1
|
Schlatterer R, Marczynski M, Hermann B, Lieleg O, Balzer BN. Unfolding of von Willebrand Factor Type D Like Domains Promotes Mucin Adhesion. NANO LETTERS 2025; 25:1765-1774. [PMID: 39841791 PMCID: PMC11803705 DOI: 10.1021/acs.nanolett.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive. We study the adhesion behavior of mucin using atomic force microscopy-based single molecule force spectroscopy with covalently attached, lab-purified salivary MUC5B and gastric MUC5AC. We can resolve the structural motifs mediating adhesion on chemically distinct substrates, such as highly oriented pyrolytic graphite and steel. We report on force-induced partial unfolding of the von Willebrand factor type D like domains and deliver their unfolding rates and free energy barriers. These domains serve to dissipate energy during the desorption process of mucins. Partial mucin unfolding might significantly contribute to the stability of a sacrificial mucin layer during shearing processes, enhancing the lubrication potential of mucin solutions.
Collapse
Affiliation(s)
- Rebecca Schlatterer
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Matthias Marczynski
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Center
for Protein Assemblies (CPA) & Munich Institute of Biomedical
Engineering (MIBE), Technical University
of Munich, Ernst-Otto-Fischer-Str.
8, 85748 Garching, Germany
| | - Bianca Hermann
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Oliver Lieleg
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
- Center
for Protein Assemblies (CPA) & Munich Institute of Biomedical
Engineering (MIBE), Technical University
of Munich, Ernst-Otto-Fischer-Str.
8, 85748 Garching, Germany
| | - Bizan N. Balzer
- Department
of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster
of Excellence livMatS @ FIT − Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg
Materials Research Center (FMF), University
of Freiburg, Stefan-Meier-Str.
21, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Ammam I, Pailler-Mattéi C, Ouillon L, Nivet C, Vargiolu R, Neiers F, Canon F, Zahouani H. Exploring the role of the MUC1 mucin in human oral lubrication by tribological in vitro studies. Sci Rep 2024; 14:31019. [PMID: 39730813 DOI: 10.1038/s41598-024-82176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties. We proposed a novel methodology to study oral lubrication based on four different models of oral epithelium on which we conducted in vitro tribological studies. These models expressed varying forms of MUC1, each possessing on of the distinct domain constituting the mucin. Mechanical parameters were used as indicators of lubrication efficiency and, consequently, of the role played by MUC1 in oral lubrication. The results from the tribological tests revealed that the presence of full MUC1 resulted in enhanced lubrication. Furthermore, the structure of MUC1 protein drive the lubrication. In conclusion, the mechanical tests conducted on our epithelium models demonstrated that MUC1 actively participates in epithelium lubrication by facilitating the formation of the MP.
Collapse
Affiliation(s)
- Ianis Ammam
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France.
- Guy de Collongue, Laboratoire de Tribologie et Dynamique des Systèmes, Ecole Centrale de Lyon, Université de Lyon, UMR-CNRS 5513, Ecully, 69134, France.
| | | | - Lucas Ouillon
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| | - Clément Nivet
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Roberto Vargiolu
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRAE, UMR6265 CNRS Université de Bourgogne, Institut Agro Dijon, Dijon, F-21000, France
| | - Hassan Zahouani
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France
| |
Collapse
|
3
|
Velopoulos I, Dimopoulou M, Chen J, Ritzoulis C. Mucoadhesion and Mucins in Oral Processing: Their Role in Food Interaction, Texture, and Sensory Perception. J Texture Stud 2024; 55:e70000. [PMID: 39600065 DOI: 10.1111/jtxs.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
This is a review of mucus, and its principal component, mucins, in oral processing; it examines oral processing from the viewpoint of mucins being integral functional constituents of the food after the latter's insertion into the mouth. Under this light, mucins are treated as an omni-present functional ingredient. The chemical physics of the bolus formation is examined, focused on the role of mucins in the process. The colloidal and rheological aspects of hydrocolloids-mucin systems are subsequently examined, highlighting the role of the oral glycoproteins in complex food models and complex foods. Following the physicochemical and mechanical description of the topic, mucus is examined as a determinant of a food's sensory attributes. Its role in oral sensations such as astringency is reviewed, with a special focus on phenol-mucin interactions. The effect of mucus on the perception of saltiness is then reviewed, and the ensuing strategies for structurally-based reduction of salt are considered. The review critically discusses the challenges and opportunities that emerge from the above, highlighting the role of mucins and their effect on food function.
Collapse
Affiliation(s)
- Ioannis Velopoulos
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Maria Dimopoulou
- School of Health and Life Science, Teesside University, Middlesbrough, UK
| | - Jianshe Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Institute of Food Oral Processing and Sensory Science, Zhejiang Gongshang University, Hangzhou, China
| | - Christos Ritzoulis
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Perrotis College, American Farm School, Thessaloniki, Greece
| |
Collapse
|
4
|
Guo L, Li P, Rong X, Wei X. Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin Med J (Engl) 2024:00029330-990000000-01274. [PMID: 39439390 DOI: 10.1097/cm9.0000000000003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The superficial zone (SFZ) of articular cartilage is an important interface that isolates deeper zones from the microenvironment of the articular cavity and is directly exposed to various biological and mechanical stimuli. The SFZ is not only a crucial structure for maintaining the normal physiological function of articular cartilage but also the earliest site of osteoarthritis (OA) cartilage degeneration and a major site of cartilage progenitor cells, suggesting that the SFZ might represent a key target for the early diagnosis and treatment of OA. However, to date, SFZ research has not received sufficient attention, accounting for only about 0.58% of cartilage tissue research. The structure, biological composition, function, and related mechanisms of the SFZ in the physiological and pathological processes of articular cartilage remain unclear. This article reviews the key role of the SFZ in articular cartilage physiology and pathology and focuses on the characteristics of SFZ in articular cartilage degeneration and regeneration in OA, aiming to provide researchers with a systematic understanding of the current research status of the SFZ of articular cartilage, hoping that scholars will give more attention to the SFZ of articular cartilage in the future.
Collapse
Affiliation(s)
- Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xueqin Rong
- Department of Pain Medicine Center, Central Hospital of Sanya, Sanya, Hainan 572000, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
5
|
Majdoub F, Belin M, Perret-Liaudet J. Ultra-low friction in soft contact lenses: Analysis of dynamic free responses measured by the dynamic oscillating tribometer. J Mech Behav Biomed Mater 2024; 149:106236. [PMID: 37984287 DOI: 10.1016/j.jmbbm.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Friction coefficient is considered as a measurement for clinical comfort of soft contact lenses. One of the main challenges in the tribology field is to evaluate the friction in soft materials such as soft contact lenses. In this work, we aim to evaluate the friction at the eyelid-lens contact using a new technique. This technique is based on a single-degree-of-freedom (SDOF) mass-spring system having a sliding contact. The experimental technique measures the free responses of the mechanical system. The friction is then evaluated from the damped free responses with a high accuracy. A variety of soft contact lenses are tested with some lubricants under many physiological conditions. The results are discussed and compared with those in the literature.
Collapse
Affiliation(s)
- Fida Majdoub
- LabECAM, ECAM La Salle, Université de Lyon, 69005, Lyon, France.
| | - Michel Belin
- Laboratory of Tribology and System Dynamics, École Centrale de Lyon, UMR CNRS 5513, Université de Lyon, 69134, Écully, France
| | - Joël Perret-Liaudet
- Laboratory of Tribology and System Dynamics, École Centrale de Lyon, UMR CNRS 5513, Université de Lyon, 69134, Écully, France
| |
Collapse
|
6
|
Kimna C, Lutz TM, Lieleg O. Fabrication and Characterization of Mucin Nanoparticles for Drug Delivery Applications. Methods Mol Biol 2024; 2763:383-394. [PMID: 38347428 DOI: 10.1007/978-1-0716-3670-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Mucin glycoproteins are ideal biomacromolecules for drug delivery applications since they naturally offer a plethora of different functional groups that can engage in specific and unspecific binding interactions with cargo molecules. However, to fabricate drug carrier objects from mucins, suitable stabilization mechanisms have to be implemented into the nanoparticle preparation procedure that allow for drug release profiles that match the requirements of the selected cargo molecule and its particular mode of action. Here, we describe two different methods to prepare crosslinked mucin nanoparticles that can release their cargo either on-demand or in a sustained manner. This method chapter includes a description of the preparation and characterization of mucin nanoparticles (stabilized either with synthetic DNA strands or with covalent crosslinks generated by free radical polymerization), as well as protocols to quantify the release of a model drug from those nanoparticles.
Collapse
Affiliation(s)
- Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Theresa M Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Garching, Germany.
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
7
|
Agorastos G, van Uitert E, van Halsema E, Scholten E, Bast A, Klosse P. The effect of cations and epigallocatechin gallate on in vitro salivary lubrication. Food Chem 2024; 430:136968. [PMID: 37527573 DOI: 10.1016/j.foodchem.2023.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Ionic valency influences oral processing by changing salivary behavior and merits more attention since little is known. In this study, the influence of three ionic valences (monovalent, divalent and trivalent), ionic strength and epigallocatechin gallate (EGCG) on lubricating properties of saliva were investigated. Tribological measurements were used to characterize the lubrication response of KCl, MgCl2, FeCl3, and AlCl3 in combination with EGCG to the ex vivo salivary pellicle. KCl at 150 mM ionic strength provided extra lubrication via hydration lubrication. Contrarily, trivalent salts aggregated together with the salivary mucins via ionic cross-link interactions, which led to a decrease in salivary lubrication. FeCl3 and AlCl3 affected the salivary lubrication differently, which was attributed to changes in the pH. Finally, in presence of EGCG, FeCl3 interacted with EGCG via chelating interactions, preventing salivary protein aggregation. This resulted in less desorption of the salivary film, retaining the lubrication ability of salivary proteins.
Collapse
Affiliation(s)
- Georgios Agorastos
- Faculty of Science and Engineering, Campus Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, the Netherlands; T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands; Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands.
| | - Eva van Uitert
- Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands
| | - Emo van Halsema
- T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands
| | - Elke Scholten
- Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands
| | - Aalt Bast
- Faculty of Science and Engineering, Campus Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, the Netherlands
| | - Peter Klosse
- T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands
| |
Collapse
|
8
|
Nešporová K, Matonohová J, Husby J, Toropitsyn E, Stupecká LD, Husby A, Suchánková Kleplová T, Streďanská A, Šimek M, Nečas D, Vrbka M, Schleip R, Velebný V. Injecting hyaluronan in the thoracolumbar fascia: A model study. Int J Biol Macromol 2023; 253:126879. [PMID: 37709215 DOI: 10.1016/j.ijbiomac.2023.126879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Hyaluronan (HA) has been recently identified as a key component of the densification of thoracolumbar fascia (TLF), a potential contributor to non-specific lower back pain (LBP) currently treated with manual therapy and systemic or local delivery of anti-inflammatory drugs. The aim of this study was to establish a novel animal model suitable for studying ultrasound-guided intrafascial injection prepared from HA with low and high Mw. Effects of these preparations on the profibrotic switch and mechanical properties of TLF were measured by qPCR and rheology, respectively, while their lubricating properties were evaluated by tribology. Rabbit proved to be a suitable model of TLF physiology due to its manageable size enabling both TLF extraction and in situ intrafascial injection. Surprisingly, the tribology showed that low Mw HA was a better lubricant than the high Mw HA. It was also better suited for intrafascial injection due to its lower injection force and ability to freely spread between TLF layers. No profibrotic effects of either HA preparation in the TLF were observed. The intrafascial application of HA with lower MW into the TLF appears to be a promising way how to increase the gliding of the fascial layers and target the myofascial LBP.
Collapse
Affiliation(s)
| | - Jana Matonohová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jarmila Husby
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | | | - Aaron Husby
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Tereza Suchánková Kleplová
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralové, Czech Republic
| | - Alexandra Streďanská
- Biotribology Research Group, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
| | - Matěj Šimek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - David Nečas
- Biotribology Research Group, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
| | - Martin Vrbka
- Biotribology Research Group, Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic
| | - Robert Schleip
- DIPLOMA Hochschule, 37242 Bad Sooden-Allendorf, Germany; Conservative and Rehabilitative Orthopedics, Department of Sport and Health Sciences, Technical University of Munich, 80333 Munich, Germany
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
9
|
Kakar E, Riaz S, Naseem S. Probing Relative Humidity Impact on Biological Protein Bovine Serum Albumin and Bovine Submaxillary Gland Mucin by Using Contact Resonance Atomic Force Microscopy. ACS OMEGA 2023; 8:32765-32774. [PMID: 37720735 PMCID: PMC10500683 DOI: 10.1021/acsomega.3c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
In biomaterials, a substantial amount of research has been placed on the mechanical properties of biomolecules and their interactions with body fluids. Bovine serum albumin (BSA) is a widely studied model protein, while bovine submaxillary gland mucin (BSM) is another cow-derived protein frequently employed in research. Films were examined with contact resonance atomic force microscopy (CR-AFM), and the results showed that the mechanical characteristics of the films were affected by the relative humidity. We quantitatively analyze the viscoelasticity of these proteins after they have been subjected to humidity by measuring the resonance frequency and quality factor. The findings indicate that prolonged humidity exposure has a different effect on the mechanical properties of BSA and BSM films. The results show that after exposure to humidity, the resonance peaks of BSA shift to the left, indicating stiffness, while those of BSM shift to the right, indicating hydration. Moreover, BSM's hydration is caused by relative humidity, leading to a constant increase in resonance frequency and material softness. Contrarily, BSA showed a decrease in contact resonance frequency due to ongoing strain-induced deformation, indicating increased material stiffness. The findings have significance for the design and development of biomaterials for a variety of applications, such as the delivery of drugs, the engineering of tissue, and the development of biosensors. Our research demonstrates that CR-AFM has the potential to become a non-invasive and sensitive method that can be used to characterize the mechanical characteristics of biomolecules and their interactions with bodily fluids.
Collapse
Affiliation(s)
- Erum Kakar
- COE in Solid State
Physics, University of the Punjab, QAC, Lahore 54590, Pakistan
| | | | | |
Collapse
|
10
|
Xi Y, Choi CH, Chang R, Kaper HJ, Sharma PK. Tribology of Pore-Textured Hard Surfaces under Physiological Conditions: Effects of Texture Scales. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6657-6665. [PMID: 37126661 DOI: 10.1021/acs.langmuir.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Micro- and nanotexturing on hard biomaterials have shown advantages for tissue engineering and antifouling applications. However, a growing number of studies have also shown that texturing may cause an increase in friction, demanding further research on the tribological effects of texturing under physiological conditions. This study investigates the tribological effects of micro- and nanopore patterns on hard hydrophilic silicon sliding against soft hydrophobic polydimethylsiloxane (PDMS) immersed in aqueous liquids with various viscosities, simulating the sliding of a textured implant surface against soft tissues. The experimental results show that silicon surfaces with pore textures at both micro- and nanoscale feature sizes confer a higher coefficient of friction (COF) than an untextured one. It is attributed to the texture's edge effect caused by the periodic pore patterns between the two sliding objects with a large difference in material stiffness. For the same solid area fraction, nanopored surfaces show a higher COF than micropored surfaces because of the significantly higher texture edge length per unit area. For micropored surfaces with a similar length of texture edge length per unit area, the COF increases more significantly with the increase in pore size because of the greater stress at the rims of the larger pores. The COFs of both micro- and nanoscale pores generally decrease from ∼10 to 0.1 with an increase in the surrounding aqueous viscosity, indicating the transition from a boundary lubrication to a mixed lubrication regime while mostly remaining in boundary lubrication. In contrast, the COF of an untextured surface decreases from ∼1 to 0.01, indicating that it mostly remains in the mixed lubrication regime while showing the tendency toward hydrodynamic lubrication. Compared to a hydrophilic hard probe sliding against a textured hydrophobic soft substrate, the hydrophobic soft probe sliding against a textured hydrophilic hard substrate produces a significantly higher COF under similar physiological conditions due to the larger edge effect.
Collapse
Affiliation(s)
- Yiwen Xi
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
- Department of Biomedical Engineering-FB40, University of Groningen and University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Robert Chang
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Hans Jan Kaper
- Department of Biomedical Engineering-FB40, University of Groningen and University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Prashant Kumar Sharma
- Department of Biomedical Engineering-FB40, University of Groningen and University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| |
Collapse
|
11
|
Agorastos G, van Halsema E, Bast A, Klosse P. On the importance of saliva in mouthfeel sensations. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Assad-Bustillos M, Cázares-Godoy A, Devezeaux de Lavergne M, Schmitt C, Hartmann C, Windhab E. Assessment of the interactions between pea and salivary proteins in aqueous dispersions. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Amir A, Kim S, Stecco A, Jankowski MP, Raghavan P. Hyaluronan homeostasis and its role in pain and muscle stiffness. PM R 2022; 14:1490-1496. [PMID: 35077007 PMCID: PMC9309191 DOI: 10.1002/pmrj.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
Hyaluronan (HA) is a glycosaminoglycan that consists of single-chain polymers of disaccharide units of glucuronic acid and N-acetylglucosamine. It is a chief constituent of the extracellular matrix. About 27% of the total HA in the body is expressed in the skeleton and connective tissue, while 8% is expressed in muscles. In physiological conditions, HA functions as a lubricant and viscoelastic shock absorber. Additionally, HA is part of complex cellular signaling which modulates nociception and inflammation. This study aims to understand the role that HA plays in the musculoskeletal system, specifically in muscles and the surrounding fascia. This review is also intended to further understand HA homeostasis and the process of its synthesis, degradation, and clearance from the local tissue. The authors examined muscle pain and stiffness as pathological conditions associated with HA accumulation.
Collapse
Affiliation(s)
- Adam Amir
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Soo Kim
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Antonio Stecco
- Department of Physical Medicine and Rehabilitation, New York University School of Medicine, New York City, NY
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Ruiz-Pulido G, Quintanar-Guerrero D, Serrano-Mora LE, Medina DI. Triborheological Analysis of Reconstituted Gastrointestinal Mucus/Chitosan:TPP Nanoparticles System to Study Mucoadhesion Phenomenon under Different pH Conditions. Polymers (Basel) 2022; 14:4978. [PMID: 36433107 PMCID: PMC9696252 DOI: 10.3390/polym14224978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles' mucoadhesiveness was negligible.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de México, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Luis Eduardo Serrano-Mora
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
15
|
Li X, Harding SE, Wolf B, Yakubov GE. Instrumental characterization of xanthan gum and scleroglucan solutions: Comparison of rotational rheometry, capillary breakup extensional rheometry and soft-contact tribology. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
17
|
|
18
|
Sarkar A, Soltanahmadi S, Chen J, Stokes JR. Oral tribology: Providing insight into oral processing of food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Marczynski M, Jiang K, Blakeley M, Srivastava V, Vilaplana F, Crouzier T, Lieleg O. Structural Alterations of Mucins Are Associated with Losses in Functionality. Biomacromolecules 2021; 22:1600-1613. [PMID: 33749252 DOI: 10.1021/acs.biomac.1c00073] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commercial mucin glycoproteins are routinely used as a model to investigate the broad range of important functions mucins fulfill in our bodies, including lubrication, protection against hostile germs, and the accommodation of a healthy microbiome. Moreover, purified mucins are increasingly selected as building blocks for multifunctional materials, i.e., as components of hydrogels or coatings. By performing a detailed side-by-side comparison of commercially available and lab-purified variants of porcine gastric mucins, we decipher key molecular motifs that are crucial for mucin functionality. As two main structural features, we identify the hydrophobic termini and the hydrophilic glycosylation pattern of the mucin glycoprotein; moreover, we describe how alterations in those structural motifs affect the different properties of mucins-on both microscopic and macroscopic levels. This study provides a detailed understanding of how distinct functionalities of gastric mucins are established, and it highlights the need for high-quality mucins-for both basic research and the development of mucin-based medical products.
Collapse
Affiliation(s)
- Matthias Marczynski
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.,Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Kun Jiang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.,Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Matthew Blakeley
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.,Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.,Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| |
Collapse
|
20
|
Vinke J, Oude Elberink M, Stokman MA, Kroese FGM, Nazmi K, Bikker FJ, van der Mei HC, Vissink A, Sharma PK. Lubricating properties of chewing stimulated whole saliva from patients suffering from xerostomia. Clin Oral Investig 2021; 25:4459-4469. [PMID: 33661446 PMCID: PMC8310523 DOI: 10.1007/s00784-020-03758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The study aimed to quantify the lubricating properties of chewing stimulated whole saliva from healthy controls (n = 22), from patients suffering from primary Sjögren's syndrome (n = 37) and from patients undergoing head-and-neck radiotherapy (n = 34). MATERIALS AND METHODS All participants had to complete the Xerostomia Inventory questionnaire to score dry mouth sensation. Lubrication was measured using an ex vivo tongue-enamel friction system in terms of Relief and Relief period. MUC5b and total protein concentrations of the saliva samples were measured by an enzyme-linked immunosorbent assay and a bicinchoninic acid assay, respectively. RESULTS Relief of Sjögren's patients' saliva and post-irradiation patients' saliva was similar compared with healthy controls, but saliva from post-irradiation patients lubricated significantly better than saliva from Sjögren's patients. The Relief period was similar between the three groups. The Relief and Relief period were higher for saliva samples post-irradiation compared to pre-irradiation. MUC5b and total protein concentrations were comparable in all groups. MUC5b and total protein output were significantly lower in patients subjected to radiotherapy compared to saliva from healthy controls and pre-irradiation patients. MUC5b concentrations positively correlated with lubricating properties of post-irradiation patient saliva. CONCLUSIONS The lubricating properties of patient saliva were not any worse than healthy controls. Lower flow rate leads to lower availability of saliva in the oral cavity and decreases the overall output of protein and MUC5b, which might result in an insufficient replenishing of the mucosal salivary film. CLINICAL RELEVANCE An insufficient replenishing might underlie the sensation of a dry mouth and loss of oral function.
Collapse
Affiliation(s)
- Jeroen Vinke
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Marijn Oude Elberink
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Monique A Stokman
- Department of Radiation Oncology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
21
|
Lutz TM, Marczynski M, Grill MJ, Wall WA, Lieleg O. Repulsive Backbone-Backbone Interactions Modulate Access to Specific and Unspecific Binding Sites on Surface-Bound Mucins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12973-12982. [PMID: 33090801 DOI: 10.1021/acs.langmuir.0c02256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mucin glycoproteins are the matrix-forming key components of mucus, the innate protective barrier protecting us from pathogenic attack. However, this barrier is constantly challenged by mucin-degrading enzymes, which tend to target anionic glycan chains such as sulfate groups and sialic acid residues. Here, we demonstrate that the efficiency of both unspecific and specific binding of small molecules to mucins is reduced when sulfate groups are enzymatically removed from mucins; this is unexpected because neither of the specific mucin-binding partners tested here targets these sulfate motifs on the mucin glycoprotein. Based on simulation results obtained from a numerical model of the mucin macromolecule, we propose that anionic motifs along the mucin chain establish intramolecular repulsion forces which maintain an elongated mucin conformation. In the absence of these repulsive forces, the mucin seems to adopt a more compacted structure, in which the accessibility of several binding sites is restricted. Our results contribute to a better understanding on how different glycans contribute to the broad spectrum of functions mucin glycoproteins have.
Collapse
Affiliation(s)
- Theresa M Lutz
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Matthias Marczynski
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Maximilian J Grill
- Department of Mechanical Engineering and Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Wolfgang A Wall
- Department of Mechanical Engineering and Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| |
Collapse
|
22
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
23
|
Pires MA, Pastrana LM, Fuciños P, Abreu CS, Oliveira SM. Sensorial Perception of Astringency: Oral Mechanisms and Current Analysis Methods. Foods 2020; 9:E1124. [PMID: 32824086 PMCID: PMC7465539 DOI: 10.3390/foods9081124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding consumers' food choices and the psychological processes involved in their preferences is crucial to promote more mindful eating regulation and guide food design. Fortifying foods minimizing the oral dryness, rough, and puckering associated with many functional ingredients has been attracting interest in understanding oral astringency over the years. A variety of studies have explored the sensorial mechanisms and the food properties determining astringency perception. The present review provides a deeper understanding of astringency, a general view of the oral mechanisms involved, and the exciting variety of the latest methods used to direct and indirectly quantify and simulate the astringency perception and the specific mechanisms involved.
Collapse
Affiliation(s)
- Mariana A. Pires
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
- Center for Microelectromechanical Systems, University of Minho, Azurém, 4800-058 Guimarães, Portugal;
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| | - Cristiano S. Abreu
- Center for Microelectromechanical Systems, University of Minho, Azurém, 4800-058 Guimarães, Portugal;
- Physics Department, Porto Superior Engineering Institute, ISEP, 4200-072 Porto, Portugal
| | - Sara M. Oliveira
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| |
Collapse
|
24
|
Wan H, Ma C, Vinke J, Vissink A, Herrmann A, Sharma PK. Next Generation Salivary Lubrication Enhancer Derived from Recombinant Supercharged Polypeptides for Xerostomia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34524-34535. [PMID: 32463670 PMCID: PMC8192052 DOI: 10.1021/acsami.0c06159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Insufficient retention of water in adsorbed salivary conditioning films (SCFs) because of altered saliva secretion can lead to oral dryness (xerostomia). Patients with xerostomia sometimes are given artificial saliva, which often lacks efficacy because of the presence of exogenous molecules with limited lubrication properties. Recombinant supercharged polypeptides (SUPs) improve salivary lubrication by enhancing the functionality of endogenously available salivary proteins, which is in stark contrast to administration of exogenous lubrication enhancers. This novel approach is based on establishing a layered architecture enabled by electrostatic bond formation to stabilize and produce robust SCFs in vitro. Here, we first determined the optimal molecular weight of SUPs to achieve the best lubrication performance employing biophysical and in vitro friction measurements. Next, in an ex vivo tongue-enamel friction system, stimulated whole saliva from patients with Sjögren syndrome was tested to transfer this strategy to a preclinical situation. Out of a library of genetically engineered cationic polypeptides, the variant SUP K108cys that contains 108 positive charges and two cysteine residues at each terminus was identified as the best SUP to restore oral lubrication. Employing this SUP, the duration of lubrication (Relief Period) for SCFs from healthy and patient saliva was significantly extended. For patient saliva, the lubrication duration was increased from 3.8 to 21 min with SUP K108cys treatment. Investigation of the tribochemical mechanism revealed that lubrication enhancement is because of the electrostatic stabilization of SCFs and mucin recruitment, which is accompanied by strong water fixation and reduced water evaporation.
Collapse
Affiliation(s)
- Hongping Wan
- University Medical
Center Groningen, Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Ma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jeroen Vinke
- University Medical
Center Groningen, Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Arjan Vissink
- University
Medical Center Groningen, Department of Oral and Maxillofacial Surgery, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- DWI Leibniz Institute
for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Prashant K. Sharma
- University Medical
Center Groningen, Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
25
|
Rickert CA, Lutz TM, Marczynski M, Lieleg O. Several Sterilization Strategies Maintain the Functionality of Mucin Glycoproteins. Macromol Biosci 2020; 20:e2000090. [DOI: 10.1002/mabi.202000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Carolin Alexandra Rickert
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| | - Theresa Monika Lutz
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| | - Matthias Marczynski
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| |
Collapse
|
26
|
Bonnevie ED, Bonassar LJ. A Century of Cartilage Tribology Research Is Informing Lubrication Therapies. J Biomech Eng 2020; 142:031004. [PMID: 31956901 DOI: 10.1115/1.4046045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 07/25/2024]
Abstract
Articular cartilage is one of the most unique materials found in nature. This tissue's ability to provide low friction and low wear over decades of constant use is not surpassed, as of yet, by any synthetic materials. Lubrication of the body's joints is essential to mammalian locomotion, but breakdown and degeneration of cartilage is the leading cause of severe disability in the industrialized world. In this paper, we review how theories of cartilage lubrication have evolved over the past decades and connect how theories of cartilage lubrication have been translated to lubrication-based therapies. Here, we call upon these historical perspectives and highlight the open questions in cartilage lubrication research. Additionally, these open questions within the field's understanding of natural lubrication mechanisms reveal strategic directions for lubrication therapy.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850; Meinig School of Biomedical Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| |
Collapse
|
27
|
Charged glycan residues critically contribute to the adsorption and lubricity of mucins. Colloids Surf B Biointerfaces 2020; 187:110614. [DOI: 10.1016/j.colsurfb.2019.110614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022]
|
28
|
Tribological properties of microporous polydimethylsiloxane (PDMS) surfaces under physiological conditions. J Colloid Interface Sci 2019; 561:220-230. [PMID: 31816467 DOI: 10.1016/j.jcis.2019.11.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022]
Abstract
Textured biomaterials have been extensively used in biomedical engineering to modulate mammalian and bacterial cell adhesion and proliferation, implant integration with human body and infection prevention. However, the tribological implications of texturing under wet physiological conditions have not been well quantified. This study aimed to characterize the tribological properties of micropore-textured polydimethylsiloxane (PDMS) under physiological conditions and investigate the effect of adsorbed lubricious molecules on friction. In this study, untextured and micropore-textured PDMS surfaces were slid against curved smooth glass surfaces under the contact pressures of 10-400 kPa, sliding speeds of 0.1-5 mm/s in aqueous solutions with the viscosity of 1-1000 mPa·s. Reconstituted human whole saliva (RHWS) at pH 7 and porcine gastric mucin (PGM) at both pH 2 and 7 were used as lubricious coatings on PDMS. While the micropore-texturing delayed the transition of lubrication regimes, it increased the coefficient of friction (COF). Although RHWS and PGM coatings decreased the COF significantly, the protein coatings could not help the COF of micropore-textured surfaces getting lower than that of untextured surfaces. The results suggest textured polymeric surfaces could generate larger friction under physiological conditions and lead to a higher chance of inflammation near the implants.
Collapse
|
29
|
Zeng Q, Zheng J, Yang D, Tang Y, Zhou Z. Effect of calcium ions on the adsorption and lubrication behavior of salivary proteins on human tooth enamel surface. J Mech Behav Biomed Mater 2019; 98:172-178. [DOI: 10.1016/j.jmbbm.2019.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022]
|
30
|
Ma G, Tang Y, Zeng Q, Zheng J. On adhesion mechanism of salivary pellicle‐PDMS interface. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Genlei Ma
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Yue Tang
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Qihang Zeng
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Jing Zheng
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| |
Collapse
|
31
|
Boehm MW, Yakubov GE, Delwiche JF, Stokes JR, Baier SK. Enabling the Rational Design of Low-Fat Snack Foods: Insights from In Vitro Oral Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8725-8734. [PMID: 31295997 DOI: 10.1021/acs.jafc.9b02121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Texture perception is conceptualized as an emergent cognitive response to food characteristics that comprise several physical and chemical properties. Contemporary oral processing research focuses on revealing the relationship between the sensory perceptions and food properties, with the goal of enabling rational product design. One major challenge is associated with revealing the complex molecular and biocolloidal interactions underpinning even simple texture percepts. Here, we introduce in vitro oral processing, which considers oral processing in terms of discrete units of operation (first bite, comminution, granulation, bolus formation, and tribology). Within this framework, we systematically investigate the material properties that govern each specific oral processing unit operation without being impacted by the biological complexity of the oral environment. We describe how this framework was used to rationally design a low-fat potato chip with improved sensory properties by investigating the impact from adding back, to a low-fat potato chip, a small amount of oil mixed with the surface-active agent polyglycerol polyricinoleate (PGPR). The relevance of instrumental measures is validated by sensory assessment, whereby panelists ranked the perceived oiliness of three different types of potato chips. The sensory results indicate that perceived oiliness was higher when a low-fat potato chip was supplemented with an additional 0.5% (w/w) topical coating (the coating comprised 15%, w/w, PGPR in oil) compared to the unaltered low-fat potato chip. The perceived difference in oiliness is hypothesized to correspond to the dynamic friction measured in vitro with a saliva-coated substrate in the presence and absence of PGPR. The study illustrates how dividing oral processing into distinct units provides a rational approach to food product design focused on controlling key sensory attributes.
Collapse
Affiliation(s)
- Michael W Boehm
- Global R&D , PepsiCo, Incorporated , 3 Skyline Drive , Hawthorne , New York 10532 , United States
| | - Gleb E Yakubov
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
- Division of Food Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough LE12 5RD , United Kingdom
| | - Jeannine F Delwiche
- Global R&D , PepsiCo, Incorporated , 3 Skyline Drive , Hawthorne , New York 10532 , United States
| | - Jason R Stokes
- Division of Food Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough LE12 5RD , United Kingdom
| | - Stefan K Baier
- Global R&D , PepsiCo, Incorporated , 3 Skyline Drive , Hawthorne , New York 10532 , United States
- Division of Food Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough LE12 5RD , United Kingdom
| |
Collapse
|
32
|
Pradal C, Yakubov GE, Williams MAK, McGuckin MA, Stokes JR. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. BIOINSPIRATION & BIOMIMETICS 2019; 14:051001. [PMID: 31212257 DOI: 10.1088/1748-3190/ab2ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus enable painless motion. Biomacromolecules give rise to remarkable tribological properties that researchers have been eager to emulate. In this review, we examine how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear. We then highlight how researchers have used some of the features of biotribological contacts to create biomimetic systems. While the brush architecture of the glycosylated molecules present at biotribological interfaces has inspired some promising polymer brush systems, it is the recent advance in the understanding of synergistic interaction between biomacromolecules that is showing the most potential in producing surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule or artificial polymer successfully reproduces the tribological properties of biological contacts. However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus enabling the design of surfaces for use in biomedical applications requiring low friction and wear.
Collapse
Affiliation(s)
- Clementine Pradal
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | |
Collapse
|
33
|
Song J, Winkeljann B, Lieleg O. The Lubricity of Mucin Solutions Is Robust toward Changes in Physiological Conditions. ACS APPLIED BIO MATERIALS 2019; 2:3448-3457. [DOI: 10.1021/acsabm.9b00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Song
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Garching 85748, Germany
| | - Benjamin Winkeljann
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Garching 85748, Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
34
|
Bonnevie ED, Galesso D, Secchieri C, Bonassar LJ. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS One 2019; 14:e0216702. [PMID: 31075142 PMCID: PMC6510437 DOI: 10.1371/journal.pone.0216702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid injections have been a mainstay of arthritis treatment for decades. However, much controversy remains about their clinical efficacy and their potential mechanism of action. This approach to arthritis therapy is often called viscosupplementation, a term which is rooted in the elevated viscosity of the injected solutions. This terminology also suggests a mechanical pathway of action and further implies that their efficacy is dependent on viscosity. Notably, previous studies of the relationship between viscous properties of hyaluronic acid solutions and their clinical efficacy have not been definitive. Recently we developed an experimental and analytical framework for studying cartilage lubrication that captures the Stribeck-like behavior of cartilage in an elastoviscous transition curve. Here we apply this framework to study the lubricating behavior of six hyaluronan products currently used for injectable arthritis therapy in the US. Despite the fact that the source and chemical modifications endow these products with a range of lubricating properties, we show that the lubricating effect of all of these materials can be described by this Stribeck-like elastoviscous transition. Fitting this data to the elastoviscous transition model enables the calculation of effective lubricating viscosities for each material, which differ substantially from the viscosities measured using standard rheometry. Further we show that while data from standard rheometry are poor predictors of clinical performance of these materials, measurements of friction coefficient and effective lubricating viscosity correlate well (R2 = 0.77; p < 0.005) with assessments of improved clinical function reported previously. This approach offers both a novel method that can be used to evaluate potential clinical efficacy of hyaluronic acid formulations and provide new insight on their mode of action.
Collapse
Affiliation(s)
- Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | | | | | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
35
|
Torres O, Yamada A, Rigby NM, Hanawa T, Kawano Y, Sarkar A. Gellan gum: A new member in the dysphagia thickener family. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biotri.2019.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
|
37
|
Sarkar A, Andablo-Reyes E, Bryant M, Dowson D, Neville A. Lubrication of soft oral surfaces. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Çelebioğlu HY, Lee S, Chronakis IS. Interactions of salivary mucins and saliva with food proteins: a review. Crit Rev Food Sci Nutr 2019; 60:64-83. [PMID: 30632771 DOI: 10.1080/10408398.2018.1512950] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mucins are long glycoprotein molecules responsible for the gel nature of the mucous layer that covers epithelial surfaces throughout the body. Mucins, as the major salivary proteins, are also important proteins for the food oral processing and digestion. The interactions of salivary mucins and saliva with several food proteins and food protein emulsions, as well as their functional properties related to the food oral processing were reviewed in this paper. The target food proteins of focus were whey proteins (lactoferrin and beta-lactoglobulin) and non-whey proteins (casein, gelatin, galectin/lectin, and proline-rich proteins). Most of the studies suggest that electrostatic attraction (between positively charged food proteins with negatively charged moieties of mucin mainly on glycosylated region of mucin) is the major mode of interaction between them. On the other hand, casein attracts the salivary proteins only via non-covalent interactions due to its naturally self-assembled micellar structure. Moreover, recent studies related to β-lactoglobulin (BLG)-mucin interactions have clarified the importance of hydrophobic as well as hydrophilic interactions, such as hydrogen bonding. Furthermore, in vitro studies between protein emulsions and saliva observed a strong aggregating effect of saliva on caseinate and whey proteins as well as on surfactant-stabilized emulsions. Besides, the sign and the density of the charge on the surface of the protein emulsion droplets contribute significantly to the behavior of the emulsion when mixed with saliva. Other studies also suggested that the interactions between saliva and whey proteins depends on the pH in addition to the flow rate of the saliva. Overall, the role of interactions of food proteins and food protein emulsions with mucin/saliva-proteins in the oral perception, as well as the physicochemical and structural changes of proteins were discussed.
Collapse
Affiliation(s)
- Hilal Y Çelebioğlu
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
39
|
Abstract
Mucins are large glycoproteins that are ubiquitous in the animal kingdom. Mucins coat the surfaces of many cell types and can be secreted to form mucus gels that assume important physiological roles in many animals. Our growing understanding of the structure and function of mucin molecules and their functionalities has sparked interest in investigating the use of mucins as building blocks for innovative functional biomaterials. These pioneering studies have explored how new biomaterials can benefit from the barrier properties, hydration and lubrication properties, unique chemical diversity, and bioactivities of mucins. Owing to their multifunctionality, mucins have been used in a wide variety of applications, including as antifouling coatings, as selective filters, and artificial tears and saliva, as basis for cosmetics, as drug delivery materials, and as natural detergents. In this review, we summarize the current knowledge regarding key mucin properties and survey how they have been put to use. We offer a vision for how mucins could be used in the near future and what challenges await the field before biomaterials made of mucins and mucin-mimics can be translated into commercial products.
Collapse
Affiliation(s)
- Georgia Petrou
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Kungliga Tekniska Hogskolan, Stockholm, Sweden.
| | | |
Collapse
|
40
|
Winkeljann B, Bussmann AB, Bauer MG, Lieleg O. Oscillatory Tribology Performed With a Commercial Shear Rheometer. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biotri.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Bonnevie ED, Galesso D, Secchieri C, Bonassar LJ. Degradation alters the lubrication of articular cartilage by high viscosity, hyaluronic acid-based lubricants. J Orthop Res 2018; 36:1456-1464. [PMID: 29068482 DOI: 10.1002/jor.23782] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 10/21/2017] [Indexed: 02/04/2023]
Abstract
Hyaluronic acid (HA) is widely injected as a viscosupplement in the treatment of osteoarthritis. Despite its extensive use, it is not currently known if cartilage degradation alters how HA-based solutions lubricate the articular surface. In this study we utilized a model of cartilage degradation by IL-1β along with a recently developed framework to study role of cartilage degradation on lubrication by clinically-approved HA-based lubricants with high viscosities. Cartilage explants were cultured up to 8 days with 10 ng/ml IL-1β. After culture, samples were examined histologically, immunohistochemically, biochemically, mechanically, topographically, and tribologically. The tribological testing analyzed both boundary and mixed lubrication modes to assess individual effects of viscosity and boundary lubricating ability. Friction testing was carried out using PBS and two clinically approved HA-based viscosupplements in a cartilage-glass configuration. After culture with IL-1β, boundary mode friction was elevated after both 4 and 8 days. Additionally, friction in mixed mode lubrication, where HA is most effective as a lubricant, was significantly elevated after 8 days of culture. As cartilage became rougher, softer, and more permeable after culture, the boundary mode plateau was extended, and as a result, significantly increased lubricant viscosities or sliding speeds were necessary to achieve effective mixed lubrication. Overall, this study revealed that lubrication of cartilage by HA is degradation-dependent and coincides with changes in mechanics and roughness. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1456-1464, 2018.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Devis Galesso
- R&D Department, Fidia Farmaceutici SpA, Padua, Italy
| | | | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
42
|
Mystkowska J, Niemirowicz-Laskowska K, Łysik D, Tokajuk G, Dąbrowski JR, Bucki R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects. Int J Mol Sci 2018; 19:E743. [PMID: 29509686 PMCID: PMC5877604 DOI: 10.3390/ijms19030743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.
Collapse
Affiliation(s)
- Joanna Mystkowska
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Dawid Łysik
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Grażyna Tokajuk
- Department of Integrated Dentistry, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Jan R Dąbrowski
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| |
Collapse
|
43
|
Sarkar A, Kanti F, Gulotta A, Murray BS, Zhang S. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14699-14708. [PMID: 29193975 DOI: 10.1021/acs.langmuir.7b03627] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, Ra < 50 nm, ball-on-disk set up). The WPM particles (Dh = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Farah Kanti
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
- AgroSup Dijon , 26 Boulevard Docteur Petitjean, 21000 Dijon, France
| | - Alessandro Gulotta
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Brent S Murray
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Shuying Zhang
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
44
|
Quantification of cartilage wear morphologies in unidirectional sliding experiments: Influence of different macromolecular lubricants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biotri.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Gastric mucus and mucuslike hydrogels: Thin film lubricating properties at soft interfaces. Biointerphases 2017; 12:051001. [DOI: 10.1116/1.5003708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Quinton PM. Both Ways at Once: Keeping Small Airways Clean. Physiology (Bethesda) 2017; 32:380-390. [DOI: 10.1152/physiol.00013.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
The small airways of the lungs are under constant assault from the pathogens and debris in the air that they must conduct to alveoli. Although hygiene is of paramount importance for respiratory health, the underlying principles of airway clearance have not been well integrated or established. Newly emerging concepts of simultaneous absorption and secretion of airway surface liquid (ASL) and the role of [Formula: see text] in the maturation of mucins have advanced from experimental evidence as well as observations from the congenital disease cystic fibrosis (CF) to present a novel model that integrates microanatomy with organ physiology to meet the constant challenge of cleaning small airways.
Collapse
|
47
|
Käsdorf BT, Weber F, Petrou G, Srivastava V, Crouzier T, Lieleg O. Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules 2017. [DOI: 10.1021/acs.biomac.7b00605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Benjamin T. Käsdorf
- Department
of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748, Garching, Germany
| | - Florian Weber
- Department
of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748, Garching, Germany
| | - Georgia Petrou
- Division
of Glycoscience, School of Biotechnology, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden
| | - Vaibhav Srivastava
- Division
of Glycoscience, School of Biotechnology, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden
| | - Thomas Crouzier
- Division
of Glycoscience, School of Biotechnology, Royal Institute of Technology, Albanova University Center, 10691 Stockholm, Sweden
| | - Oliver Lieleg
- Department
of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748, Garching, Germany
| |
Collapse
|
48
|
Sterner O, Karageorgaki C, Zürcher M, Zürcher S, Scales CW, Fadli Z, Spencer ND, Tosatti SGP. Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20150-20160. [PMID: 28561563 DOI: 10.1021/acsami.6b16425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biomaterials used in the ocular environment should exhibit specific tribological behavior to avoid discomfort and stress-induced epithelial damage during blinking. In this study, two macromolecules that are commonly employed as ocular biomaterials, namely, poly(vinylpyrrolidone) (PVP) and hyaluronan (HA), are compared with two known model glycoproteins, namely bovine submaxillary mucin (BSM) and α1-acid glycoprotein (AGP), with regard to their nonfouling efficiency, wettability, and tribological properties when freely present in the lubricant, enabling spontaneous adsorption, and when chemisorbed under low contact pressures. Chemisorbed coatings were prepared by means of photochemically triggered nitrene insertion reactions. BSM and AGP provided boundary lubrication when spontaneously adsorbed in a hydrophobic contact with a coefficient of friction (CoF) of ∼0.03-0.04. PVP and HA were found to be excellent boundary lubricants when chemisorbed (CoF ≤ 0.01). Notably, high-molecular-weight PVP generated thick adlayers, typically around 14 nm, and was able to reduce the CoF below 0.005 when slid against a BSM-coated poly(dimethylsiloxane) pin in a tearlike fluid.
Collapse
Affiliation(s)
- Olof Sterner
- SuSoS AG , Lagerstrasse 14, CH-8006 Dübendorf, Switzerland
| | | | | | - Stefan Zürcher
- SuSoS AG , Lagerstrasse 14, CH-8006 Dübendorf, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Charles W Scales
- Johnson & Johnson Vision Care Inc. , Jacksonville, Florida 32256, United States
| | - Zohra Fadli
- Johnson & Johnson Vision Care Inc. , Jacksonville, Florida 32256, United States
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
49
|
An J, Jin C, Dėdinaitė A, Holgersson J, Karlsson NG, Claesson PM. Influence of Glycosylation on Interfacial Properties of Recombinant Mucins: Adsorption, Surface Forces, and Friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4386-4395. [PMID: 28431467 DOI: 10.1021/acs.langmuir.7b00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interfacial properties of two brush-with-anchor mucins, C-P55 and C-PSLex, have been investigated at the aqueous solution/poly(methyl methacrylate) (PMMA) interface. Both are recombinant mucin-type fusion proteins, produced by fusing the glycosylated mucin part of P-selectin glycoprotein ligand-1 (PSLG-1) to the Fc part of a mouse immunoglobulin in two different cells. They are mainly expressed as dimers upon production. Analysis of the O-glycans shows that the C-PSLex mucin has the longer and more branched side chains, but C-P55 has slightly higher sialic acid content. The adsorption of the mucins to PMMA surfaces was studied by quartz crystal microbalance with dissipation. The sensed mass, including the adsorbed mucin and water trapped in the layer, was found to be similar for these two mucin layers. Atomic force microscopy with colloidal probe was employed to study surface and friction forces between mucin-coated PMMA surfaces. Purely repulsive forces of steric origin were observed between mucin layers on compression, whereas a small adhesion was detected between both mucin layers on decompression. This was attributed to chain entanglement. The friction force between C-PSLex-coated PMMA is lower than that between C-P55-coated PMMA at low loads, but vice versa at high loads. We discuss our results in terms of the differences in the glycosylation composition of these two mucins.
Collapse
Affiliation(s)
- Junxue An
- Department of Chemistry, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , SE-405 30 Gothenburg, Sweden
| | - Andra Dėdinaitė
- Department of Chemistry, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden , P.O. Box 5607, SE-114 86 Stockholm, Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital , Vita stråket 13, SE-413 45 Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , SE-405 30 Gothenburg, Sweden
| | - Per M Claesson
- Department of Chemistry, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden , P.O. Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
50
|
Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains. Carbohydr Polym 2017; 165:132-141. [PMID: 28363533 DOI: 10.1016/j.carbpol.2017.02.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/04/2017] [Accepted: 02/11/2017] [Indexed: 11/20/2022]
Abstract
Mucilages are hydrocolloid solutions produced by plants for a variety of functions, including the creation of a water-holding barrier around seeds. Here we report our discovery of the formation of three distinct mucilage layers around Plantago ovata seeds upon their hydration. Each layer is dominated by different arabinoxylans (AXs). These AXs are unusual because they are highly branched and contain β-1,3-linked xylose in their side chains. We show that these AXs have similar monosaccharide and linkage composition, but vary in their polymer conformation. They also exhibit distinct rheological properties in aqueous solution, despite analytical techniques including NMR showing little difference between them. Using enzymatic hydrolysis and chaotropic solvents, we reveal that hydrogen bonding and side chain distribution are key factors underpinning the distinct rheological properties of these complex AXs.
Collapse
|