1
|
Brotherton AR, Neupane GP, Ji X, Sullivan K, Bailey MD, Berns EJ, Rivnay J, Mrksich M, Meade TJ. HaloTag-Modified, Ferrocene Labeled Self-Assembled Monolayers for Protein Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22856-22864. [PMID: 39411850 DOI: 10.1021/acs.langmuir.4c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Ferrocene (Fc)-based disulfide molecules of various lengths with amino acid scaffolds and alkane or oligo(phenylene-ethynylene) (OPE) bridges are used in a mixed SAM with a di-(ethylene oxide) terminal mercaptoundecanol diluent (PEG2). The relative height of the Fc redox reporter in the SAM is compared to determine if there are protective effects like antifouling and specific detection. The HaloTag-binding motif is used as a proof-of-concept to investigate the electrochemical response to the HaloTag protein due to its known covalent and fast linkage. When the Fc-SAMs are exposed to the HaloTag protein, there are an antifouling nature and more specific detection for the engulfed Fc-based molecules (C6tBu/Halo). The further out the Fc is from the SAM layer, the more nonspecific adsorption is detected. The double layer capacitance (CDL) has the smallest change for the C6tBu control (ΔCDL = -0.1 μF cm-2) showing antifouling properties and produces a large change (ΔCDL = 0.9 μF cm-2) as well as a shift in oxidation potential when the active C6Halo is exposed to the HaloTag protein (ΔE1/2 = 50 ± 10 mV). The remaining Fc molecules are partially in or outside the PEG2 layer, allowing more ion penetration/mobility even when the HaloTag protein is bound. Generally, a more disordered environment was observed for the Fc-based molecules when adding the HaloTag ligand, which is evident from a larger Efwhm and higher CDL. Desorption of the SAMs with sodium iodide (NaI) showed retention of the HaloTag protein bound with the corresponding ligand, whereas negative controls did not. Self-assembled monolayers for MALDI mass spectrometry (SAMDI-MS) were used as an orthogonal detection technique to show the qualitative binding of the HaloTag protein to the electrode. Together, these results provide insight into the antifouling and detection methods of engulfing the redox molecules in the SAM diluent.
Collapse
Affiliation(s)
- Andrew R Brotherton
- Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Guru P Neupane
- Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xudong Ji
- Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kyle Sullivan
- Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Matthew D Bailey
- Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Eric J Berns
- Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Cell & Developmental Biology, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Thomas J Meade
- Department of Chemistry, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Molecular Bioscience, 2205 Tech Drive, Evanston, Illinois 60208, United States
- Department of Neurobiology, 2205 Tech Drive, Evanston, Illinois 60208, United States
- Department of Radiology, 676 N St Clair Street, Chicago, Illinois 60611, United States
| |
Collapse
|
2
|
Redondo-Gómez C, Parreira P, Martins MCL, Azevedo HS. Peptide-based self-assembled monolayers (SAMs): what peptides can do for SAMs and vice versa. Chem Soc Rev 2024; 53:3714-3773. [PMID: 38456490 DOI: 10.1039/d3cs00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Self-assembled monolayers (SAMs) represent highly ordered molecular materials with versatile biochemical features and multidisciplinary applications. Research on SAMs has made much progress since the early begginings of Au substrates and alkanethiols, and numerous examples of peptide-displaying SAMs can be found in the literature. Peptides, presenting increasing structural complexity, stimuli-responsiveness, and biological relevance, represent versatile functional components in SAMs-based platforms. This review examines the major findings and progress made on the use of peptide building blocks displayed as part of SAMs with specific functions, such as selective cell adhesion, migration and differentiation, biomolecular binding, advanced biosensing, molecular electronics, antimicrobial, osteointegrative and antifouling surfaces, among others. Peptide selection and design, functionalisation strategies, as well as structural and functional characteristics from selected examples are discussed. Additionally, advanced fabrication methods for dynamic peptide spatiotemporal presentation are presented, as well as a number of characterisation techniques. All together, these features and approaches enable the preparation and use of increasingly complex peptide-based SAMs to mimic and study biological processes, and provide convergent platforms for high throughput screening discovery and validation of promising therapeutics and technologies.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Helena S Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
3
|
Biochip Surfaces Containing Recombinant Cell-Binding Domains of Fibronectin. COATINGS 2022. [DOI: 10.3390/coatings12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface immobilization and characterization of the functional activity of fibronectin (Fn) type-III domains are reported. The domains FnIII9-10 or FnIII10 containing the RGD loop and PHSRN synergy site were recombinantly produced and covalently bound to chemically activated PEG methacrylate (MA) hydrogel coatings by microcontact printing. Such fabricated biochip surfaces were 6 mm in diameter and consisted of 190 µm wide protein stripes separated by 200 µm spacing. They were analyzed by imaging null ellipsometry, atomic force microscopy and fluorescence microscopy. Also, the coatings were tested in human foreskin fibroblast and HeLa cultures for at least 96 h, thus evaluating their suitability for controlled cell adhesion and proliferation. However, while HeLa cultures were equally well responsive to the FnIII9-10, FnIII10 and Fn surfaces, the fibroblasts displayed lower cell and lower focal adhesion areas, as well as lower proliferation rates on the Fn fragment surfaces as compared to Fn. Nevertheless, full functional activity of the fibroblasts was confirmed by immunostaining of Fn produced by the cells adherent on the biochip surfaces. The observed interaction differences that were either cell type or surface composition-dependent demonstrate the potential use of specifically engineered Fn and other ECM protein-derived domains in biochip architectures.
Collapse
|
4
|
Yoo J, Kang H, Kim MK, Chong Y, Bae SW, Yeo W. Tetrahydrofuran Highly Enhances
SAMDI
Efficiency. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jin Yoo
- Department of Bioscience and Biotechnology Konkuk University Seoul 143‐701 South Korea
| | - Hyunook Kang
- Department of Bioscience and Biotechnology Konkuk University Seoul 143‐701 South Korea
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology Konkuk University Seoul 143‐701 South Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology Konkuk University Seoul 143‐701 South Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics Jeju National University Jeju 63243 South Korea
| | - Woon‐Seok Yeo
- Department of Bioscience and Biotechnology Konkuk University Seoul 143‐701 South Korea
| |
Collapse
|
5
|
Svoboda J, Sedláček O, Riedel T, Hrubý M, Pop-Georgievski O. Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules 2019; 20:3453-3463. [DOI: 10.1021/acs.biomac.9b00751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
6
|
Adsorption of Fibronectin Fragment on Surfaces Using Fully Atomistic Molecular Dynamics Simulations. Int J Mol Sci 2018; 19:ijms19113321. [PMID: 30366398 PMCID: PMC6275015 DOI: 10.3390/ijms19113321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
The effect of surface chemistry on the adsorption characteristics of a fibronectin fragment (FNIII8⁻10) was investigated using fully atomistic molecular dynamics simulations. Model surfaces were constructed to replicate self-assembled monolayers terminated with methyl, hydroxyl, amine, and carboxyl moieties. It was found that adsorption of FNIII8⁻10 on charged surfaces is rapid, specific, and driven by electrostatic interactions, and that the anchoring residues are either polar uncharged or of opposing charge to that of the targeted surfaces. On charged surfaces the presence of a strongly bound layer of water molecules and ions hinders FNIII8⁻10 adsorption. In contrast, adsorption kinetics on uncharged surfaces are slow and non-specific, as they are driven by van der Waals interactions, and the anchoring residues are polar uncharged. Due to existence of a positively charged area around its cell-binding region, FNIII8⁻10 is available for subsequent cell binding when adsorbed on a positively charged surface, but not when adsorbed on a negatively charged surface. On uncharged surfaces, the availability of the fibronectin fragment's cell-binding region is not clearly distinguished because adsorption is much less specific.
Collapse
|
7
|
Grant J, Modica JA, Roll J, Perkovich P, Mrksich M. An Immobilized Enzyme Reactor for Spatiotemporal Control over Reaction Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800923. [PMID: 29971942 DOI: 10.1002/smll.201800923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/07/2018] [Indexed: 05/19/2023]
Abstract
This paper describes a microfluidic chip wherein the position and order of two immobilized enzymes affects the type and quantity of reaction products in the flowing fluid. Assembly of the chip is based on a self-assembled monolayer presenting two orthogonal covalent capture ligands that immobilize their respective fusion enzyme. A thiol-tagged substrate is flowed over a region presenting the first enzyme-which generates a product that is efficiently transferred to the second enzyme-and the second enzyme's product binds to an adjacent thiol capture site on the chip. The amount of the three possible reaction products is quantified directly on the chip using self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry, revealing that the same microsystem can be spatiotemporally arranged to produce different products depending on the device design. This work allows for optimizing multistep biochemical transformations in favor of a desired product using a facile reaction and analytical format.
Collapse
Affiliation(s)
- Jennifer Grant
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Justin A Modica
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Juliet Roll
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Paul Perkovich
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
|
9
|
Colak B, Di Cio S, Gautrot JE. Biofunctionalized Patterned Polymer Brushes via Thiol–Ene Coupling for the Control of Cell Adhesion and the Formation of Cell Arrays. Biomacromolecules 2018; 19:1445-1455. [DOI: 10.1021/acs.biomac.7b01436] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Raouafi F, Seydou M, Lassoued K, Taleb A, Diawara B. First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:175001. [PMID: 27028163 DOI: 10.1088/0953-8984/28/17/175001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we present detailed investigations of methanethiol adsorption on a Cu(4 1 0) surface within the framework of the self-consistent first-principles calculations as implemented in the Vienna ab initio simulation package (VASP). In particular, the adsorption sites, the surface coverage rate and electronic properties have been determined and compared to experimental values. The results indicate that the favorable adsorption site in the case of low coverage rate is a bridge on the step followed by the hollow site on the terrace. The adsorption significantly affects the outermost layer of the surface mainly for a higher coverage rate in a (2 × 2) supercell. The nature of the chemisorption process on the surface is analyzed by means of the density of states which, combined with charge density difference and atomic charge calculations, confirms the ionic character of the S-Cu bond. The specific effect of the presence of steps is highlighted by comparing the adsorption on the (1 0 0) terrace to the adsorption on the extended Cu(1 0 0) surface. Compared to the flat Cu(1 0 0), it is found here that while the stability is almost the same at p(2 × 2) coverage, the CH3S/Cu(4 1 0) becomes more stable than CH3S/Cu(1 0 0) at c(2 × 2) coverage with 0.30 eV per molecule. The mechanism of methanethiol dissociation is explored by the nudged elastic band method and demonstrates that the most favorable path is dissociation followed by migration of hydrogen from the step to its most stable position (hollow on the terrace) with energy barriers less than 0.5 eV.
Collapse
Affiliation(s)
- Faycal Raouafi
- Laboratoire de physico-chimie des microstructures et microsystèmes, IPEST La Marsa, Tunisia
| | | | | | | | | |
Collapse
|
11
|
Chang Y, Liu Z, Zhang Y, Galior K, Yang J, Salaita K. A General Approach for Generating Fluorescent Probes to Visualize Piconewton Forces at the Cell Surface. J Am Chem Soc 2016; 138:2901-4. [PMID: 26871302 DOI: 10.1021/jacs.5b11602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mechanical forces between cells and their extracellular matrix (ECM) are mediated by dozens of different receptors. These biophysical interactions play fundamental roles in processes ranging from cellular development to tumor progression. However, mapping the spatial and temporal dynamics of tension among various receptor-ligand pairs remains a significant challenge. To address this issue, we have developed a synthetic strategy to generate modular tension probes combining the native chemical ligation (NCL) reaction with solid phase peptide synthesis (SPPS). In principle, this approach accommodates virtually any peptide or expressed protein amenable to NCL. We generated a small library of tension probes displaying different ligands, flexible linkers, and fluorescent reporters, enabling the mapping of integrin and cadherin tension, and demonstrating the first example of long-term (∼3 days) molecular tension imaging. This approach provides a toolset to better understand mechanotransduction events fundamental to cell biology.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Zheng Liu
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Yun Zhang
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Kornelia Galior
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Jeffery Yang
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia, United States
| |
Collapse
|
12
|
McIntosh L, Whitelaw C, Rekas A, Holt SA, van der Walle CF. Interrogating protonated/deuterated fibronectin fragment layers adsorbed to titania by neutron reflectivity and their concomitant control over cell adhesion. J R Soc Interface 2015; 12:rsif.2015.0164. [PMID: 25926699 DOI: 10.1098/rsif.2015.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The fibronectin fragment, 9th-10th-type III domains (FIII9-10), mediates cell attachment and spreading and is commonly investigated as a bioadhesive interface for implant materials such as titania (TiO2). How the extent of the cell attachment-spreading response is related to the nature of the adsorbed protein layer is largely unknown. Here, the layer thickness and surface fraction of two FIII9-10 mutants (both protonated and deuterated) adsorbed to TiO2 were determined over concentrations used in cell adhesion assays. Unexpectedly, the isotopic forms had different adsorption behaviours. At solution concentrations of 10 mg l(-1), the surface fraction of the less conformationally stable mutant (FIII9'10) was 42% for the deuterated form and 19% for the protonated form (fitted to the same monolayer thickness). Similarly, the surface fraction of the more stable mutant (FIII9'10-H2P) was 34% and 18% for the deuterated and protonated forms, respectively. All proteins showed a transition from monolayer to bilayer between 30 and 100 mg l(-1), with the protein longitudinal orientation moving away from the plane of the TiO2 surface at high concentrations. Baby hamster kidney cells adherent to TiO2 surfaces coated with the proteins (100 mg l(-1)) showed a strong spreading response, irrespective of protein conformational stability. After surface washing, FIII9'10 and FIII9'10-H2P bilayer surface fractions were 30/25% and 42/39% for the lower/upper layers, respectively, implying that the cell spreading response requires only a partial protein surface fraction. Thus, we can use neutron reflectivity to inform the coating process for generating bioadhesive TiO2 surfaces.
Collapse
Affiliation(s)
- Lisa McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christine Whitelaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Agata Rekas
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Stephen A Holt
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Christopher F van der Walle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
13
|
Kim S, Oh H, Yeo WS. Analysis of alkanethiolates on gold with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0018-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Biomaterials 2015; 44:24-35. [PMID: 25617123 DOI: 10.1016/j.biomaterials.2014.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022]
Abstract
Polymer brushes prepared via surface-initiated polymerization of 2-hydroxyethyl methacrylate are powerful platforms for the fabrication of model biointerfaces to study cell-substrate interactions. In this manuscript, the versatility of surface-initiated polymerization and the poly(2-hydroxyethyl methacrylate) (PHEMA) polymer brush platform are used to address two fundamental questions, viz. the effects of ligand co-presentation and of the 3D localization of biochemical cues on cell behavior. Using a series of PHEMA brushes that present RGD and PHSRN ligands in various relative surface concentrations, the present study unequivocally demonstrates that: (i) co-presentation of PHSRN cues on an RGD functionalized substrate enhances cell adhesion and (ii) this synergetic effect is highest when the two ligands are presented at equal surface concentrations. In the second part of this study, adhesion of 3T3 fibroblasts on a series of PHEMA brushes that present the RGD ligand at a distance of 12, 23 or 42 nm away from the cell substrate interface is investigated. While cells were found to adhere to surfaces that presented the cell adhesive peptides at distances up to 23 nm from the interface, polymer brushes that contained the RGD ligands 42 nm away from the interface did not support cell adhesion.
Collapse
|
15
|
Pulsipher A, Park S, Dutta D, Luo W, Yousaf MN. In situ modulation of cell behavior via smart dual-ligand surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13656-66. [PMID: 25373713 PMCID: PMC4334223 DOI: 10.1021/la503521x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Due to the highly complex nature of the extracellular matrix (ECM), the design and implementation of dynamic, stimuli-responsive surfaces that present well-defined ligands and serve as model ECM substrates have been of tremendous interest to biomaterials, biosensor, and cell biology communities. Such tools provide strategies for identifying specific ligand-receptor interactions that induce vital biological consequences. Herein, we report a novel dual-ligand-presenting surface methodology that modulates dynamic ECM properties to investigate various cell behaviors. Peptides PHSRN, cRGD, and KKKTTK, which mimic the cell- and heparan sulfate-binding domains of fibronectin, and carbohydrates Gal and Man were combined with cell adhesive RGD to survey possible synergistic or antagonist ligand effects on cell adhesion, spreading, growth, and migration. Soluble molecule and enzymatic inhibition assays were also performed, and the levels of focal adhesion kinase in cells subjected to different ligand combinations were quantified. A redox-responsive trigger was incorporated into this surface strategy to spontaneously release ligands in the presence of adhered cells, and cell spreading, growth, and migration responses were measured and compared. The identity and nature of the dual-ligand combination directly influenced cell behavior.
Collapse
Affiliation(s)
- Abigail Pulsipher
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sungjin Park
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Debjit Dutta
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Wei Luo
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department
of Chemistry and Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N. Yousaf
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department
of Chemistry and Biology, York University, Toronto, Ontario M3J 1P3, Canada
- E-mail: . Tel: (416) 736-2100, ext
77718
| |
Collapse
|
16
|
Schenk F, Boehm H, Spatz J, Wegner SV. Dual-functionalized nanostructured biointerfaces by click chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6897-905. [PMID: 24856250 PMCID: PMC4062568 DOI: 10.1021/la500766t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The presentation of biologically active molecules at interfaces has made it possible to investigate the responses of cells to individual molecules in their matrix at a given density and spacing. However, more sophisticated methods are needed to create model surfaces that present more than one molecule in a controlled manner in order to mimic at least partially the complexity given in natural environments. Herein, we present dual-functionalized surfaces combining quasi-hexagonally arranged gold nanoparticles with defined spacings and a newly developed PEG-alkyne coating to functionalize the glass in the intermediate space. The PEG-alkyne coating provides an inert background for cell interactions but can be modified orthogonally to the gold nanoparticles with numerous azides, including spectroscopically active molecules, peptides, and biotin at controlled densities by the copper(I)-catalyzed azide alkyne click reaction. The simultaneous presentation of cRGD on the gold nanoparticles with 100 nm spacing and synergy peptide PHSRN in the space between has a striking effect on REF cell adhesion; cells adhere, spread, and form mature focal adhesions on the dual-functionalized surfaces, whereas cells cannot adhere on either monofunctional surface. Combining these orthogonal functionalization methods creates a new platform to study precisely the crosstalk and synergy between different signaling molecules and clustering effects in ligand-receptor interactions.
Collapse
Affiliation(s)
- Franziska
C. Schenk
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
| | - Heike Boehm
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
| | - Joachim
P. Spatz
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
| | - Seraphine V. Wegner
- Department
of New Materials and Biosystems, Max-Planck-Institute
for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, D-69120 Heidelberg, Germany
- E-mail: . Phone: + 49 6221 544935
| |
Collapse
|
17
|
Weis S, Lee TT, del Campo A, García AJ. Dynamic cell-adhesive microenvironments and their effect on myogenic differentiation. Acta Biomater 2013; 9:8059-66. [PMID: 23791677 DOI: 10.1016/j.actbio.2013.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022]
Abstract
Integrin-mediated cell adhesion plays a central role in cell behavior on biomaterial surfaces and influences various cell functions. Photoactivatable RGD adhesive peptides were used to investigate the effect of the density and time point of bioadhesive ligand presentation on cell adhesion, proliferation and differentiation. PEGylated self-assembled monolayers were functionalized with RGD and caged RGD ligands and seeded with C2C12 myoblasts. The cultures were irradiated at various time points between 1 and 48 h after cell seeding in order to increase RGD surface concentration at defined time points. Attachment, spreading and myogenic differentiation of C2C12 myoblasts strongly varied with the density of RGD at the surface. Proliferation and myogenesis were further regulated by the time point at which RGD was presented to the cell, reaching highest levels when RGD exposure occurred≤6 h after cell seeding. These results provide fundamental insights in cell-biomaterial interactions of C2C12 myoblasts in terms of temporal integrin-mediated cell responses.
Collapse
Affiliation(s)
- Simone Weis
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
18
|
Lee J, Choi I, Yeo WS. Preparation of gradient surfaces by using a simple chemical reaction and investigation of cell adhesion on a two-component gradient. Chemistry 2013; 19:5609-16. [PMID: 23463672 DOI: 10.1002/chem.201203215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/25/2013] [Indexed: 01/23/2023]
Abstract
This article describes a simple method for the generation of multicomponent gradient surfaces on self-assembled monolayers (SAMs) on gold in a precise and predictable manner, by harnessing a chemical reaction on the monolayer, and their applications. A quinone derivative on a monolayer was converted to an amine through spontaneous intramolecular cyclization following first-order reaction kinetics. An amine gradient on the surface on a scale of centimeters was realized by modulating the exposure time of the quinone-presenting monolayer to the chemical reagent. The resulting amine was used as a chemical handle to attach various molecules to the monolayer with formation of multicomponent gradient surfaces. The effectiveness of this strategy was verified by cyclic voltammetry (CV), matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS), MS imaging, and contact-angle measurements. As a practical application, cell adhesion was investigated on RGD/PHSRN peptide/peptide gradient surfaces. Peptide PHSRN was found to synergistically enhance cell adhesion at the position where these two ligands are presented in equal amounts, while these peptide ligands were competitively involved in cell adhesion at other positions. This strategy of generating a gradient may be further expandable to the development of functional gradient surfaces of various molecules and materials, such as DNA, proteins, growth factors, and nanoparticles, and could therefore be useful in many fields of research and practical applications.
Collapse
Affiliation(s)
- Jeongwook Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | | | | |
Collapse
|
19
|
Local control of protein binding and cell adhesion by patterned organic thin films. Anal Bioanal Chem 2013; 405:3673-91. [DOI: 10.1007/s00216-013-6748-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
|
20
|
Ivanova VP, Kovaleva ZV, Anokhina VV, Krivchenko AI. The effect of a collagen tripeptide fragment (GER) on fibroblast adhesion and spreading depends on properties of an adhesive surface. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Zhang Y, Li L, Zhu J, Kuang H, Dong S, Wang H, Zhang X, Zhou Y. In vitro observations of self-assembled ECM-mimetic bioceramic nanoreservoir delivering rFN/CDH to modulate osteogenesis. Biomaterials 2012; 33:7468-77. [PMID: 22805316 DOI: 10.1016/j.biomaterials.2012.06.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/29/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hudalla GA, Murphy WL. Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. SOFT MATTER 2011; 7:9561-9571. [PMID: 25214878 PMCID: PMC4159093 DOI: 10.1039/c1sm05596h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The extracellular matrix (ECM) is a network of biological macromolecules that surrounds cells within tissues. In addition to serving as a physical support, the ECM actively influences cell behavior by providing sites for cell adhesion, establishing soluble factor gradients, and forming interfaces between different cell types within a tissue. Thus, elucidating the influence of ECM-derived biomolecules on cell behavior is an important aspect of cell biology. Self-assembled monolayers (SAMs) have emerged as promising tools to mimic the ECM as they provide chemically well-defined substrates that can be precisely tailored for specific cell culture applications, and their application in this regard is the focus of this review. In particular, this review will describe various approaches to prepare SAM-based culture substrates via non-specific adsorption, covalent immobilization, or non-covalent sequestering of ECM-derived biomolecules. Additionally, this review will highlight SAMs that present ECM-derived biomolecules to cells to probe the role of these molecules in cell-ECM interactions, including cell attachment, spreading and 'outside-in' signaling via focal adhesion complex formation. Finally, this review will introduce SAMs that can present or sequester soluble signaling molecules, such as growth factors, to study the influence of localized soluble factor activity on cell behavior. Together, these examples demonstrate that the chemical specificity and variability afforded by SAMs can provide robust, well-defined substrates for cell culture that can simplify experimental design and analysis by eliminating many of the confounding factors associated with traditional culture substrates.
Collapse
Affiliation(s)
- Gregory A. Hudalla
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
- Department of Pharmacology, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA
| |
Collapse
|
23
|
Sánchez-Cortés J, Mrksich M. Using self-assembled monolayers to understand α8β1-mediated cell adhesion to RGD and FEI motifs in nephronectin. ACS Chem Biol 2011; 6:1078-86. [PMID: 21790180 PMCID: PMC3200005 DOI: 10.1021/cb200186j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nephronectin is an extracellular matrix protein that interacts with the α8β1 integrin receptor and plays a role in tissue and organ development, though the motifs that mediate adhesion to the receptor remain unclear. This paper describes the use of self-assembled monolayers to study the adhesion of α8β1-presenting cells to the RGD and DLFEIFEIER ligands in nephronectin and found that both ligands can independently mediate cell adhesion through nonoverlapping binding sites on the integrin. Peptide truncation experiments showed FEI to be the minimal binding sequence within the DLFEIFEIER sequence, and adhesion experiments with peptides that include both the RGD and FEI sequences demonstrate that the two peptides bind synergistically to the receptor. Finally, a peptide array was used to establish a strict requirement for the glutamate residue of FEI and tolerance of other aromatic and hydrophobic residues in the first and third positions, respectively. This work provides an enhanced understanding of the binding of nephronectin with α8β1 and identifies a peptide ligand that can be used for targeting the α8β1 integrin.
Collapse
Affiliation(s)
- Juan Sánchez-Cortés
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Milan Mrksich
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Collier JH, Segura T. Evolving the use of peptides as components of biomaterials. Biomaterials 2011; 32:4198-204. [PMID: 21515167 PMCID: PMC3389831 DOI: 10.1016/j.biomaterials.2011.02.030] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/12/2011] [Indexed: 01/05/2023]
Abstract
This manuscript is part of a debate on the statement that "the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering". We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy.
Collapse
Affiliation(s)
- Joel H. Collier
- Assistant Professor, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Mail Code 5032, Chicago, IL 60637, (773) 834-4161, (773) 834-4546 (fax)
| | - Tatiana Segura
- Assistant Professor, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, (310) 206 3980
| |
Collapse
|
25
|
Shabbir SH, Eisenberg JL, Mrksich M. An inhibitor of a cell adhesion receptor stimulates cell migration. Angew Chem Int Ed Engl 2011; 49:7706-9. [PMID: 20830721 PMCID: PMC3076732 DOI: 10.1002/anie.201002699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shagufta H Shabbir
- Department of Chemistry, The University of Chicago, Howard Hughes Medical Institute, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
26
|
Fong E, Tirrell DA. Collective cell migration on artificial extracellular matrix proteins containing full-length fibronectin domains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:5271-5275. [PMID: 20886461 PMCID: PMC3027490 DOI: 10.1002/adma.201002448] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, Joseph J. Jacobs Institute for Molecular Engineering for Medicine, California Institute of Technology, Pasadena, California 91125, USA,
| |
Collapse
|
27
|
Shabbir SH, Eisenberg JL, Mrksich M. An Inhibitor of a Cell Adhesion Receptor Stimulates Cell Migration. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Hold on at the Right Spot: Bioactive Surfaces for the Design of Live-Cell Micropatterns. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|