. Combining detection within the evanescent field of a planar optical waveguide with functional surfaces that reduce non-specific interactions allows for the ultra-sensitive and quantitative detection of biomarkers (an order of magnitude enhanced sensitivity, as compared to plate-based ELISA) in complex patient samples (urine, serum) within a short time. We also demonstrate the detection of LAM in urine from a small sample of subjects being treated for TB using this approach with excellent sensitivity and 100% corroboration with disease status. These results suggest that pathogen-specific biomarkers can be applied for the rapid and effective diagnosis of disease. It is likely that detection of a combination of biomarkers offers greater reliability of diagnosis, rather than detection of any single pathogen biomarker. NCT00341601.
Collapse
Affiliation(s)
- Harshini Mukundan
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format. Anal Bioanal Chem 2012; 403:517-26. [DOI: 10.1007/s00216-012-5850-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/04/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|
32
|
Xu Z, Cotlet M. Photoluminenscence blinking dynamics of colloidal quantum dots in the presence of controlled external electron traps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:253-258. [PMID: 22180124 DOI: 10.1002/smll.201101643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Indexed: 05/31/2023]
Abstract
The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot-bridge-fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well-defined, well-positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi-continuous distribution of 'on' states and an early fall-off from a power-law distribution for both 'on' and 'off' times associated with quantum dot photoluminescence blinking.
Collapse
Affiliation(s)
- Zhihua Xu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA
| | | |
Collapse
|
33
|
Zhu M, Lerum MZ, Chen W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:416-23. [PMID: 22128807 PMCID: PMC3243110 DOI: 10.1021/la203638g] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Five functional silanes--3-aminopropyltriethoxysilane (APTES), 3-aminopropyltrimethoxysilane (APTMS), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPTES), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), and N-(6-aminohexyl)aminomethyltriethoxysilane (AHAMTES)--were assessed for the preparation of hydrolytically stable amine-functionalized silica substrates. These can be categorized into three groups (G1, G2, and G3) based on the intramolecular coordinating ability of the amine functionality to the silicon center. Silanizations were carried out in anhydrous toluene as well as in the vapor phase at elevated temperatures. Aminosilane-derived layers prepared in solution are multilayers in nature, and those produced in the vapor phase have monolayer characteristics. In general, vapor-phase reactions are much less sensitive to variations in humidity and reagent purity, are more practical than the solution-phase method, and generate more reproducible results. Intramolecular catalysis by the amine functionality is found to be important for both silanization and hydrolysis. The primary amine group in the G1 silanes (APTES and APTMS) can readily catalyze siloxane bond formation and hydrolysis to render their silane layers unstable toward hydrolysis. The amine functionality in the G3 silane (AHAMTES) is incapable of intramolecular catalysis of silanization so that stable siloxane bonds between the silane molecules and surface silanols do not form easily. The secondary amine group in the G2 silanes (AEAPTES and AEAPTMS), on the other hand, can catalyze siloxane bond formation, but the intramolecular catalysis of bond detachment is sterically hindered. The G2 silanes are the best candidates for preparing stable amine-functionalized surfaces. Between the two G2 aminosilanes, AEAPTES results in more reproducible silane layers than AEAPTMS in the vapor phase due to its lower sensitivity to water content in the reaction systems.
Collapse
Affiliation(s)
- Mojun Zhu
- Chemistry Department, Mount Holyoke College, South Hadley, MA 01075
| | - Maria Z. Lerum
- Chemistry Department, Mount Holyoke College, South Hadley, MA 01075
| | - Wei Chen
- Chemistry Department, Mount Holyoke College, South Hadley, MA 01075
| |
Collapse
|
34
|
Xiang S, Xing G, Xue W, Lu C, Lin JM. Comparison of two different deposition methods of 3-aminopropyltriethoxysilane on glass slides and their application in the ThinPrep cytologic test. Analyst 2012; 137:1669-73. [DOI: 10.1039/c2an15983j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Tripathi BP, Dubey NC, Choudhury S, Stamm M. Antifouling and tunable amino functionalized porous membranes for filtration applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34172g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Wolfenden ML, Sakamuri RM, Anderson AS, Prasad L, Schmidt JG, Mukundan H. Determination of bacterial viability by selective capture using surface-bound siderophores. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.24049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Price AD, Hur SM, Fredrickson GH, Frischknecht AL, Huber DL. Exploring Lateral Microphase Separation in Mixed Polymer Brushes by Experiment and Self-Consistent Field Theory Simulations. Macromolecules 2011. [DOI: 10.1021/ma202542u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andrew D. Price
- Center for
Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico
87185, United States
| | | | | | - Amalie L. Frischknecht
- Center for
Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico
87185, United States
| | - Dale L. Huber
- Center for
Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico
87185, United States
| |
Collapse
|
38
|
Lowe RD, Pellow MA, Stack TDP, Chidsey CED. Deposition of dense siloxane monolayers from water and trimethoxyorganosilane vapor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9928-9935. [PMID: 21721567 DOI: 10.1021/la201333y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A convenient, laboratory-scale method for the vapor deposition of dense siloxane monolayers onto oxide substrates was demonstrated. This method was studied and optimized at 110 °C under reduced pressure with the vapor of tetradecyltris(deuteromethoxy)silane, (CD(3)O)(3)Si(CH(2))(13)CH(3), and water from the dehydration of MgSO(4)·7H(2)O. Ellipsometric thicknesses, water contact angles, Fourier transform infrared (FTIR) spectroscopy, and electrochemical capacitance measurements were used to probe monolayer densification. The CD(3) stretching mode in the FTIR spectrum was monitored as a function of the deposition time and amounts of silane and water reactants. This method probed the unhydrolyzed methoxy groups on adsorbed silanes. Excess silane and water were necessary to achieve dense, completely hydrolyzed monolayers. In the presence of sufficient silane, an excess of water above the calculated stoichiometric amount was necessary to hydrolyze all methoxy groups and achieve dense monolayers. The excess water was partially attributed to the reversibility of the hydrolysis of the methoxy groups.
Collapse
Affiliation(s)
- Randall D Lowe
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | | | | | | |
Collapse
|
39
|
Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH. Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9497-9503. [PMID: 21678982 DOI: 10.1021/la201760w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Porous silicon (pSi) surfaces were chemically micropatterned through a combination of photolithography and surface silanization reactions. This patterning technique produces discretely defined regions on a pSi surface functionalized with a specific chemical functionality, and the surrounding surface displays a completely different functionality. The generated chemical patterns were characterized by a combination of IR microscopy and the conjugation of two different fluorescent organic dyes. Finally, the chemically patterned pSi surface was used to direct the attachment of neuronal cells to the surface. This patterning strategy will be useful for the development of high-throughput platforms for investigating cell behavior.
Collapse
Affiliation(s)
- Martin J Sweetman
- School of Chemical and Physical Sciences, Flinders University of South Australia, Adelaide SA 5042, Australia
| | | | | | | |
Collapse
|
40
|
Tawa K, Umetsu M, Hattori T, Kumagai I. Zinc Oxide-Coated Plasmonic Chip Modified with a Bispecific Antibody for Sensitive Detection of a Fluorescent Labeled-Antigen. Anal Chem 2011; 83:5944-8. [DOI: 10.1021/ac200898e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keiko Tawa
- Health Research Institute, AIST, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Center for Interdisciplinary Research, Tohoku University, Sendai 980-8579, Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
41
|
Ramin MA, Le Bourdon G, Daugey N, Bennetau B, Vellutini L, Buffeteau T. PM-IRRAS investigation of self-assembled monolayers grafted onto SiO2/Au substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6076-6084. [PMID: 21486004 DOI: 10.1021/la2006293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to characterize self-assembled monolayers (SAMs). Novel ester-terminated organosilicon coupling agents possessing a trialkoxysilyl headgroup and a urea group in the linear alkyl chains (4) were synthesized and grafted onto SiO(2)/Au substrates (SiO(2) film of 200 Å thickness deposited on gold mirror). This composite substrate allowed the anchoring of SAMs and preserved the high reflectivity for infrared radiation. PM-IRRAS spectra with very high signal-to-noise ratios have been obtained in the mid-infrared spectral range allowing monitoring of the grafted SAMs. Quantitative analysis of the measured signal is described to compare PM-IRRAS and conventional IRRAS spectra. This quantitative analysis has been validated since the band intensities in the corrected PM-IRRAS and conventional IRRAS spectra are identical. Orientation information on the different functional groups has been obtained comparing the corrected PM-IRRAS spectrum with the one calculated using isotropic optical constants of ester-terminated organosilicon coupling agents 4. The carbonyls of the urea groups are preferentially parallel to the substrate surface favoring intermolecular hydrogen bonding and consequently a close packing of the molecules attached to the surface. By contrast, the alkyl chains present gauche defects and are poorly oriented.
Collapse
Affiliation(s)
- Michaël A Ramin
- Institut des Sciences Moléculaires (UMR 5255-CNRS), Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France
| | | | | | | | | | | |
Collapse
|
42
|
Xu Z, Cotlet M. Quantum Dot-Bridge-Fullerene Heterodimers with Controlled Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2011; 50:6079-83. [DOI: 10.1002/anie.201007270] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Indexed: 11/11/2022]
|
43
|
Xu Z, Cotlet M. Quantum Dot-Bridge-Fullerene Heterodimers with Controlled Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Zhang F, Sautter K, Larsen AM, Findley DA, Davis RC, Samha H, Linford MR. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14648-14654. [PMID: 20731334 DOI: 10.1021/la102447y] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wang T, Ingram C, Weisshaar JC. Model lipid bilayer with facile diffusion of lipids and integral membrane proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11157-64. [PMID: 20459075 PMCID: PMC5814108 DOI: 10.1021/la101046r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A model membrane system is formed by the rupture of giant unilamellar vesicles (GUVs) onto a passivating layer comprising a PEG polymer cushion anchored in a lipid bilayer supported on glass. The novel use of pH-dependent electrostatic interactions between NeutrAvidin in the passivating layer and anionic lipids in the GUV drives vesicle rupture. The resulting "GUV pancakes" are single, planar lipid bilayer patches whose diameters vary from approximately 20 to 50 microm. The pancakes have several potential advantages for the in vitro study of protein-lipid interactions and integral membrane protein function. All components are commercially available. The pancakes resist nonspecific binding of vesicles containing protein. Both lipids and integral membrane proteins exhibit good lateral mobility in the GUV pancakes, as evidenced by single-particle tracking (SPT) of the DiD double-tailed fluorescent probe and of the integral membrane protein syntaxin-1A, labeled with AlexaFluor 633 (AF633-Syx). At least 80% of both probes exhibit free, homogeneous diffusion with a diffusion coefficient of approximately 5.5 microm(2) s(-1), which is more than 10 times faster than diffusion in a GUV pancake supported on bare glass. Atomic force microscopy (AFM) suggests that the polymer cushion has a height of approximately 4 nm. The mobility of a large fraction of the AF633-Syx probe suggests that even integral membrane proteins with large domains on both sides of the lipid bilayer should exhibit free diffusion within a GUV pancake.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Chemistry, Graduate Program in Molecular Biophysics, 1101 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706
| | - Colin Ingram
- Department of Chemistry, Graduate Program in Molecular Biophysics, 1101 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706
| | - James C. Weisshaar
- Department of Chemistry, Graduate Program in Molecular Biophysics, 1101 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706
| |
Collapse
|
46
|
Mukundan H, Xie H, Price D, Kubicek-Sutherland JZ, Grace WK, Anderson AS, Martinez JS, Hartman N, Swanson BI. Quantitative multiplex detection of pathogen biomarkers on multichannel waveguides. Anal Chem 2010; 82:136-44. [PMID: 20000585 DOI: 10.1021/ac901497g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
No single biomarker can accurately predict disease. An ideal biodetection technology should be capable of the quantitative, reproducible, and sensitive detection of a limited suite of such molecules. To this end, we have developed a multiplex biomarker assay for protective antigen and lethal factor of the Bacillus anthracis lethal toxin using semiconductor quantum dots as the fluorescence reporters on our waveguide-based biosensor platform. The platform is extendable to a wide array of biomarkers, facilitating rapid, quantitative, sensitive, and multiplex detection, better than achievable by conventional immunoassay. Our assay allows for the sensitive (limit of detection 1 pM each), specific (minimal nonspecific binding), and rapid (15 min) detection of these biomarkers in complex biological samples (e.g., serum). To address the issue of reproducibility in measurement and to increase our sample throughput, we have incorporated multichannel waveguides capable of simultaneous multiplex detection of biomarkers in three samples in quadruplicate. In this paper, we present the design, fabrication, and development of multichannel waveguides for the simultaneous detection of lethal factor and protective antigen in serum. Evaluation of the multichannel waveguide shows an excellent concordance with single-channel data and effective, simultaneous, and reproducible measurement of lethal toxins in three samples.
Collapse
Affiliation(s)
- Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clavé G, Volland H, Flaender M, Gasparutto D, Romieu A, Renard PY. A universal and ready-to-use heterotrifunctional cross-linking reagent for facile synthetic access to sophisticated bioconjugates. Org Biomol Chem 2010; 8:4329-45. [DOI: 10.1039/c0ob00133c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Oldham WJ, Dry DE, Mueller AH. Synthesis of functional monolayer surfaces for rapid radiometric determination of plutonium. J Radioanal Nucl Chem 2009. [DOI: 10.1007/s10967-009-0243-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Mukundan H, Anderson AS, Grace WK, Grace KM, Hartman N, Martinez JS, Swanson BI. Waveguide-based biosensors for pathogen detection. SENSORS (BASEL, SWITZERLAND) 2009; 9:5783-809. [PMID: 22346727 PMCID: PMC3274158 DOI: 10.3390/s90705783] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/16/2022]
Abstract
Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, "dirty" biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning's EPIC(®) Ô, SRU Biosystems' BIND(™), Zeptosense(®), etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.
Collapse
Affiliation(s)
- Harshini Mukundan
- Physical Chemistry and Applied spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Aaron S. Anderson
- Physical Chemistry and Applied spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - W. Kevin Grace
- Physical Chemistry and Applied spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Karen M. Grace
- Integrated Space Research-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Nile Hartman
- nGimat™, 5315, Peachtree Industrial Blvd., Atlanta, GA30341, USA
| | - Jennifer S. Martinez
- Centers for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Basil I. Swanson
- Physical Chemistry and Applied spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
50
|
Rosso M, Giesbers M, Arafat A, Schroën K, Zuilhof H. Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2172-2180. [PMID: 19146429 DOI: 10.1021/la803094y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We describe the formation of alkyl monolayers on silicon carbide (SiC) and silicon-rich silicon nitride (SixN4) surfaces, using UV irradiation in the presence of alkenes. Both the surface preparation and the monolayer attachment were carried out under ambient conditions. The stable coatings obtained in this way were studied by water contact angle measurements, infrared reflection absorption spectroscopy, X-ray reflectivity, and X-ray photoelectron spectroscopy. Besides unfunctionalized 1-alkenes, methyl undec-10-enoate, and 2,2,2-trifluoroethyl undec-10-enoate were also grafted onto both substrates. The resulting ester-terminated surfaces could then be further reacted after hydrolysis using amide chemistry to easily allow the attachment of amine-containing compounds.
Collapse
Affiliation(s)
- Michel Rosso
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|