1
|
Farahzadi R, Fathi E, Vandghanooni S, Valipour B. Hydrogel encapsulation of mesenchymal stem cells-derived extracellular vesicles as a novel therapeutic approach in cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189177. [PMID: 39218403 DOI: 10.1016/j.bbcan.2024.189177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cell therapy has emerged as one of the most promising approaches to treating disease in recent decades. The application of stem cells in anti-tumor therapy is determined by their varying capacity for proliferation, migration, and differentiation. These capacities are derived from different sources. The use of stem cell carriers in cancer treatment is justified by the following three reasons: (I) shield therapeutic agents from swift biological deterioration; (II) reduce systemic side effects; and (III) increase local therapeutic levels since stem cells have an innate ability to target tumors. The quantity of stem cells confined to the tumor microenvironment determines this system's anti-tumor activity. Nevertheless, there are limitations to the use of different types of stem cells. When immune cells are used in cell therapy, it may lead to cytokine storms and improper reactions to self-antigens. Furthermore, the use of stem cells may result in cancer. Additionally, after an intravenous injection, cells could not migrate to the injury location. Exosomes derived from different cells were thus proposed as possible therapeutic options. Exosomes are becoming more and more well-liked because of their small size, biocompatibility, and simplicity in storage and separation. A number of investigations have shown that adding various medications and microRNAs to exosomes may enhance their therapeutic effectiveness. Thus, it is essential to evaluate studies looking into the therapeutic effectiveness of encapsulated exosomes. In this review, we looked at studies on encapsulated exosomes' use in regenerative medicine and the treatment of cancer. The results imply that the therapeutic potential increases when encapsulated exosomes are used rather than intact exosomes. Therefore, in order to optimize the effectiveness of the treatment, it is advised to implement this technique in accordance with the kind of therapy.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
2
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
3
|
Alizadeh Sardroud H, Chen X, Eames BF. Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression. J Funct Biomater 2023; 14:313. [PMID: 37367278 DOI: 10.3390/jfb14060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - B Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
4
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
5
|
Dong N, Tang L, Zhao M, Zhang Y, Zhang Y, Yin T, He H, Gou J, Yuan Y, Tang X. Progesterone Phospholipid Gel for Intramuscular Administration Prepared by In Situ-Phase Separation. AAPS PharmSciTech 2022; 23:294. [DOI: 10.1208/s12249-022-02442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
6
|
Huang Y, Li X, Yang L. Hydrogel Encapsulation: Taking the Therapy of Mesenchymal Stem Cells and Their Derived Secretome to the Next Level. Front Bioeng Biotechnol 2022; 10:859927. [PMID: 35433656 PMCID: PMC9011103 DOI: 10.3389/fbioe.2022.859927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Biomaterials have long been the focus of research and hydrogels are representatives thereof. Hydrogels have attracted much attention in the medical sciences, especially as a candidate drug-carrier. Mesenchymal stem cells (MSC) and MSC-derived secretome are a promising therapeutic method, owing to the intrinsic therapeutic properties thereof. The low cell retention and poor survival rate of MSCs make further research difficult, which is a problem that hydrogel encapsulation largely solved. In this review, safety and feasibility of hydrogel-encapsulated MSCs, the improvement of the survival, retention, and targeting, and the enhancement of their therapeutic effect by hydrogels were studied. The status of the hydrogel-encapsulated MSC secretome was also discussed.
Collapse
Affiliation(s)
- Yuling Huang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin Li, ; Lina Yang,
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin Li, ; Lina Yang,
| |
Collapse
|
7
|
van der Ven CFT, Tibbitt MW, Conde J, van Mil A, Hjortnaes J, Doevendans PA, Sluijter JPG, Aikawa E, Langer RS. Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. NANOSCALE 2021; 13:20451-20461. [PMID: 34817483 PMCID: PMC8675028 DOI: 10.1039/d1nr04973a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Differential expression of microRNAs (miRNAs) plays a role in many diseases, including cancer and cardiovascular diseases. Potentially, miRNAs could be targeted with miRNA-therapeutics. Sustained delivery of these therapeutics remains challenging. This study couples miR-mimics to PEG-peptide gold nanoparticles (AuNP) and loads these AuNP-miRNAs in an injectable, shear thinning, self-assembling polymer nanoparticle (PNP) hydrogel drug delivery platform to improve delivery. Spherical AuNPs coated with fluorescently labelled miR-214 are loaded into an HPMC-PEG-b-PLA PNP hydrogel. Release of AuNP/miRNAs is quantified, AuNP-miR-214 functionality is shown in vitro in HEK293 cells, and AuNP-miRNAs are tracked in a 3D bioprinted human model of calcific aortic valve disease (CAVD). Lastly, biodistribution of PNP-AuNP-miR-67 is assessed after subcutaneous injection in C57BL/6 mice. AuNP-miRNA release from the PNP hydrogel in vitro demonstrates a linear pattern over 5 days up to 20%. AuNP-miR-214 transfection in HEK293 results in 33% decrease of Luciferase reporter activity. In the CAVD model, AuNP-miR-214 are tracked into the cytoplasm of human aortic valve interstitial cells. Lastly, 11 days after subcutaneous injection, AuNP-miR-67 predominantly clears via the liver and kidneys, and fluorescence levels are again comparable to control animals. Thus, the PNP-AuNP-miRNA drug delivery platform provides linear release of functional miRNAs in vitro and has potential for in vivo applications.
Collapse
Affiliation(s)
- Casper F T van der Ven
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Center of Excellence in Cardiovascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
| | - Mark W Tibbitt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Alain van Mil
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Elena Aikawa
- Center of Excellence in Cardiovascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston 02115, MA, USA.
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge 02142, MA, USA.
| |
Collapse
|
8
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021; 26:873. [PMID: 33562215 PMCID: PMC7914635 DOI: 10.3390/molecules26040873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications. This review describes various types of supramolecular hydrogels using a repertoire of diverse building blocks, their use for protein delivery and their further application in TE contexts. By reviewing the recent literature on this topic, the merits of supramolecular hydrogels are highlighted as well as their limitations, with high expectations for new advances they will provide for TE in the near future.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| |
Collapse
|
10
|
Lopez Hernandez H, Souza JW, Appel EA. A Quantitative Description for Designing the Extrudability of Shear-Thinning Physical Hydrogels. Macromol Biosci 2020; 21:e2000295. [PMID: 33164332 DOI: 10.1002/mabi.202000295] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Physically associated hydrogels (PHs) capable of reversible transitions between solid and liquid-like states have enabled novel strategies for 3D printing, therapeutic drug and cell delivery, and regenerative medicine. Among the many design criteria (e.g., viscoelasticity, cargo diffusivity, biocompatibility) for these applications, engineering PHs for extrudability is a necessary and critical design criterion for the successful application of these materials. As the development of many distinct PH material systems continues, a strategy to determine the extrudability of PHs a priori will be exceedingly useful for reducing costly and time-consuming trial-and-error experimentation. Here, a strategy to determine the property-function relationships for PHs in injectable drug delivery applications at clinically relevant flow rates is presented. This strategy-validated with two chemically and physically distinct PHs-reveals material design spaces in the form of Ashby-style plots that highlight acceptable, application-specific material properties. It is shown that the flow behavior of PHs does not obey a single shear-thinning power law and the implications for injectable drug delivery are discussed. This approach for generating design criteria has potential for streamlining the screening of PHs and their utility in applications with varying geometrical (i.e., needle diameter) and process (i.e., flow rate) constraints.
Collapse
Affiliation(s)
| | - Jason W Souza
- Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Sangtarashani SMH, Rahmaninia M, Behrooz R, Khosravani A. Lignocellulosic hydrogel from recycled old corrugated container resources using ionic liquid as a green solvent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110853. [PMID: 32501240 DOI: 10.1016/j.jenvman.2020.110853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic hydrogels are valuable bio-products that have been considered widely in recent investigations. Also, application of low value recycled fibers for high value added products can be of much interest. In this respect, current research has focused on producing hydrogel from recycled old corrugated container (OCC) resources, using 1-butyl-3-methyl-imidazolium chloride ionic liquid (IL) as a green solvent. The results indicated that the IL successfully dissolved OCC fibers, allowing the production of lignocellulosic hydrogel. Considering total water absorption amount as a main criterion for evaluation of hydrogels, the fabricated hydrogel showed promising results (up to 4700% water absorption). X-ray diffraction analysis confirmed obvious reduction in cellulose material crystallinity and crystallite size as a result of the process. Field emission scanning electron microscopy also demonstrated the microstructure of the hydrogel, pore size and shape in the hydrogel, which well supported the laboratory research results. Furthermore, the effect of processing parameters showed that specimens washed with distilled water as the anti-solvent resulted in the highest water absorption. Infrared spectroscopy can be used to suggest the presence of more lignin content in the hydrogel washed with ethanol. Moreover, the best water re-absorption results were observed for the hydrogel washed with distilled water.
Collapse
Affiliation(s)
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
| | - Rabi Behrooz
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
| | - Amir Khosravani
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
12
|
Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020; 25:E3404. [PMID: 32731371 PMCID: PMC7435941 DOI: 10.3390/molecules25153404] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | | | | | | |
Collapse
|
13
|
Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020; 8:654. [PMID: 32793562 PMCID: PMC7385058 DOI: 10.3389/fbioe.2020.00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hydrogels, a type of three-dimensional (3-D) crosslinked network of polymers containing a high water concentration, have been receiving increasing attention in recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, and conductivity, which enable them to be used in the manufacturing of drug/cell delivery vehicles, glues, electronic devices, and so on. MAIN BODY This review will focus on the synthesis and applications of self-healing hydrogels. Their repair mechanisms and potential applications in pharmaceutical, biomedical, and other areas will be introduced. CONCLUSION Self-healing hydrogels are used in various fields because of their ability to recover. The prospect of self-healing hydrogels is promising, and they may be further developed for various applications.
Collapse
Affiliation(s)
- Leqi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
15
|
Preparation of hydrophilic polymeric materials with movable cross-linkers and their mechanical property. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Zhou Y, Zhang Y, Dai Z, Jiang F, Tian J, Zhang W. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomater Sci 2020; 8:3359-3369. [DOI: 10.1039/d0bm00290a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supramolecular hydrogels based on host–guest interactions have drawn considerable attention due to their unique properties and promising applications.
Collapse
Affiliation(s)
- Yang Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
17
|
Domiński A, Konieczny T, Kurcok P. α-Cyclodextrin-Based Polypseudorotaxane Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E133. [PMID: 31905603 PMCID: PMC6982288 DOI: 10.3390/ma13010133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host-guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of "smart" hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain "guest" and α-cyclodextrin "host" are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.
Collapse
Affiliation(s)
| | | | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowskiej St., 41-819 Zabrze, Poland; (A.D.); (T.K.)
| |
Collapse
|
18
|
Biswas A, Shukla A, Maiti P. Biomaterials for Interfacing Cell Imaging and Drug Delivery: An Overview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12285-12305. [PMID: 31125238 DOI: 10.1021/acs.langmuir.9b00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This feature article provides an overview of different kinds of futuristic biomaterials which have the potential to be used for fluorescent imaging and drug delivery, often simultaneously. The synthesis route or preparation process, fluorescence property, release profile, biocompatibility, bioimaging, and mechanistic approaches are vividly discussed. These include bioimaging with fluorescently doped quantum dots, mesoporous silica, noble metals, metal clusters, hydrophilic/hydrophobic polymers, semiconducting polymer dots, carbon/graphene dots, dendrimers, fluorescent proteins, and other nanobiomaterials. Another section discusses the controlled and targeted drug, gene, or biologically active material delivery using various vehicles such as micelles, 2D nanomaterials, organic nanoparticles, polymeric nanohybrids, and chemically modified polymers. In the last section, we discuss biomaterials, which can deliver biologically active molecules, and imaging the cell/tissue.
Collapse
Affiliation(s)
- Arpan Biswas
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Aparna Shukla
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Pralay Maiti
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| |
Collapse
|
19
|
Ikura R, Park J, Osaki M, Yamaguchi H, Harada A, Takashima Y. Supramolecular Elastomers with Movable Cross-Linkers Showing High Fracture Energy Based on Stress Dispersion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01198] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 2019; 13:55. [PMID: 31249615 PMCID: PMC6585131 DOI: 10.1186/s13036-019-0177-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cellulose-based hydrogels are immensely important for tissue engineering. In this review, we attempt to document the source, nature, and application of cellulose-based hydrogels as an extracellular matrix for tissue growth and regeneration. Hydrogels can be prepared either from native cellulose, including both bacterial and plant sources or from cellulose derivatives, such as methyl cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose or even metal ions such as silver. Cellulose-polymer composite (polymers that include natural sources including chitosan, starch, alginates, collagen, hyaluronic acid, and chitin) are an attractive, inexpensive, and advantageous structural material that is easy to use. Cellulose-based scaffolding materials are widely used in the regeneration of various tissues, such as bone, cartilage, heart, blood vessel, nerve, and liver, among others. In this review, we discuss the most important applications of cellulosic hydrogels in tissue engineering based on their structural compositions.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Biorobotics Laboratory, Department of Biosystems Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ki-Taek Lim
- Biorobotics Laboratory, Department of Biosystems Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
21
|
Nomimura S, Osaki M, Park J, Ikura R, Takashima Y, Yamaguchi H, Harada A. Self-Healing Alkyl Acrylate-Based Supramolecular Elastomers Cross-Linked via Host–Guest Interactions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00471] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | | | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
22
|
Cellulose-Based Superabsorbent Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
24
|
Abstract
Polymeric chains crosslinked through supramolecular interactions-directional and reversible non-covalent interactions-compose an emerging class of modular and tunable biomaterials. The choice of chemical moiety utilized in the crosslink affords different thermodynamic and kinetic parameters of association, which in turn illustrate the connectivity and dynamics of the system. These parameters, coupled with the choice of polymeric architecture, can then be engineered to control environmental responsiveness, viscoelasticity, and cargo diffusion profiles, yielding advanced biomaterials which demonstrate rapid shear-thinning, self-healing, and extended release. In this review we examine the relationship between supramolecular crosslink chemistry and biomedically relevant macroscopic properties. We then describe how these properties are currently leveraged in the development of materials for drug delivery, immunology, regenerative medicine, and 3D-bioprinting (253 references).
Collapse
Affiliation(s)
- Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
25
|
Poudel AJ, He F, Huang L, Xiao L, Yang G. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydr Polym 2018; 194:69-79. [DOI: 10.1016/j.carbpol.2018.04.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 04/07/2018] [Indexed: 01/15/2023]
|
26
|
Liu G, Yuan Q, Hollett G, Zhao W, Kang Y, Wu J. Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym Chem 2018. [DOI: 10.1039/c8py00730f] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD-based host–guest supramolecular hydrogels and their potential biomedical application.
Collapse
Affiliation(s)
- Guiting Liu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Qijuan Yuan
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Geoffrey Hollett
- Materials Science and Engineering Program
- University of California San Diego
- La Jolla
- USA
| | - Wei Zhao
- Laboratory for Stem Cells and Tissue Engineering
- Ministry of Education
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jun Wu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
27
|
Sharifzadeh G, Hosseinkhani H. Biomolecule-Responsive Hydrogels in Medicine. Adv Healthc Mater 2017; 6. [PMID: 29057617 DOI: 10.1002/adhm.201700801] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Abstract
Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
Collapse
Affiliation(s)
- Ghorbanali Sharifzadeh
- Department of Polymer Engineering; Faculty of Chemical Engineering; Universiti Teknologi Malaysia; 81310 Johor Malaysia
| | | |
Collapse
|
28
|
Yao Q, Lü B, Ji C, Cai Y, Yin M. Supramolecular Host-Guest System as Ratiometric Fe 3+ Ion Sensor Based on Water-Soluble Pillar[5]arene. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36320-36326. [PMID: 28891642 DOI: 10.1021/acsami.7b12063] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing a specific, ratiometric, and reversible detection method for metal ions is significant to guard against the threat of metal-caused environmental pollution and organisms poisoning. Here a supramolecular host-guest system (WP5⊃G) based on water-soluble pillar[5]arene (WP5) and water-soluble quaternized perylene diimide derivative (G) was constructed. Morphological transformation was achieved during the process of adding WP5 into G aqueous solution, and a fluorescence "turn-off" phenomenon was observed which was caused by supramolecular photoinduced electron transfer (PET). Meanwhile, hydrophobic effect and electrostatic interaction played important roles in this supramolecular process, which was confirmed by isothermal titration calorimeter (ITC) and ζ potential experiments. Furthermore, the supramolecular host-guest system could be a "turn-on" fluorescent probe for Fe3+ ion detection through the process of interdicting supramolecular PET. Moreover, the Fe3+ ion detection showed specific, ratiometric, and reversible performances with a detection limit of 2.13 × 10-7 M, which might have great potentials in biological and environmental monitoring.
Collapse
Affiliation(s)
- Qianfang Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Baozhong Lü
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Yang Cai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , 100029 Beijing, China
| |
Collapse
|
29
|
Iohara D, Okubo M, Anraku M, Uramatsu S, Shimamoto T, Uekama K, Hirayama F. Hydrophobically Modified Polymer/α-Cyclodextrin Thermoresponsive Hydrogels for Use in Ocular Drug Delivery. Mol Pharm 2017; 14:2740-2748. [DOI: 10.1021/acs.molpharmaceut.7b00291] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Daisuke Iohara
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masanori Okubo
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Anraku
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shunji Uramatsu
- Daido Chemical Corporation, 4-4-28 Takeshima,
Nishiyodogawa-ku, Osaka 555-0011, Japan
| | - Toshio Shimamoto
- Daido Chemical Corporation, 4-4-28 Takeshima,
Nishiyodogawa-ku, Osaka 555-0011, Japan
| | - Kaneto Uekama
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
30
|
Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Supramolecular Materials Cross-Linked by Host–Guest Inclusion Complexes: The Effect of Side Chain Molecules on Mechanical Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00266] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshinori Takashima
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sawa
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhisa Iwaso
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masaki Nakahata
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Department
of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- JST-ImPACT, Tokyo 102-0076, Japan
| |
Collapse
|
31
|
McTernan HL, Ngo HT, Pham DT, Clements P, Lincoln SF, Wang J, Guo X, Easton CJ. Host-Guest Chemistry of Linked β- and γ-Cyclodextrin Dimers and 1- and 2-Naphthyl-Sulfonamide Substituted Poly(acrylate)s in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201601630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hamish L. McTernan
- Department of Chemistry; University of Adelaide; Adelaide SA 5005 Australia
| | - Huy T. Ngo
- Department of Chemistry; University of Adelaide; Adelaide SA 5005 Australia
| | - Duc-Truc Pham
- Department of Chemistry; University of Adelaide; Adelaide SA 5005 Australia
| | - Philip Clements
- Department of Chemistry; University of Adelaide; Adelaide SA 5005 Australia
| | - Stephen F. Lincoln
- Department of Chemistry; University of Adelaide; Adelaide SA 5005 Australia
| | - Jie Wang
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Christopher J. Easton
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| |
Collapse
|
32
|
Abstract
Principles rooted in supramolecular chemistry have empowered new and highly functional therapeutics and drug delivery devices. This general approach offers elegant tools rooted in molecular and materials engineered to address the many challenges faced in treating disease.
Collapse
Affiliation(s)
- Matthew J. Webber
- Department of Chemical & Biomolecular Engineering
- University of Notre Dame
- Notre Dame IN 46556
- USA
- Department of Chemistry & Biochemistry
| | - Robert Langer
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- David H. Koch Institute for Integrative Cancer Research
| |
Collapse
|
33
|
The study of properties and nutrient determination of hydrogel made of soybean meal (okara) using microwave-assisted heating. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.06.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Cyclodextrin-Mediated Hierarchical Self-Assembly and Its Potential in Drug Delivery Applications. J Pharm Sci 2016; 105:2570-2588. [DOI: 10.1016/j.xphs.2016.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
|
35
|
You F, Wu X, Zhu N, Lei M, Eames BF, Chen X. 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering. ACS Biomater Sci Eng 2016; 2:1200-1210. [DOI: 10.1021/acsbiomaterials.6b00258] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Ning Zhu
- Canadian Light Source Inc., 44
Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Ming Lei
- FEI Visualization Sciences Group, 16700 Park Row Drive, Houston, Texas 77084, United States
| | - B. Frank Eames
- Department
of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | |
Collapse
|
36
|
Xu S, Yin L, Xiang Y, Deng H, Deng L, Fan H, Tang H, Zhang J, Dong A. Supramolecular Hydrogel from Nanoparticles and Cyclodextrins for Local and Sustained Nanoparticle Delivery. Macromol Biosci 2016; 16:1188-99. [DOI: 10.1002/mabi.201600076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/25/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Shuxin Xu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Li Yin
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Yuzhang Xiang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hongzhang Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hongxia Fan
- Tianjin Life Science Research Center and School of basic medical sciences; Tianjin Medical University; Tianjin 300072 China
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences; Tianjin Medical University; Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
37
|
Xiang N, Zhou X, He X, Zhang Y, Zhang J, Zhang ZR, Sun X, Gong T, Fu Y. An Injectable Gel Platform for the Prolonged Therapeutic Effect of Pitavastatin in the Management of Hyperlipidemia. J Pharm Sci 2016; 105:1148-55. [DOI: 10.1016/j.xphs.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
38
|
Mollah MZI, Akter N, Quader FB, Sultana S, Khan RA. Biodegradable Colour Polymeric Film (Starch-Chitosan) Development: Characterization for Packaging Materials. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojopm.2016.61002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Shegokar R, Sawant S, Al Shaal L. Applications of Cell-Based Drug Delivery Systems: Use of Single Cell Assay. SERIES IN BIOENGINEERING 2016. [DOI: 10.1007/978-3-662-49118-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Hu J, Zhang M, He J, Ni P. Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEG-acetal-PCL-acetal-)3 and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra07420k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel acid-cleavable and injectable supramolecular hydrogels based on inclusion complexes between the acid-cleavable star copolymer (mPEG-a-PCL-a-)3 and α-CD were prepared, and used as controlled drug delivery depots.
Collapse
Affiliation(s)
- Jian Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| |
Collapse
|
41
|
Hwang BW, Kim SJ, Park KM, Kim H, Yeom J, Yang JA, Jeong H, Jung H, Kim K, Sung YC, Hahn SK. Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. J Control Release 2015; 220:119-129. [PMID: 26485045 DOI: 10.1016/j.jconrel.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023]
Abstract
Stem cell therapy has attracted a great deal of attention for treating intractable diseases such as cancer, stroke, liver cirrhosis, and ischemia. Especially, mesenchymal stem cells (MSCs) have been widely investigated for therapeutic applications due to the advantageous characteristics of long life-span, facile isolation, rapid proliferation, prolonged transgene expression, hypo-immunogenicity, and tumor tropism. MSCs can exert their therapeutic effects by releasing stress-induced therapeutic molecules after their rapid migration to damaged tissues. Recently, to improve the therapeutic efficacy, genetically engineered MSCs have been developed for therapeutic transgene expression by viral gene transduction and non-viral gene transfection. In general, the number of therapeutic cells for injection should be more than several millions for effective cell therapy. Adequate carriers for the controlled delivery of MSCs can reduce the required cell numbers and extend the duration of therapeutic effect, which provide great benefits for chronic disease patients. In this review, we describe genetic engineering of MSCs, recent progress of self-assembling supramolecular hydrogels, and their applications to cell therapy for intractable diseases and tissue regeneration.
Collapse
Affiliation(s)
- Byung Woo Hwang
- Department of Materials Science and Engineering, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Su Jin Kim
- Department of Life Sciences, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Kyeng Min Park
- Department of Chemistry, Division of Advanced Materials Science, Center for Self-assembly and Complexity, Institute for Basic Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea; Department of Nanomaterials Science and Engineering, University of Science and Technology (UST), Daejeon 305-333, Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Junseok Yeom
- Department of Materials Science and Engineering, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Jeong-A Yang
- Department of Materials Science and Engineering, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Hyeonseon Jeong
- Department of Materials Science and Engineering, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Hyuntae Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Kimoon Kim
- Department of Chemistry, Division of Advanced Materials Science, Center for Self-assembly and Complexity, Institute for Basic Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea.
| | - Young Chul Sung
- Department of Life Sciences, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea.
| |
Collapse
|
42
|
Abdul Karim A, Loh XJ. Design of a micellized α-cyclodextrin based supramolecular hydrogel system. SOFT MATTER 2015; 11:5425-5434. [PMID: 26053135 DOI: 10.1039/c5sm00665a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years supramolecular structures built from macrocyclic compounds have attracted tremendous interest due to the unique properties derived from dynamic self-assembly. Our study proposes a two-step mechanism to form a supramolecular hydrogel system: (1) the formation of micelles, and (2) micelle association with α-cyclodextrin (α-CD) due to threading of PEGMA in the α-CD cavity, forming inclusion complexes. Using this mechanism, a supramolecular hydrogel made from a tri-component copolymer PLLA/DMAEMA/PEGMA and α-CD was fabricated for the first time and characterized in terms of its structural, morphological, and rheological properties.
Collapse
Affiliation(s)
- Anis Abdul Karim
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore.
| | | |
Collapse
|
43
|
Gumel AM, Razaif-Mazinah MRM, Anis SNS, Annuar MSM. Poly (3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) hydrogel promotes angiogenesis and collagen deposition during cutaneous wound healing in rats. ACTA ACUST UNITED AC 2015; 10:045001. [PMID: 26154416 DOI: 10.1088/1748-6041/10/4/045001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.
Collapse
Affiliation(s)
- Ahmad Mohammed Gumel
- Institute of Biological Sciences, Faculty of Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
44
|
McNeel KE, Das S, Siraj N, Negulescu II, Warner IM. Sodium Deoxycholate Hydrogels: Effects of Modifications on Gelation, Drug Release, and Nanotemplating. J Phys Chem B 2015; 119:8651-9. [PMID: 26039574 DOI: 10.1021/acs.jpcb.5b00411] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present study, sodium deoxycholate (NaDC) was used to produce gelation of tris(hydroxymethyl)amino-methane (TRIS) solutions above, below, and near the pKa of NaDC, respectively, which yielded a neutral gelator, a charged gelator, and a mixture of each. Impacts of ionic interactions on gel formation were studied in detail and showed that pH can be used to modify many hydrogel properties including sol-gel temperature, crystallinity, and mechanical strength. Several formulations yielded a unique rheological finding of two stable regions of elastic modulus. The release of a small molecule has been investigated under different hydrogel conditions and at variable shear rate, suggesting utility as a drug-delivery vehicle. It was also observed that pH modification of the hydrogels affected nanoparticle formation. Nanoparticles derived from a Group of Uniform Materials Based on Organic Salts (nanoGUMBOS), specifically cyanine-based NIR dyes, were templated within the hydrogel network for potential applications in tissue imaging. These nanoGUMBOS were found to be size-tunable, although material-dependent. Further understanding of NaDC/TRIS gelation has broadened the tunability and multidimensional applications of these tailored hydrogel systems.
Collapse
Affiliation(s)
- Kelsey E McNeel
- †Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | - Susmita Das
- †Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | - Noureen Siraj
- †Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | - Ioan I Negulescu
- †Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, Louisiana 70803, United States.,‡Louisiana State University AgCenter, 304 Thomas Boyd Hall, Baton Rouge, Louisiana 70803, United States
| | - Isiah M Warner
- †Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
45
|
Jin H, Dai XH, Wu C, Pan JM, Wang XH, Yan YS, Liu DM, Sun L. Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Xu X, Bai B, Ding C, Wang H, Suo Y. Synthesis and Properties of an Ecofriendly Superabsorbent Composite by Grafting the Poly(acrylic acid) onto the Surface of Dopamine-Coated Sea Buckthorn Branches. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00092] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaohui Xu
- College
of Environmental Science and Engineering, Chang’an University, Xi’an 710054, People’s Republic of China
| | - Bo Bai
- Northwest
Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, People’s Republic of China
| | - Chenxu Ding
- Northwest
Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, People’s Republic of China
| | - Honglun Wang
- Northwest
Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, People’s Republic of China
| | - Yourui Suo
- Northwest
Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, People’s Republic of China
| |
Collapse
|
47
|
Appel EA, Tibbitt MW, Webber MJ, Mattix BA, Veiseh O, Langer R. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun 2015; 6:6295. [PMID: 25695516 PMCID: PMC4651845 DOI: 10.1038/ncomms7295] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022] Open
Abstract
Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications.
Collapse
Affiliation(s)
- Eric A Appel
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Room 76-661, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Mark W Tibbitt
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Room 76-661, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Matthew J Webber
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Room 76-661, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Bradley A Mattix
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Room 76-661, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Omid Veiseh
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Room 76-661, 500 Main Street, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Room 76-661, 500 Main Street, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
48
|
Wang G, Goyal N, Mangunuru HPR, Yang H, Cheuk S, Reddy PVN. Preparation and Self-Assembly Study of Amphiphilic and Bispolar Diacetylene-Containing Glycolipids. J Org Chem 2015; 80:733-43. [DOI: 10.1021/jo501568u] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Guijun Wang
- Department of Chemistry
and
Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Navneet Goyal
- Department of Chemistry
and
Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Hari P. R. Mangunuru
- Department of Chemistry
and
Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Hao Yang
- Department of Chemistry
and
Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Sherwin Cheuk
- Department of Chemistry
and
Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Puram V. Narasimha Reddy
- Department of Chemistry
and
Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
49
|
Li F, He J, Zhang M, Tam KC, Ni P. Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra06156c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fabrication of in situ forming and acid-labile prodrug-based supramolecular hydrogels with adjustable gelation time for injectable drug delivery carriers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Kam Chiu Tam
- Department of Chemical Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| |
Collapse
|
50
|
Das D, Pal S. Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16103c] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review describes hydrogels and their classifications along with the synthesis and properties of biopolymer-dextrin based crosslinked hydrogels towards potential application in controlled drug delivery.
Collapse
Affiliation(s)
- Dipankar Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Sagar Pal
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|