1
|
Robles-Hernández B, Patelis N, Arbe A, Ntetsikas K, Bhaumik S, Hadjichristidis N, Alegría Á, Colmenero J. Chain dynamics in polyisoprene stars with arms linked by dynamic covalent bonds to the central core. SOFT MATTER 2025; 21:3347-3360. [PMID: 40191905 DOI: 10.1039/d5sm00091b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Although the use of dynamic covalent bonding (DCB) is a promising method to obtain easily recyclable polymer networks, there are many aspects of the incorporation of dynamic covalent bonding into polymer systems that remain poorly understood. In order to gain insight into the fundamentals of these materials, well-controlled model systems are required. Here, we present the synthesis of polyisoprene (PI)-based 3-arm stars containing vinylogous urethane DCBs as linkers of the PI arms to the core of the star. The dynamics of these 3-arm stars, with three different arm sizes, is studied by broadband dielectric spectroscopy. A conventional (static) 3-arm PI star of intermediate size has also been synthesized and studied, and all results are directly compared with those of a linear PI chain. A prominent intermediate relaxation between those identified as the slower normal mode and the faster α-relaxation of PI is found in the stars containing DCBs. This relaxation, which becomes more significant as the molecular mass of the PI arms decreases, seems to originate from the dynamic bond exchange that occurs at the level of the star's core. On the other hand, the arm retraction dynamics responsible for the normal mode relaxation do not show significant differences with respect to that observed in the static star.
Collapse
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), 20018 San Sebastián, Spain.
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 Donostia San Sebastián, Spain
| | - Nikolaos Patelis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia.
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 Donostia San Sebastián, Spain
| | - Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia.
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia.
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia.
| | - Ángel Alegría
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), 20018 San Sebastián, Spain.
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 Donostia San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 Donostia San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
2
|
Mukherjee S, Liesen NT, Milner ST, Hall LM, DeLongchamp DM. Reconciling Chain Orientation in Polymer-Grafted Nanoparticles between Coarse-Grained Models and Resonant Soft X-ray Scattering. ACS NANO 2025; 19:15638-15650. [PMID: 40245355 PMCID: PMC12044698 DOI: 10.1021/acsnano.4c18022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Polymer chain stretching enables the plastic and elastic properties that make polymers unique and valuable engineering materials. Despite its importance, polymer chain orientation in amorphous regions remains very challenging to measure by conventional techniques because it is an intrinsically molecule-scale phenomenon lacking long-range order that is frequently heterogeneous across length scales of ≈ (1 to 100) nm. Polarized resonant soft X-ray scattering (P-RSoXS) is an emerging technique that has recently achieved the measurement of amorphous chain orientation with ≈2 nm spatial resolution. The advent of this measurement capability invites comparisons with computational results for which spatial variations in chain orientation are readily accessible, providing a powerful approach to computation validation. Here we forward simulate P-RSoXS patterns for polystyrene grafted gold nanoparticles from real-space representations incorporating spatial polymer backbone orientation heterogeneity directly extracted from coarse-grained modeling results. Agreement between the computation and P-RSoXS experiment is found to depend greatly on assumptions of phenyl ring conformation relative to the polymer chain backbone, because the orientation sensitivity of P-RSoXS relies on a bond-level transition dipole moment of the phenyl ring of polystyrene to report backbone orientation. By incorporating a statistical description of phenyl ring orientation based on atomistic calculations, we report excellent agreement between P-RSoXS data and forward-simulated patterns with no fitting variables.
Collapse
Affiliation(s)
- Subhrangsu Mukherjee
- Materials
Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nicholas T. Liesen
- Physical
and Life Sciences Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Scott T. Milner
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Lisa M. Hall
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43221, United States
| | - Dean M. DeLongchamp
- Materials
Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Sattari A, Yang S, Lodge TP. Quantized Fusion Kinetics in Block Copolymer Micelles. ACS Macro Lett 2025; 14:391-395. [PMID: 40072486 DOI: 10.1021/acsmacrolett.5c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The fusion kinetics of block copolymer micelles in dilute solutions have been investigated. As a model system, 1,2-polybutadiene-block-poly(ethylene oxide) micelles in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate have been studied. The ionic liquid is a selective solvent for poly(ethylene oxide), promoting the self-assembly of the block copolymer into spherical micelles. Furthermore, the quality of the solvent for the corona block is near-theta, thereby reducing the large steric barrier to fusion. Small, kinetically trapped micelles were prepared using a cosolvent, and the kinetics of fusion were subsequently monitored via dynamic light scattering at elevated temperatures. Small-angle X-ray scattering and cryo-transmission electron microscopy quantified significant increases in the mean aggregation number after thermal annealing and confirmed the formation of well-defined, larger spherical micelles. For higher annealing temperatures, the process occurs in two steps, with the relaxation time of the second step being at least an order of magnitude longer than the first. Interestingly, the steady-state micelles after the first step had approximately twice the starting aggregation number, and those after the second step had four times the original value. This result strongly suggests a quantization effect, where the rate of fusion is much slower for larger micelles, presumably due to enhanced corona crowding. The relaxation rate is also an increasing function of concentration, consistent with fusion being the dominant mechanism.
Collapse
|
4
|
Duraes ADS, Jiao EL, Zhang W. Effects of Nanoplastics on Lipid Membranes and Vice Versa: Insights from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2025; 129:3385-3395. [PMID: 39945548 DOI: 10.1021/acs.jpcb.4c08361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We compute the potential of mean force (PMF) between semicrystalline polyethylene (PE) nanoplastics (NPLs) and model POPC and DPPC bilayers, which approximate in vivo membranes, using atomistic simulations. Our work shows that atomistic resolution is required to characterize the NPL and lipid interactions. By analyzing the PMF, we demonstrate that the mechanical properties of membranes, rather than NPL semicrystalline morphologies, govern NPL-membrane interactions. Resistance to NPL penetration arises from the elastic energy of the membrane deformation. The flexible POPC membranes resist NPL translocation, and the brittle DPPC membranes fracture under stress. Using an elastic free energy model, we approximate effective repulsions between lipid membranes and NPLs of various sizes. Our mean first-passage time analysis shows that even small, bare NPLs cannot easily penetrate brittle lipid membranes via passive diffusion, even at high concentrations. However, eco-coronas or other mechanisms, such as endocytosis, may still facilitate the cellular uptake of NPLs and MPLs. While semicrystalline morphologies do not directly impact NPL translocation, they do influence NPL behavior within lipid membranes upon translocation. Semicrystalline NPLs remain intact within lipid membranes, whereas amorphous NPLs can dissolve into the hydrophobic core and alter the elastic properties of the membrane.
Collapse
Affiliation(s)
- Anderson D S Duraes
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Elaine L Jiao
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Wenlin Zhang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
van de Minkelis JH, Hergesell AH, van der Waal JC, Altink RM, Vollmer I, Weckhuysen BM. Catalytic Pyrolysis of Polyethylene with Microporous and Mesoporous Materials: Assessing Performance and Mechanistic Understanding. CHEMSUSCHEM 2025; 18:e202401141. [PMID: 39255052 PMCID: PMC11960579 DOI: 10.1002/cssc.202401141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Testing the catalytic performance for the catalytic pyrolysis of plastic waste is hampered by mass transfer limitations induced by a size mismatch between the catalyst's pores and the bulky polymer molecules. To investigate this aspect, the catalytic behaviour of a series of microporous and mesoporous materials was assessed in the catalytic pyrolysis of polyethylene (PE). More specifically, a mesoporous material, namely sulfated zirconia (Zr(SO4)2) on SBA-15, was synthesized to increase the pore accessibility, which reduces mass transfer limitations and thereby enables to better assess the effect of active site density on catalyst activity. To demonstrate the potential of this approach, the mesoporous SBA-15 catalysts were compared to a series of microporous zeolite Y catalysts. Using the degradation temperature during thermogravimetric analysis (TGA) as a measure of activity, no correlation between acidity and activity was observed for microporous zeolite Y. However, depending on the Mw of PE, the reactivity of the mesoporous catalysts increased with increasing Zr(SO4)2 weight loading, showing that utilizing a mesoporous catalyst can overcome the accessibility limitations at least partially, which was further confirmed by polymer melt infiltration and in situ X-ray diffraction. Detailed product analysis revealed that more aromatics and coke deposits were produced with the more acidic zeolite Y materials. The mesoporous material remained active and structurally intact over multiple cycles and catalyses PE degradation via acid- and radical-based pathways.
Collapse
Affiliation(s)
- Johan H. van de Minkelis
- Inorganic Chemistry and Catalysis groupInstitute for Sustainable and Circular ChemistryUtrecht UniversityUniversiteitsweg 993584CG UtrechtThe Netherlands
| | - Adrian H. Hergesell
- Inorganic Chemistry and Catalysis groupInstitute for Sustainable and Circular ChemistryUtrecht UniversityUniversiteitsweg 993584CG UtrechtThe Netherlands
| | | | | | - Ina Vollmer
- Inorganic Chemistry and Catalysis groupInstitute for Sustainable and Circular ChemistryUtrecht UniversityUniversiteitsweg 993584CG UtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis groupInstitute for Sustainable and Circular ChemistryUtrecht UniversityUniversiteitsweg 993584CG UtrechtThe Netherlands
| |
Collapse
|
6
|
Kim S, Schroeder CM, Jackson NE. Functional monomer design for synthetically accessible polymers. Chem Sci 2025; 16:4755-4767. [PMID: 39958647 PMCID: PMC11823054 DOI: 10.1039/d4sc08617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
Machine learning (ML) has emerged as a powerful tool to navigate polymer structure-property relationships. Despite recent progress, data sparsity is a major obstacle hindering the practical application of ML in polymer science. In this work, we explore functional monomer design by developing the first comprehensive database of monomer-level chemical and physical properties for approximately 12M synthetically accessible polymers. We generated diverse monomer-level properties by integrating quantum chemistry calculations with active learning to efficiently probe a vast chemical space of synthetically feasible polymers. Monomer-level property descriptors are benchmarked against both higher level computational predictions and experimental data to the extent possible, demonstrating their relevance to polymer design. Our results show that many monomer-level properties are weakly correlated, implying a strong freedom for functional design such that multiple physical properties can be simultaneously optimized by monomer selection. Moreover, the synthetically accessible nature of this chemical space allows targeted monomers to be considered by common polymerization mechanisms to facilitate their synthetic realization. Overall, this work opens new avenues for creating synthetically accessible polymers and provides new insights for designing next generation polymeric materials.
Collapse
Affiliation(s)
- Seonghwan Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Nicholas E Jackson
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
7
|
Spyridakou M, Tzourtzouklis I, Graf R, Beauseroy H, Bonduelle C, Lecommandoux S, Floudas G. Multiple Levels of Organization in Amphiphilic Diblock Copolymers Based on Poly(γ-benzyl-l-glutamate) Produced by Aqueous ROPISA. Biomacromolecules 2025; 26:1892-1903. [PMID: 39919302 PMCID: PMC11898064 DOI: 10.1021/acs.biomac.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
A recent method for producing amphiphilic block copolymers and nano-objects based on the ring-opening polymerization-induced self-assembly (ROPISA) in aqueous buffer is explored with respect to the tunability toward nanostructures. ROPISA gives rise to polypeptide copolymers with unprecedented levels of organization. By employing amphiphilic block copolymers of poly(ethylene glycol) (PEG) with the synthetic polypeptide poly(γ-benzyl-l-glutamate) (PBLG) and a combination of static (13C NMR, X-ray scattering, polarizing optical microscopy), thermodynamic (differential scanning calorimetry), and dynamic (dielectric spectroscopy) probes, we demonstrate a record of six levels of organization only found before in natural materials. These levels of organization could not be obtained in earlier morphology investigations of copolymers based on PEG and PBLG prepared by different methods. Furthermore, the type of NCA monomer (BLG-NCA vs Leu-NCA) and the solvent treatment method had an influence on the degree of segregation, the α-helical content, and the order-to-disorder transition temperature in the PEG-b-PBLG and PEG-b-PLeu copolymers.
Collapse
Affiliation(s)
- Marianna Spyridakou
- Department
of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Ioannis Tzourtzouklis
- Department
of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Robert Graf
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hannah Beauseroy
- University
Bordeaux, CNRS, Bordeaux INP, LCPO, UMR
5629, F-33600 Pessac, France
| | - Colin Bonduelle
- University
Bordeaux, CNRS, Bordeaux INP, LCPO, UMR
5629, F-33600 Pessac, France
| | | | - George Floudas
- Department
of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- University
Research Center of Ioannina (URCI)-Institute of Materials Science
and Computing, 45110 Ioannina, Greece
| |
Collapse
|
8
|
Krause DT, Förster B, Dulle M, Krämer S, Böckmann S, Mönich C, Hansen MR, Schönhoff M, Siozios V, Grünebaum M, Winter M, Förster S, Wiemhöfer H. A Super-Ionic Solid-State Block Copolymer Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404297. [PMID: 39282822 PMCID: PMC11618730 DOI: 10.1002/smll.202404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Indexed: 12/06/2024]
Abstract
Polymer solid-state electrolytes offer great promise for battery materials with high energy density, mechanical stability, and improved safety. However, their low ion conductivities have so far limited their potential applications. Here, it is shown for poly(ethylene oxide) block copolymers that the super-stoichiometric addition of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as lithium salt leads to the formation of a crystalline PEO block copolymer phase with exceptionally high ion conductivities and low activation energies. The addition of LiTFSI further induces block copolymer phase transitions into bi-continuous Fddd and gyroid network morphologies, providing continuous 3D conduction pathways. Both effects lead to solid-state block copolymer electrolyte membranes with ion conductivities of up to 1·10-1 S cm-1 at 90 °C, decreasing only moderately to 4·10-2 S cm-1 at room temperature, and to >1·10-3 S cm-1 at -20 °C, corresponding to activation energies as low as 0.19 eV. The co-crystallization of PEO and LiTFSI with ether and carbonate solvents is observed to play a key role to realize a super-ionic conduction mechanism. The discovery of PEO super-ionic conductivity at high lithium concentrations opens a new pathway for fabrication of solid polymer electrolyte membranes with sufficiently high ion conductivities over a broad temperature range with widespread applications in electrical devices.
Collapse
Affiliation(s)
- Daniel T. Krause
- Helmholtz Institute MünsterIEK‐12Forschungszentrum Jülich GmbHCorrensstr. 46MünsterGermany
| | - Beate Förster
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with ElectronsPhysics of Nanoscale Systems (ER‐C‐1)Forschungszentrum JülichWilhelm‐Johnen‐StraßeJülichGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1)Forschungszentrum JülichWilhelm‐Johnen‐StraßeJülichGermany
| | - Susanna Krämer
- Helmholtz Institute MünsterIEK‐12Forschungszentrum Jülich GmbHCorrensstr. 46MünsterGermany
- Jülich Centre for Neutron Science (JCNS‐1)Forschungszentrum JülichWilhelm‐Johnen‐StraßeJülichGermany
| | - Steffen Böckmann
- Institute of Physical ChemistryUniversity of MünsterCorrensstr. 28/30MünsterGermany
| | - Caroline Mönich
- Institute of Physical ChemistryUniversity of MünsterCorrensstr. 28/30MünsterGermany
| | - Michael Ryan Hansen
- Institute of Physical ChemistryUniversity of MünsterCorrensstr. 28/30MünsterGermany
| | - Monika Schönhoff
- Institute of Physical ChemistryUniversity of MünsterCorrensstr. 28/30MünsterGermany
| | - Vassilios Siozios
- MEET Battery Research CenterUniversity of MünsterCorrensstr. 46MünsterGermany
| | - Mariano Grünebaum
- Helmholtz Institute MünsterIEK‐12Forschungszentrum Jülich GmbHCorrensstr. 46MünsterGermany
| | - Martin Winter
- Helmholtz Institute MünsterIEK‐12Forschungszentrum Jülich GmbHCorrensstr. 46MünsterGermany
- MEET Battery Research CenterUniversity of MünsterCorrensstr. 46MünsterGermany
| | - Stephan Förster
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 2AachenGermany
| | - Hans‐Dieter Wiemhöfer
- Helmholtz Institute MünsterIEK‐12Forschungszentrum Jülich GmbHCorrensstr. 46MünsterGermany
- MEET Battery Research CenterUniversity of MünsterCorrensstr. 46MünsterGermany
| |
Collapse
|
9
|
Xian W, Maiti A, Saab AP, Li Y. Development of a coarse-grained molecular dynamics model for poly(dimethyl- co-diphenyl)siloxane. SOFT MATTER 2024; 20:8480-8492. [PMID: 39405083 DOI: 10.1039/d4sm00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Polydimethylsiloxane is an important polymeric material with a wide range of applications. However, environmental effects like low temperature can induce crystallization in this material with resulting changes in its structural and dynamic properties. The incorporation of phenyl-siloxane components, e.g., as in a poly(dimethyl-co-diphenyl)siloxane random copolymer, is known to suppress such crystallization. Molecular dynamics (MD) simulations can be a powerful tool to understand such effects in atomistic detail. Unfortunately, all-atomistic molecular dynamics (AAMD) is limited in both spatial dimensions and simulation times it can probe. To overcome such constraints and to extend to more useful length- and time-scales, we systematically develop a coarse-grained molecular dynamics (CGMD) model for the poly(dimethyl-co-diphenyl)siloxane system with bonded and non-bonded interactions determined from all-atomistic simulations by the iterative Boltzmann inversion (IBI) method. Additionally, we propose a lever rule that can be useful to generate non-bonded potentials for such systems without reference to the all-atomistic ground truth. Our model captures the structural and dynamic properties of the copolymer material with quantitative accuracy and is useful to study long-time dynamics of highly-entangled systems, sequence-dependent properties, phase behaviour, etc.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1572, USA.
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Andrew P Saab
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1572, USA.
| |
Collapse
|
10
|
Cho R, Kamata H, Tsuji Y, Fujisawa A, Miura Y, Ishikawa S, Sato R, Katashima T, Sakai T, Fujishiro M. Optimizing a self-solidifying hydrogel as an endoscopically deliverable hydrogel coating system: a proof-of-concept study on porcine endoscopic submucosal dissection-induced ulcers. Polym J 2024; 56:855-863. [DOI: 10.1038/s41428-024-00921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 02/04/2025]
Abstract
AbstractEndoscopic submucosal dissection (ESD) benefits patients in the early stages of cancer, but it poses various risks of complication. Strategies involving the application of clinically approved products to cover ulcers caused by ESD can reduce these complications, but the fixed nature of their properties limit the understanding of their effects on ulcer healing. This study was focused on Tetra–PEG gel, an innovative hydrogel with controllable physical properties made from a sulfhydryl–maleimide pair. The use of biocompatible polyethylene glycol (PEG) in Tetra–PEG gel may allow for its application as a biomaterial. The aims of our study were to identify the characteristics of a self-solidifying hydrogel for endoscopic application and to develop a new ulcer coating agent for post-ESD treatment. We developed a specialized double-lumen catheter and determined the optimal application conditions of the hydrogel. We examined the hydrodynamic properties of the gelling solutions and elucidated the pressure drop that occurred during device operation. Finally, by considering previous experimental results, we successfully applied the hydrogel to post-ESD ulcers in porcine stomachs. We believed that by further optimizing hydrogels with effectively controlled properties and by continuing to investigate them through animal experiments, we could expand our understanding of the relationships among material and ulcer healing properties and apply this knowledge to clinical applications.
Collapse
|
11
|
Cheng X, Zhao R, Wang S, Meng J. Liquid-Like Surfaces with Enhanced De-Wettability and Durability: From Structural Designs to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407315. [PMID: 39058238 DOI: 10.1002/adma.202407315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Liquid-like surfaces (LLSs) with dynamic repellency toward various pollutants (e.g., bacteria, oil, and ice), have shown enormous potential in the fields of biology, environment, and energy. However, most of the reported LLSs cannot meet the demands for practical applications, particularly in terms of de-wettability and durability. To solve these problems, considerable progress has been made in enhancing the de-wettability and durability of LLSs in complex environments. Therefore, this review mainly focuses on the recent progress in LLSs, encompassing designed structures and repellent capabilities, as well as their diverse applications, offering greater insights for the targeted design of desired LLSs. First, a detailed overview of the development of LLSs from the perspective of their molecular structural evolution is provided. Then highlight recent approaches for enhancing the dynamic de-wettability and durability of LLSs by optimizing their structural designs, including linear, looped, crosslinked, and hybrid structures. Later, the diverse applications and unique advantages of recently developed LLSs, including repellency (e.g., liquid anti-adhesion/transportation/condensation, anti-icing/scaling/waxing, and biofouling repellency) are summarized. Finally, Perspectives on potential innovative advancements and the promotion of technology selection to advance this exciting field are offered.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Yu H, Li Y, Wang H, Zhang L, Suo P, Su T, Han Q. Preparation of a long-lasting tablet of spinosad microspheres and its residual insecticidal efficacy against the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae) larvae. PEST MANAGEMENT SCIENCE 2024; 80:3912-3921. [PMID: 38517127 DOI: 10.1002/ps.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUNDS In order to provide a long-lasting formulation for spinosad (SP) targeting larval stages of Aedes aegypti (Linnaeus) and others alike, a SP tablet was developed based on microspheres, using polylactic acid as inside coating material. The microspheres were encapsulated using polyethylene glycol and 1-hexadecanol to form a sustained-release SP tablet. Micromorphology, active ingredient loading, structure identification, photolysis resistance and biological activity were evaluated in this report. RESULTS (i) The SP microspheres had an average particle size of 6.16 ± 2.28 μm, low adhesion and good dispersion as evaluated by scanning electron microscopy and morphology. (ii) The average active ingredient loading and encapsulation of SP microspheres were 32.80 ± 0.74% and 78.41 ± 2.22%, respectively. (iii) The chemical structure of encapsulated SP was confirmed by Fourier transform infrared and 1H-nuclear magnetic resonance. (iv) The photostability of the microspheres and the tablets were evaluated. The results showed that DT50 (time required to dissipate 50% of the mass originally present) of SP was 0.95 days in microspheres and 6.94 days in tablets. (v) The long-term insecticidal activity of SP tablets was investigated, and the tablet had a long-lasting activity against the mosquito larvae, showing 100% larval mortality for 63 days. CONCLUSIONS The study provided a new long-lasting formulation of SP, which displayed good efficacy in the control of Ae. aegypti larvae. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Yunqi Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Hong Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Penghui Suo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Tianyun Su
- EcoZone International LLC, Riverside, California, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
13
|
Wang Z, Sangroniz L, Xu J, Zhu C, Müller A. Polymer Physics behind the Gel-Spinning of UHMWPE Fibers. Macromol Rapid Commun 2024; 45:e2400124. [PMID: 38602184 DOI: 10.1002/marc.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Gel-spinning of ultra-high molecular weight polyethylene (UHMWPE) fibers has attracted great interest in academia and industry since its birth and commercialization in the 1980s, due to unique properties such as high modulus, low density, and excellent chemical resistance. However, the high viscosity and long relaxation time greatly complicate processing. In industry, solvents, like decalin and paraffin oil, usually disentangle the physical networks and promote final drawability. From extruding the polymer solution to post-solid-stretching, many polymer physics problems that accompany high-modulus fiber gel-spinning should be understood and addressed. In this review, by detailed discussions about the effect of entanglements and intracrystalline chain dynamics on the mechanical properties of UHMWPE, theoretical descriptions of the structure formation of disentangled UHMWPE crystals, and the origin of high modulus and strength of final fibers are provided. Several physical intrinsic key factors are also discussed, revealing why UHMWPE is an ideal material for producing high-performance fibers.
Collapse
Affiliation(s)
- Zefan Wang
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| | - Leire Sangroniz
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
| | - Jian Xu
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| | - Caizhen Zhu
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| | - Alejandro Müller
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
14
|
Mei B, Grest GS, Liu S, O’Connor TC, Schweizer KS. Unified understanding of the impact of semiflexibility, concentration, and molecular weight on macromolecular-scale ring diffusion. Proc Natl Acad Sci U S A 2024; 121:e2403964121. [PMID: 39042674 PMCID: PMC11295076 DOI: 10.1073/pnas.2403964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Conformationally fluctuating, globally compact macromolecules such as polymeric rings, single-chain nanoparticles, microgels, and many-arm stars display complex dynamic behaviors due to their rich topological structure and intermolecular organization. Synthetic rings are hybrid objects with conformations that display both ideal random walk and compact globular features, which can serve as models of genomic DNA. To date, emphasis has been placed on the effect of ring molecular weight on their unusual behaviors. Here, we combine simulations and a microscopic force-level theory to build a unified understanding for how key aspects of ring dynamics depend on different tunable molecular properties including backbone rigidity, monomer concentration, degree of traditional entanglement, and molecular weight. Our large-scale molecular dynamics simulations of ring melts with very different backbone stiffnesses reveal unanticipated behaviors which agree well with our generalized theory. This includes a universal master curve for center-of-mass diffusion constants as a function of molecular weight scaled by a chemistry and thermodynamic state-dependent critical molecular weight that generalizes the concept of an entanglement cross-over for linear chains. The key physics is how backbone rigidity and monomer concentration induced changes of the entanglement length, interring packing, degree of interpenetration, and liquid compressibility slow down space-time dynamic-force correlations on macromolecular scales. A power law decay of the center-of-mass diffusion constant with inverse molecular weight squared is the first consequence, followed by an ultraslow activated hopping transport regime. Our results set the stage to address slow dynamics and kinetic arrest in different families of compact synthetic and biological polymeric systems.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | | | - Songyue Liu
- Department of Materials Science and Engineering, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Thomas C. O’Connor
- Department of Materials Science and Engineering, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Kenneth S. Schweizer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
15
|
Pawlak A, Krajenta J. Entanglements of Macromolecules and Their Influence on Rheological and Mechanical Properties of Polymers. Molecules 2024; 29:3410. [PMID: 39064989 PMCID: PMC11280004 DOI: 10.3390/molecules29143410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Flexible macromolecules easily become entangled with neighboring macromolecules. The resulting network determines many polymer properties, including rheological and mechanical properties. Therefore, a number of experimental and modeling studies were performed to describe the relationship between the degree of entanglement of macromolecules and polymer properties. The introduction presents general information about the entanglements of macromolecule chains, collected on the basis of studies of equilibrium entangled polymers. It is also shown how the density of entanglements can be reduced. The second chapter presents experiments and models leading to the description of the movement of a single macromolecule. The next part of the text discusses how the rheological properties change after partial disentangling of the polymer. The results on the influence of the degree of chain entanglement on mechanical properties are presented.
Collapse
Affiliation(s)
- Andrzej Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland;
| | | |
Collapse
|
16
|
Wu T, Wang Z, Yin F, Wang W, Yi Z. Isoporous Membranes by the Symmetric Triblock Copolymer: A Strategy to Improve the Mechanical Strength without Sharply Changing the Pore Size and Permselectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37073-37086. [PMID: 38958638 DOI: 10.1021/acsami.4c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isoporous membranes produced from diblock copolymers commonly display a poor mechanical property that shows many negative impacts on their separation application. It is theoretically predicted that dense films produced from symmetric triblock copolymers show much stronger mechanical properties than those of homologous diblock copolymers. However, to the best of our knowledge, symmetric triblock copolymers have rarely been fabricated into isoporous membranes before, and a full understanding of separation as well as mechanical properties of membranes prepared from triblock copolymers and homologous diblock copolymers has not been conducted, either. In this work, a cleavable symmetric triblock copolymer with polystyrene as the side block and poly(4-vinylpyridine) (P4VP) as the middle block was synthesized and designed by the RAFT polymerization using the symmetric chain transfer agent, which located at the center of polymer chains and could be removed to produce homologous diblock copolymers with half-length while having the same composition as that found in triblock copolymers. The self-assembly of these two copolymers in thin films and casting solutions was first investigated, observing that they displayed similar self-organized structures under these two conditions. When fabricated into isoporous membranes, they showed similar pore sizes (5-7% difference) and comparable rejection performance (∼10% difference). However, isoporous membranes produced from triblock copolymers showed significantly improved mechanical strength and higher toughness (2-10 times larger) as evidenced by the compacting resistance, strain-stress determination, and nanoindentation testing, suggesting the unique and novel structure-performance relationship in the isoporous membranes produced from symmetric triblock copolymers. The above finding will guide the way to fabricate mechanically robust isoporous membranes without notably changing the separation performance from rarely used symmetric triblock copolymers, which can be synthesized by the controlled polymerization as facilely as that found for diblock copolymers.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| | - Zixiong Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengjie Yin
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| |
Collapse
|
17
|
Rusen E, Brîncoveanu O, Dincă V, Toader G, Diacon A, Dinescu MA, Mocanu A. Surface pre-treatment of aluminum alloy for mechanical improvement of adhesive bonding by maple-assisted pulsed laser evaporation technique. RSC Adv 2024; 14:22627-22641. [PMID: 39027041 PMCID: PMC11255560 DOI: 10.1039/d4ra03187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Adhesive joints are widely used for structural bonding in various industrial sectors. The performance of bonded joints is commonly attributed to the cleanliness of the substrate and the pre-treatment of the surfaces to be bonded. In this study, the Matrix Assisted Pulsed Laser Evaporation (MAPLE) deposition technique was used for surface modification of aluminum (Al) plates by the deposition of poly(propylene glycol) bis(2-aminopropyl ether) (PPG-NH2) of different number average molecular weights (Mn) of 400 g mol-1, 2000 g mol-1, and 4000 g mol-1, respectively. Fourier-transformed infrared spectroscopy (FT-IR) analysis indicated the characteristic peaks for the deposited layers of PPG-NH2 of different molecular weights in all cases while scanning electron microscopy (SEM) revealed continuous layers on the surface of Al plates. In order to demonstrate alterations in the wettability of Al substrates, a crucial aspect in surface treatment and adhesive bonding, measurements of contact angles, surface free energies (SFE), and adhesion work (W a) were conducted. The tensile strength measurements were performed using the lap-joint test after applying the commercial silyl-based polymer adhesive Bison Max Repair Extreme Adhesive®. It was evidenced that at higher values of the SFE and W a, the tensile strength was almost 3 times higher for PPG-NH2 with Mn = 4000 g mol-1 compared with the untreated Al sample. This study provides valuable insights into the successful application of the MAPLE technique as a pre-treatment method for reinforcing adhesive bonding of Al plates, which can lead to improved mechanical performance in various industrial applications.
Collapse
Affiliation(s)
- Edina Rusen
- University Politehnica of Bucharest 1-7 Gh Polizu, Polizu Campus, Sector 1 RO-011061 Bucharest Romania
| | - Oana Brîncoveanu
- National Institute for Research and Development in Microtechnologies - IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
- Research Institute of the University of Bucharest, ICUB Bucharest Soseaua Panduri, nr. 90, Sector 5 050663 Bucureşti Romania
| | - Valentina Dincă
- National Institute for Laser, Plasma and Radiation Physics 409 Atomiştilor Street 077125 Măgurele Ilfov Romania
| | - Gabriela Toader
- Military Technical Academy "Ferdinand I" 39-49 Blvd. George Coşbuc, Sector 5 050141 Bucharest Romania
| | - Aurel Diacon
- University Politehnica of Bucharest 1-7 Gh Polizu, Polizu Campus, Sector 1 RO-011061 Bucharest Romania
- Military Technical Academy "Ferdinand I" 39-49 Blvd. George Coşbuc, Sector 5 050141 Bucharest Romania
| | - Miron Adrian Dinescu
- National Institute for Research and Development in Microtechnologies - IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Alexandra Mocanu
- University Politehnica of Bucharest 1-7 Gh Polizu, Polizu Campus, Sector 1 RO-011061 Bucharest Romania
- National Institute for Research and Development in Microtechnologies - IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| |
Collapse
|
18
|
Li J, Zhang B, Wang ZY. Activity-induced stiffness, entanglement network and dynamic slowdown in unentangled semidilute polymer solutions. SOFT MATTER 2024; 20:5174-5182. [PMID: 38895794 DOI: 10.1039/d4sm00341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active polymers possess numerous unique properties that are quite different from those observed in the system of small active molecules due to the intricate interplay between their activity and topological constraints. This study focuses on the conformational changes induced by activity, impacting effective stiffness and crucially influencing entanglement and dynamics. When the two terminals of a linear chain undergo active modification through coupling to a high-temperature thermal bath, there is a substantial increase in chain size, indicating a notable enhancement in effective stiffness. Unlike in passive semiflexible chains where stiffness predominantly affects local bond angles, activity-induced stiffness manifests at the scale of tens of monomers. While activity raises the ambient temperature, it significantly decreases diffusion by over an order of magnitude. The slowdown of the dynamics observed can be attributed to increased entanglement due to chain elongation.
Collapse
Affiliation(s)
- Jing Li
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| | - Bokai Zhang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| | - Zhi-Yong Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| |
Collapse
|
19
|
Tamnanloo J, Tsige M. All-atom molecular dynamics simulation of solvent diffusion in an unentangled polystyrene film. SOFT MATTER 2024; 20:5195-5202. [PMID: 38895847 DOI: 10.1039/d4sm00641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The diffusion behavior of low molecular weight solvents within an unentangled polystyrene film below and above its glass transition temperature is investigated. The diffusion behavior in the glassy state exhibits a distinct behavior known as case II or class II diffusion, noticeably diverging from conventional Fickian diffusion observed above the glass transition temperature of the polymer film. In the context of case II diffusion, the primary experimental observation entails the emergence of a well-defined concentration front moving at a constant speed, delineating a swollen, rubbery region from a glassy region within the polymer system. Despite the prevalence of this phenomenon in experimental settings, simulating case II diffusion has posed a significant challenge, primarily due to the computationally intensive nature of the diffusion process. To address this, we have developed an all-atom molecular dynamics simulation approach for the observation of case II diffusion in glassy polymers. This method aims to unravel the intricacies of the diffusion process, providing valuable insights into the dynamic interactions between solvents and the polymer matrix.
Collapse
Affiliation(s)
- Javad Tamnanloo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
20
|
Wang Z, Liu S, Zhu C, Xu J. Physical-Entanglements-Supported Polymeric Form Stable Phase Change Materials with Ultrahigh Melting Enthalpy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403889. [PMID: 38718324 DOI: 10.1002/adma.202403889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Indexed: 05/15/2024]
Abstract
With the rapid development of new energy and the upgrading of electronic devices, structurally stable phase change materials (PCMs) have attracted widespread attentions from both academia and industries. Traditional cross-linking, composites, or microencapsulation methods for preparation of form stable PCMs usually sacrifice part of the phase change enthalpy and recyclability. Based on the basic polymer viscoelasticity and crystallization theories, here, a kind of novel recyclable polymeric PCM is developed by simple solution mixing ultrahigh molecular weight of polyethylene oxide (UHMWPEO) with its chemical identical oligomer polyethylene glycol (PEG). Rheological and leakage-proof experiments confirm that, even containing 90% of phase change fraction PEG oligomers, long-term of structure stability of PCMs can be achieved when the molecular weight of UHMWPEO is higher than 7000 kg mol-1 due to their ultralong terminal relaxation time and large number of entanglements per chain. Furthermore, because of the reduced overall entanglement concentration, phase change enthalpy of PCMs can be greatly promoted, even reaching to ≈185 J g-1, which is larger than any PEG-based form stable PCMs in literatures. This work provides a new strategy and mechanism for designing physical-entanglements-supported form stable PCMs with ultrahigh phase change enthalpies.
Collapse
Affiliation(s)
- Zefan Wang
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| | - Shuxian Liu
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| | - Caizhen Zhu
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| | - Jian Xu
- School of Chemistry and Environmental Engineering, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518060, China
| |
Collapse
|
21
|
Douglas JF, Horkay F. Influence of swelling on the elasticity of polymer networks cross-linked in the melt state: Test of the localization model of rubber elasticity. J Chem Phys 2024; 160:224903. [PMID: 38856072 PMCID: PMC11305141 DOI: 10.1063/5.0212901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
The elasticity of polymer networks, formed by cross-linking high molecular mass polymers in the melt state and then swollen by a solvent, involves contributions from both the presence of cross-link network junctions and the interchain interactions associated with the combined effect of excluded volume interactions and topological constraints that become modified when the network is swollen. We test the capacity of the previously developed localization model of rubber elasticity, a mean field "tube model," to describe changes in elasticity observed in classical experimental studies of the mechanical properties of this type of network. In order to obtain a satisfactory comparison to the experiments, it was found to be necessary to account for the independently observed tendency of the network junctions to become localized in the network with appreciable swelling, as well as the interchain interactions emphasized in previous discussions of the localization model.
Collapse
Affiliation(s)
- Jack F. Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Sangroniz L, Müller AJ, Cavallo D. Origin of Melt Memory Effects in Poly(ethylene oxide): The Crucial Role of Entanglements. Macromol Rapid Commun 2024; 45:e2400011. [PMID: 38521979 DOI: 10.1002/marc.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/12/2024] [Indexed: 03/25/2024]
Abstract
The melt memory effect on crystallization is an intriguing phenomenon displayed by semicrystalline polymers, as opposed to low molar mass molecules. It concerns the effect of melt temperature on nucleation upon recrystallization. Typically, polymer crystals must be considerably superheated to erase the effect of previous morphology on the subsequent crystallization, avoiding an acceleration of the process. Despite being known for decades, its origin is still not fully understood. Investigating model poly(ethylene oxide) covering a wide range of molar mass, it is demonstrated that melt memory originates from topological constraints among the chains, i.e., entanglements, for PEO in which weak intermolecular interactions are present due to the ether groups. In fact, no memory is observed for samples below the critical molar mass for the formation of entanglements (about 1 kg mol-1). The increase in molar mass raises the number of entanglements and induces the formation of folded chains crystals, both factors leading to a topologically complex amorphous phase, enhancing the melt memory effect. The molecular origin of the melt memory effect in polymers with weak intermolecular interactions is thus ascribed to a slower isotropization in the melt of the chain segments originally contained in the crystals, due to the presence of entanglements among the chains. This study defines the distinction between small molecules and polymers from the point of view of melt memory.
Collapse
Affiliation(s)
- Leire Sangroniz
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, Genova, 16146, Italy
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, Genova, 16146, Italy
| |
Collapse
|
23
|
Oda K, Yasuda S. Effect of shear flow on the transverse thermal conductivity of polymer melts. Phys Rev E 2024; 109:064501. [PMID: 39021017 DOI: 10.1103/physreve.109.064501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
The effect of shear flows on the thermal conductivity of polymer melts is investigated using a reversed nonequilibrium molecular-dynamics (RNEMD) method. We extended the original RNEMD method to simultaneously produce spatial gradients of temperature and flow velocity in a single direction. This method enables accurate measurement of the thermal conductivity in the direction transverse to shear flow. The Weissenberg number defined with the shear rate and the relaxation time of the polymer conformation can uniformly differentiate the occurrence of shear rate dependence of the thermal conductivity across different chain lengths. The stress-thermal rule (STR) (i.e., the linear relationship between anisotropic parts of the stress tensor and the thermal conductivity tensor) holds for entangled polymer melts even under shear flows but not for unentangled polymer melts. Furthermore, once entanglements form in polymer chains, the stress-thermal coefficient in the STR remains independent of the polymer chain length. These observations align with the theoretical foundation of the STR, which focuses on energy transmission along the network structure of entangled polymer chains [B. van den Brule, Rheol. Acta 28, 257 (1989)0035-451110.1007/BF01329335]. However, under driven shear flows, the stress-thermal coefficient is notably smaller than that measured in the literature for a quasiquiescent state without external forces. Although the mechanism of the STR in shear flows has yet to be fully elucidated, our study confirmed the validity of the STR in shear flows. This allows us to use the STR as a constitutive equation for computational thermofluid dynamics of polymer melts, thus having broad engineering applications.
Collapse
|
24
|
Veríssimo NVP, Frota EG, Teixeira JB, de Carvalho Santos-Ebinuma V, de Souza Oliveira RP. Aggregation-Induced Emission (AIE) in Polymers: Effect of Polymer size on the Fluorescence of Low Molecular Weight PEG and PPG. J Fluoresc 2024:10.1007/s10895-024-03776-9. [PMID: 38777984 DOI: 10.1007/s10895-024-03776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Aggregation-induced emission (AIE) is a fascinating phenomenon where specific molecules exhibit enhanced fluorescence upon aggregation. This unique property has revolutionized the design and development of new fluorescent materials for different applications, from biosensors and organic light-emitting diodes (OLEDs) to biomedical imaging and diagnostics. Researchers are creating sensitive and selective sensing platforms, opening new avenues in material science and engineering by harnessing the potential of AIE. To expand the knowledge in this field, this study explored the aggregation-induced emission (AIE) properties of two polymers, namely polyethylene glycol (PEG) and polypropylene glycol (PPG) of low molecular weight (MW) using fluorescence spectroscopy and absorbance (UV). PEG-300 and PPG-725 were the most fluorescent polymers at UV of the ten investigated. Interestingly, AIE did not correlate linearly with molecular weight (MW), and monobutyl ether substitution in PEG with a similar MW substantially altered its AIE. Furthermore, fluorescence precisely quantified low polymer concentrations in water, and non-aqueous solvents suppressed AIE, suggesting potential for AIE manipulation. These findings enhance our understanding of AIE in polymers, fostering the development of novel materials for applications such as biosensors.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, 14040-903, Brazil.
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Sao Paulo, 05508-000, Brazil.
| | - Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Sao Paulo, 05508-000, Brazil
| | - Juliana Barone Teixeira
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
25
|
Xian W, Zhan YS, Maiti A, Saab AP, Li Y. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials. Polymers (Basel) 2024; 16:1387. [PMID: 38794580 PMCID: PMC11125212 DOI: 10.3390/polym16101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer-particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer-particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - You-Shu Zhan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Andrew P. Saab
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| |
Collapse
|
26
|
Barr KE, Ohnsorg ML, Liberman L, Corcoran LG, Sarode A, Nagapudi K, Feder CR, Bates FS, Reineke TM. Drug-Polymer Nanodroplet Formation and Morphology Drive Solubility Enhancement of GDC-0810. Bioconjug Chem 2024; 35:499-516. [PMID: 38546823 DOI: 10.1021/acs.bioconjchem.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nanodroplet formation is important to achieve supersaturation of active pharmaceutical ingredients (APIs) in an amorphous solid dispersion. The aim of the current study was to explore how polymer composition, architecture, molar mass, and surfactant concentration affect polymer-drug nanodroplet morphology with the breast cancer API, GDC-0810. The impact of nanodroplet size and morphology on dissolution efficacy and drug loading capacity was explored using polarized light microscopy, dynamic light scattering, and cryogenic transmission electron microscopy. Poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) (PND) was synthesized as two linear derivatives and two bottlebrush derivatives with carboxylated or PEGylated end-groups. Hydroxypropyl methylcellulose acetate succinate grade MF (HPMCAS-MF) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) were included as commercial polymer controls. We report the first copolymerization synthesis of a PVPVA bottlebrush copolymer, which was the highest performing excipient in this study, maintaining 688 μg/mL GDC-0810 concentration at 60 wt % drug loading. This is likely due to strong polymer-drug noncovalent interactions and the compaction of GDC-0810 along the PVPVA bottlebrush backbone. Overall, it was observed that the most effective formulations had a hydrodynamic radius less than 25 nm with tightly compacted nanodroplet morphologies.
Collapse
Affiliation(s)
- Kaylee E Barr
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Monica L Ohnsorg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Apoorva Sarode
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christina R Feder
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Rosetto G, Vidal F, McGuire TM, Kerr RWF, Williams CK. High Molar Mass Polycarbonates as Closed-Loop Recyclable Thermoplastics. J Am Chem Soc 2024; 146:8381-8393. [PMID: 38484170 PMCID: PMC10979403 DOI: 10.1021/jacs.3c14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Using carbon dioxide (CO2) to make recyclable thermoplastics could reduce greenhouse gas emissions associated with polymer manufacturing. CO2/cyclic epoxide ring-opening copolymerization (ROCOP) allows for >30 wt % of the polycarbonate to derive from CO2; so far, the field has largely focused on oligocarbonates. In contrast, efficient catalysts for high molar mass polycarbonates are underinvestigated, and the resulting thermoplastic structure-property relationships, processing, and recycling need to be elucidated. This work describes a new organometallic Mg(II)Co(II) catalyst that combines high productivity, low loading tolerance, and the highest polymerization control to yield polycarbonates with number average molecular weight (Mn) values from 4 to 130 kg mol-1, with narrow, monomodal distributions. It is used in the ROCOP of CO2 with bicyclic epoxides to produce a series of samples, each with Mn > 100 kg mol-1, of poly(cyclohexene carbonate) (PCHC), poly(vinyl-cyclohexene carbonate) (PvCHC), poly(ethyl-cyclohexene carbonate) (PeCHC, by hydrogenation of PvCHC), and poly(cyclopentene carbonate) (PCPC). All these materials are amorphous thermoplastics, with high glass transition temperatures (85 < Tg < 126 °C, by differential scanning calorimetry) and high thermal stability (Td > 260 °C). The cyclic ring substituents mediate the materials' chain entanglements, viscosity, and glass transition temperatures. Specifically, PCPC was found to have 10× lower entanglement molecular weight (Me)n and 100× lower zero-shear viscosity compared to those of PCHC, showing potential as a future thermoplastic. All these high molecular weight polymers are fully recyclable, either by reprocessing or by using the Mg(II)Co(II) catalyst for highly selective depolymerizations to epoxides and CO2. PCPC shows the fastest depolymerization rates, achieving an activity of 2500 h-1 and >99% selectivity for cyclopentene oxide and CO2.
Collapse
Affiliation(s)
| | | | - Thomas M. McGuire
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| | - Ryan W. F. Kerr
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| |
Collapse
|
28
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Rauscher PM. Renormalized one-loop theory of correlations in disperse polymer blends. J Chem Phys 2023; 159:244906. [PMID: 38156636 DOI: 10.1063/5.0183860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Polymer blends are critical in many commercial products and industrial processes and their phase behavior is therefore of paramount importance. In most circumstances, such blends are formulated with samples of high dispersity, which have generally only been studied at the mean-field level. Here, we extend the renormalized one-loop theory of concentration fluctuations to account for blends of disperse polymers. Analyzing the short and long length-scale fluctuations in a consistent manner, various measures of polymer molecular weight and dispersity arise naturally in the free energy. Thermodynamic analysis in terms of moments of the molecular weight distribution(s) provides exact results for the inverse susceptibility and demonstrates that the theory is not formally renormalizable. However, physically motivated approximations allow for an "effective" renormalization, yielding (1) an effective interaction parameter, χe, which depends directly on the sample dispersities (i.e., Mw/Mn) and leaves the form of the mean-field spinodal unchanged, and (2) an apparent interaction parameter χa that depends on higher-order dispersity indices, for instance Mz/Mw, and characterizes the true limits of blend stability accounting for long-range off-critical fluctuations. We demonstrate the importance of dispersity on several example systems, including both "toy" models that may be realized in computer simulation and more realistic industrially relevant blends. We find that the effects of long-range fluctuations are particularly prominent in blends where the component dispersities are mismatched, especially when there is a small quantity of the high-dispersity species. This can be understood as a consequence of the shift in the critical concentration(s) from the monodisperse value(s).
Collapse
Affiliation(s)
- P M Rauscher
- Polymer Physics Group, Specialty Polymers Global Business Unit, Syensqo S.A., 4500 McGinnis Ferry Road, Alpharetta, Georgia 30005, USA
| |
Collapse
|
30
|
Xu J, Guo X, Guo H, Zhang Y, Wang X. Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films. Polymers (Basel) 2023; 15:4655. [PMID: 38139907 PMCID: PMC10748294 DOI: 10.3390/polym15244655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The polymer/substrate interface plays a significant role in the dynamics of nanoconfined polymers because of its suppression on polymer mobility and its long-range propagation feature, while the molecular origin of the long-range substrate effect in unentangled polymer material is still ambiguous. Herein, we investigated the propagation distances of the substrate effect (h*) by a fluorinated tracer-labeled method of two unentangled polymer films supported on silicon substrates: linear and ring poly(methyl methacrylate) films with relatively low molecular weights. The results indicate that the value of h* has a molecular weight dependence of h*∝N (N is the degree of polymerization) in the unentangled polymer films, while h*∝N1/2 was presented as previously reported in the entangled films. A theoretical model, depending on the polymer/polymer intermolecular interaction, was proposed to describe the above long-range propagation behavior of the substrate effect and agrees with our experiment results very well. From the model, it revealed that the intermolecular friction determines the long-range propagation of the substrate effect in the unentangled system, but the intermolecular entanglement is the dominant role in entangled system. These results give us a deeper understanding of the long-range substrate effect.
Collapse
Affiliation(s)
- Jianquan Xu
- Institute for School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.G.); (H.G.); (Y.Z.)
| | | | | | | | - Xinping Wang
- Institute for School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.G.); (H.G.); (Y.Z.)
| |
Collapse
|
31
|
Arbe A, Alegría A, Colmenero J, Bhaumik S, Ntetsikas K, Hadjichristidis N. Microscopic Evidence for the Topological Transition in Model Vitrimers. ACS Macro Lett 2023; 12:1595-1601. [PMID: 37947419 PMCID: PMC10666534 DOI: 10.1021/acsmacrolett.3c00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
In addition to the glass transition, vitrimers undergo a topological transition from viscoelastic liquid to viscoelastic solid behavior when the network rearrangements facilitated by dynamic bond exchange reactions freeze. The microscopic observation of this transition is elusive. Model polyisoprene vitrimers based on imine dynamic covalent bonds were synthesized by reaction of α,ω-dialdehyde-functionalized polyisoprenes and a tris(2-aminoethyl)amine. In these dynamic networks nanophase separation of polymer and reactive groups leads to the emergence of a relevant length scale characteristic for the network structure. We exploited the scattering sensitivity to structural features at different length scales to determine how dynamical and topological arrests affect correlations at segmental and network levels. Chains expand obeying the same expansion coefficient throughout the entire viscoelastic region, i.e., both in the elastomeric regime and in the liquid regime. The onset of liquid-like behavior is only apparent at the mesoscale, where the scattering reveals the reorganization of the network triggered by bond exchange events. The such determined "microscopic" topological transition temperature is compared with the outcome of "conventional" methods, namely viscosimetry and differential scanning calorimetry. We show that using proper thermal (aging-like) protocols, this transition is also nicely revealed by the latter.
Collapse
Affiliation(s)
- Arantxa Arbe
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Angel Alegría
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología (UPV/EHU), Apartado 1072, 20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología (UPV/EHU), Apartado 1072, 20018 San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Saibal Bhaumik
- Polymer
Synthesis Laboratory, Chemistry Program, Physical Science and Engineering
Division, KAUST Catalysis Center, King Abdullah
University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Konstantinos Ntetsikas
- Polymer
Synthesis Laboratory, Chemistry Program, Physical Science and Engineering
Division, KAUST Catalysis Center, King Abdullah
University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Chemistry Program, Physical Science and Engineering
Division, KAUST Catalysis Center, King Abdullah
University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
32
|
Välisalmi T, Bettahar H, Zhou Q, Linder MB. Pulling and analyzing silk fibers from aqueous solution using a robotic device. Int J Biol Macromol 2023; 250:126161. [PMID: 37549763 DOI: 10.1016/j.ijbiomac.2023.126161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Spiders, silkworms, and many other animals can spin silk with exceptional properties. However, artificially spun fibers often fall short of their natural counterparts partly due sub-optimal production methods. A variety of methods, such as wet-, dry-, and biomimetic spinning have been used. The methods are based on extrusion, whereas natural spinning also involves pulling. Another shortcoming is that there is a lack feedback control during extension. Here we demonstrate a robotic fiber pulling device that enables controlled pulling of silk fibers and in situ measurement of extensional forces during the pulling and tensile testing of the pulled fibers. The pulling device was used to study two types of silk-one recombinant spider silk (a structural variant of ADF3) and one regenerated silk fibroin. Also, dextran-a branched polysaccharide-was used as a reference material for the procedure due to its straightforward preparation and storage. No post-treatments were applied. The pulled regenerated silk fibroin fibers achieved high tensile strength in comparison to similar extrusion-based methods. The mechanical properties of the recombinant spider silk fibers seemed to be affected by the liquid-liquid phase separation of the silk proteins.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Houari Bettahar
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland.
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
33
|
Ebe M, Soga A, Fujiwara K, Ree BJ, Marubayashi H, Hagita K, Imasaki A, Baba M, Yamamoto T, Tajima K, Deguchi T, Jinnai H, Isono T, Satoh T. Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing "Macro-Rotaxanes" from High-Molecular-Weight Axle and Wheel Components. Angew Chem Int Ed Engl 2023; 62:e202304493. [PMID: 37458573 DOI: 10.1002/anie.202304493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 08/24/2023]
Abstract
Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10-60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.
Collapse
Affiliation(s)
- Minami Ebe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Asuka Soga
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Kaiyu Fujiwara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Brian J Ree
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Hironori Marubayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Katsumi Hagita
- Department of Applied Physics, National Defense Academy, Yokosuka, 239-8686, Japan
| | - Atsushi Imasaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Miru Baba
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Tetsuo Deguchi
- Department of Physics, Faculty of Core Research, Ochanomizu University, Tokyo, 112-8610, Japan
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| |
Collapse
|
34
|
Ghanta R, Burkhart C, Polińska P, Harmandaris V, Doxastakis M. The effect of chemical constitution on polyisoprene dynamics. J Chem Phys 2023; 159:044902. [PMID: 37486059 DOI: 10.1063/5.0155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Polyisoprene (PI) melts have been studied, with most reports focusing on systems with high 1,4-cis content. In contrast, 1,4-trans PI homopolymers or random copolymers have seldom been examined, despite a handful of investigations suggesting a distinct dynamic behavior. Herein, we employ all-atom simulations to investigate the effect of chemical architecture on the dynamics of cis and trans-PI homopolymers, as well as copolymers. We examine the thermodynamic, conformational, and structural properties of the polymers and validate the performance of the models. We probe chain dynamics, revealing that cis-PI presents accelerated translation and reorientation modes relative to trans as recorded by the mean square displacement of the chain center-of-mass as well as by the characteristic times of the lower modes in a Rouse analysis. Interestingly, progressing to higher modes, we observe a reversal with trans units exhibiting faster dynamics. This was further confirmed by calculations of local carbon-hydrogen vector reorientation dynamics, which offer a microscopic view of segmental mobility. To obtain insight into the simulation trajectories, we evaluate the intermediate incoherent scattering function that supports a temperature-dependent crossover in relative mobility that extends over separations beyond the Kuhn-length level. Finally, we analyzed the role of non-Gaussian displacements, which demonstrate that cis-PI exhibits increased heterogeneity in dynamics over short-timescales in contrast to trans-PI, where deviations persist over times extending to terminal dynamics. Our all-atom simulations provide a fundamental understanding of PI dynamics and the impact of microstructure while providing important data for the design and optimization of PI-based materials.
Collapse
Affiliation(s)
- Rohit Ghanta
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Tennessee, Knoxville 37996, USA
| | - Craig Burkhart
- The Goodyear Tire & Rubber Company, Akron, Ohio 44305, USA
| | - Patrycja Polińska
- Goodyear Innovation Center Luxembourg, Avenue Gordon Smith, L-7750 Colmar-Berg, Luxembourg
| | - Vagelis Harmandaris
- Department of Applied Mathematics, University of Crete, and IACM FORTH, GR-71110 Heraklion, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Tennessee, Knoxville 37996, USA
| |
Collapse
|
35
|
Phillies GDJ. Simulational Tests of the Rouse Model. Polymers (Basel) 2023; 15:2615. [PMID: 37376261 DOI: 10.3390/polym15122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
An extensive review of literature simulations of quiescent polymer melts is given, considering results that test aspects of the Rouse model in the melt. We focus on Rouse model predictions for the mean-square amplitudes ⟨(Xp(0))2⟩ and time correlation functions ⟨Xp(0)Xp(t)⟩ of the Rouse mode Xp(t). The simulations conclusively demonstrate that the Rouse model is invalid in polymer melts. In particular, and contrary to the Rouse model, (i) mean-square Rouse mode amplitudes ⟨(Xp(0))2⟩ do not scale as sin-2(pπ/2N), N being the number of beads in the polymer. For small p (say, p≤3) ⟨(Xp(0))2⟩ scales with p as p-2; for larger p, it scales as p-3. (ii) Rouse mode time correlation functions ⟨Xp(t)Xp(0)⟩ do not decay with time as exponentials; they instead decay as stretched exponentials exp(-αtβ). β depends on p, typically with a minimum near N/2 or N/4. (iii) Polymer bead displacements are not described by independent Gaussian random processes. (iv) For p≠q, ⟨Xp(t)Xq(0)⟩ is sometimes non-zero. (v) The response of a polymer coil to a shear flow is a rotation, not the affine deformation predicted by Rouse. We also briefly consider the Kirkwood-Riseman polymer model.
Collapse
|
36
|
Cooper CB, Root SE, Michalek L, Wu S, Lai JC, Khatib M, Oyakhire ST, Zhao R, Qin J, Bao Z. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers. Science 2023; 380:935-941. [PMID: 37262169 DOI: 10.1126/science.adh0619] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly.
Collapse
Affiliation(s)
- Christopher B Cooper
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel E Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Solomon T Oyakhire
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Seo S, Lee JW, Kim DJ, Lee D, Phan TNL, Park J, Tan Z, Cho S, Kim TS, Kim BJ. Poly(dimethylsiloxane)-block-PM6 Polymer Donors for High-Performance and Mechanically Robust Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300230. [PMID: 36929364 DOI: 10.1002/adma.202300230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/16/2023]
Abstract
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Collapse
Affiliation(s)
- Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
38
|
Albanese KR, Okayama Y, Morris PT, Gerst M, Gupta R, Speros JC, Hawker CJ, Choi C, de Alaniz JR, Bates CM. Building Tunable Degradation into High-Performance Poly(acrylate) Pressure-Sensitive Adhesives. ACS Macro Lett 2023:787-793. [PMID: 37220638 DOI: 10.1021/acsmacrolett.3c00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pressure-sensitive adhesives (PSAs) based on poly(acrylate) chemistry are common in a wide variety of applications, but the absence of backbone degradability causes issues with recycling and sustainability. Here, we report a strategy to create degradable poly(acrylate) PSAs using simple, scalable, and functional 1,2-dithiolanes as drop-in replacements for traditional acrylate comonomers. Our key building block is α-lipoic acid, a natural, biocompatible, and commercially available antioxidant found in various consumer supplements. α-Lipoic acid and its derivative ethyl lipoate efficiently copolymerize with n-butyl acrylate under conventional free-radical conditions leading to high-molecular-weight copolymers (Mn > 100 kg mol-1) containing a tunable concentration of degradable disulfide bonds along the backbone. The thermal and viscoelastic properties of these materials are practically indistinguishable from nondegradable poly(acrylate) analogues, but a significant reduction in molecular weight is realized upon exposure to reducing agents such as tris (2-carboxyethyl) phosphine (e.g., Mn = 198 kg mol-1 → 2.6 kg mol-1). By virtue of the thiol chain ends produced after disulfide cleavage, degraded oligomers can be further cycled between high and low molecular weights through oxidative repolymerization and reductive degradation. Transforming otherwise persistent poly(acrylates) into recyclable materials using simple and versatile chemistry could play a pivotal role in improving the sustainability of contemporary adhesives.
Collapse
Affiliation(s)
| | | | | | - Matthias Gerst
- BASF SE, Polymers for Adhesives, 67056, Ludwigshafen am Rhein, Germany
| | - Rohini Gupta
- BASF Corporation California Research Alliance, Berkeley, California 94720, United States
| | - Joshua C Speros
- BASF Venture Capital America Inc., Boston, Massachusetts 02142,United States
| | | | | | | | | |
Collapse
|
39
|
Krause DT, Krämer S, Siozios V, Butzelaar AJ, Dulle M, Förster B, Theato P, Mayer J, Winter M, Förster S, Wiemhöfer HD, Grünebaum M. Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chains. Polymers (Basel) 2023; 15:polym15092128. [PMID: 37177276 PMCID: PMC10180747 DOI: 10.3390/polym15092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Poly(ethylene oxide) block copolymers (PEOz BCP) have been demonstrated to exhibit remarkably high lithium ion (Li+) conductivity for Li+ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PIxPSyPEOz), a pronounced maximum ion conductivity was reported for short PEOz molecular weights around 2 kg mol-1. To later enable a systematic exploration of the influence of the PIx and PSy block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEOz block length can be kept constant, while the PIx and PSy block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEOz chains to terminate PIxPSy BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PIxPSyPEOz with narrow chain length distribution and a fixed PEOz block length of z = 1.9 kg mol-1 and a Đ = 1.03 are obtained. The successful quantitative end group modification of the PEOz block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEOz BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li+ conductivity in Li+ batteries.
Collapse
Affiliation(s)
- Daniel T Krause
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| | - Susanna Krämer
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| | - Vassilios Siozios
- MEET Battery Research Center, University of Münster, Corrensstr. 46, 48149 Münster, Germany
| | - Andreas J Butzelaar
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Beate Förster
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Physics of Nanoscale Systems (ER-C-1), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Patrick Theato
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG-3), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Materials Science and Technology (ER-C-2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Jülich-Aachen Research Alliance, JARA, Fundamentals of Future Information Technology, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Martin Winter
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
- MEET Battery Research Center, University of Münster, Corrensstr. 46, 48149 Münster, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Hans-Dieter Wiemhöfer
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| | - Mariano Grünebaum
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| |
Collapse
|
40
|
Bakar R, Darvishi S, Aydemir U, Yahsi U, Tav C, Menceloglu YZ, Senses E. Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes. ACS APPLIED ENERGY MATERIALS 2023; 6:4053-4064. [PMID: 37064412 PMCID: PMC10091352 DOI: 10.1021/acsaem.3c00310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition (T g), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination. At high salt loadings, ion clustering is common for all electrolytes, yet the cluster size and distribution appear to be strongly architecture-dependent. Also, the ionic conductivity is maximized at a salt concentration of [Li/EO ≈ 0.085] for all architectures, and the highly branched polymers displayed as much as three times higher ionic conductivity (with respect to the linear analogue) for the same total molar mass. The architecture-dependent ionic conductivity is attributed to the enhanced free volume measured by positron annihilation lifetime spectroscopy. Interestingly, despite the strong architecture dependence of ionic conductivity, the salt addition in the highly branched architectures results in accelerated yet similar monomeric friction coefficients for these polymers, offering significant potential toward decoupling of conductivity from segmental dynamics of polymer electrolytes, leading to outstanding battery performance.
Collapse
Affiliation(s)
- Recep Bakar
- Department
of Material Science and Engineering, Koç
University, Sariyer, Istanbul 34450, Türkiye
| | - Saeid Darvishi
- Department
of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul 34450, Türkiye
| | - Umut Aydemir
- Department
of Chemistry, Koç University, Sariyer, Istanbul 34450, Türkiye
- Koc
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul 34450, Türkiye
| | - Ugur Yahsi
- Department
of Physics, Faculty of Science, Marmara
University, Kadikoy, Istanbul 34722, Türkiye
| | - Cumali Tav
- Department
of Physics, Faculty of Science, Marmara
University, Kadikoy, Istanbul 34722, Türkiye
| | - Yusuf Ziya Menceloglu
- Faculty of
Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Türkiye
| | - Erkan Senses
- Department
of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul 34450, Türkiye
- Koc
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul 34450, Türkiye
- Koç
University Surface Science and Technology Center (KUYTAM), Rumelifeneri yolu, Sariyer, Istanbul 34450, Türkiye
| |
Collapse
|
41
|
Wang SQ, Smith T, Gupta C, Siavoshani AY. Building a phenomenological chain-level understanding of mechanics of semicrystalline polymers: 2. Conceptual. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
42
|
Liu G, Larson RG, Li L, Luo H, He X, Niu Y, Li G. Influence of Chain Entanglement on Rheological and Mechanical Behaviors of Polymerized Ionic Liquids. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
43
|
Abstract
Small angle neutron scattering was used to measure single chain radii of gyration of end-linked polymer gels before and after cross-linking to calculate the prestrain, which is the ratio of the average chain size in a cross-linked network to that of a free chain in solution. The prestrain increased from 1.06 ± 0.01 to 1.16 ± 0.02 as gel synthesis concentration decreased near the overlap concentration, indicating that the chains are slightly more stretched in the network than in solution. Dilute gels with higher loop fractions were found to be spatially homogeneous. Form factor and volumetric scaling analyses independently confirmed that elastic strands stretch by 2-23% from Gaussian conformations to create a space-spanning network, with increased stretching as network synthesis concentration decreases. Prestrain measurements reported here serve as a point of reference for network theories that rely on this parameter for the calculation of mechanical properties.
Collapse
Affiliation(s)
- Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Cui Y, Sui Y, Wei P, Lv Y, Cong C, Meng X, Ye HM, Zhou Q. Rationalizing the Dependence of Poly (Vinylidene Difluoride) (PVDF) Rheological Performance on the Nano-Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1096. [PMID: 36985990 PMCID: PMC10056420 DOI: 10.3390/nano13061096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Research on the rheological performance and mechanism of polymer nanocomposites (PNCs), mainly focuses on non-polar polymer matrices, but rarely on strongly polar ones. To fill this gap, this paper explores the influence of nanofillers on the rheological properties of poly (vinylidene difluoride) (PVDF). The effects of particle diameter and content on the microstructure, rheology, crystallization, and mechanical properties of PVDF/SiO2 were analyzed, by TEM, DLS, DMA, and DSC. The results show that nanoparticles can greatly reduce the entanglement degree and viscosity of PVDF (up to 76%), without affecting the hydrogen bonds of the matrix, which can be explained by selective adsorption theory. Moreover, uniformly dispersed nanoparticles can promote the crystallization and mechanical properties of PVDF. In summary, the viscosity regulation mechanism of nanoparticles for non-polar polymers, is also applicable to PVDF, with strong polarity, which is of great value for exploring the rheological behavior of PNCs and guiding the process of polymers.
Collapse
Affiliation(s)
- Yi Cui
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yang Sui
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| | - Peng Wei
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yinan Lv
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chuanbo Cong
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoyu Meng
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hai-Mu Ye
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qiong Zhou
- Department of Materials Science and Engineering, New Energy and Material College, China University of Petroleum-Beijing, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
45
|
Kar S, Cuddigan JL, Greenfield ML. Simulating Stress-Strain Behavior by Using Individual Chains: Uniaxial Deformation of Amorphous Cis- and Trans-1,4-Polybutadiene. Polymers (Basel) 2023; 15:1441. [PMID: 36987221 PMCID: PMC10058179 DOI: 10.3390/polym15061441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
This work develops a probability-based numerical method for quantifying mechanical properties of non-Gaussian chains subject to uniaxial deformation, with the intention of being able to incorporate polymer-polymer and polymer-filler interactions. The numerical method arises from a probabilistic approach for evaluating the elastic free energy change of chain end-to-end vectors under deformation. The elastic free energy change, force, and stress computed by applying the numerical method to uniaxial deformation of an ensemble of Gaussian chains were in excellent agreement with analytical solutions that were obtained with a Gaussian chain model. Next, the method was applied to configurations of cis- and trans-1,4-polybutadiene chains of various molecular weights that were generated under unperturbed conditions over a range of temperatures with a Rotational Isomeric State (RIS) approach in previous work (Polymer2015, 62, 129-138). Forces and stresses increased with deformation, and further dependences on chain molecular weight and temperature were confirmed. Compression forces normal to the imposed deformation were much larger than tension forces on chains. Smaller molecular weight chains represent the equivalent of a much more tightly cross-linked network, resulting in greater moduli than larger chains. Young's moduli computed from the coarse-grained numerical model were in good agreement with experimental results.
Collapse
Affiliation(s)
| | | | - Michael L. Greenfield
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
46
|
Ge S, Carden GP, Samanta S, Li B, Popov I, Cao PF, Sokolov AP. Associating Polymers in the Strong Interaction Regime: Validation of the Bond Lifetime Renormalization Model. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gregory Peyton Carden
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ivan Popov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
47
|
Qiu J, Chen X, Le AN, López-Barrón CR, Rohde BJ, White RP, Lipson JEG, Krishnamoorti R, Robertson ML. Thermodynamic Interactions in Polydiene/Polyolefin Blends Containing Diverse Polydiene and Polyolefin Units. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Jialin Qiu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xuejian Chen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amy N. Le
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | | | - Brian J. Rohde
- ExxonMobil Technology and Engineering Company, Baytown, Texas 77520, United States
| | - Ronald P. White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ramanan Krishnamoorti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
48
|
Vagias A, Nelson A, Wang P, Reitenbach J, Geiger C, Kreuzer LP, Saerbeck T, Cubitt R, Benetti EM, Müller-Buschbaum P. The Topology of Polymer Brushes Determines Their Nanoscale Hydration. Macromol Rapid Commun 2023; 44:e2300035. [PMID: 36815590 DOI: 10.1002/marc.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Time-of-flight neutron reflectometry (ToF-NR) performed under different relative humidity conditions demonstrates that polymer brushes constituted by hydrophilic, cyclic macromolecules exhibit a more compact conformation with lower roughness as compared to linear brush analogues, due to the absence of dangling chain ends extending at the polymer-vapor interface. In addition, cyclic brushes feature a larger swelling ratio and an increased solvent uptake with respect to their linear counterparts as a consequence of the increased interchain steric repulsions. It is proposed that differences in swelling ratios between linear and cyclic brushes come from differences in osmotic pressure experienced by each brush topology. These differences stem from entropic constraints. The findings suggest that to correlate the equilibrium swelling ratios at different relative humidity for different topologies a new form of the Flory-like expression for equilibrium thicknesses of grafted brushes is needed.
Collapse
Affiliation(s)
- Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Andrew Nelson
- ANSTO, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Peixi Wang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Julija Reitenbach
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Christina Geiger
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Lucas Philipp Kreuzer
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany.,Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Thomas Saerbeck
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Robert Cubitt
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Edmondo Maria Benetti
- Polymer Surfaces Group, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35122, Italy.,Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Peter Müller-Buschbaum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany.,Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
49
|
Chen D, Molnar K, Kim H, Helfer CA, Kaszas G, Puskas JE, Kornfield JA, McKenna GB. Linear Viscoelastic Properties of Putative Cyclic Polymers Synthesized by Reversible Radical Recombination Polymerization (R3P). Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest1089, Hungary
| | - Hojin Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Carin A. Helfer
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Julia A. Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| |
Collapse
|
50
|
Merrill JH, Li R, Roth CB. End-Tethered Chains Increase the Local Glass Transition Temperature of Matrix Chains by 45 K Next to Solid Substrates Independent of Chain Length. ACS Macro Lett 2023; 12:1-7. [PMID: 36516977 DOI: 10.1021/acsmacrolett.2c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The local glass transition temperature Tg of pyrene-labeled polystyrene (PS) chains intermixed with end-tethered PS chains grafted to a neutral silica substrate was measured by fluorescence spectroscopy. To isolate the impact of the grafted chains, the films were capped with bulk neat PS layers eliminating competing effects of the free surface. Results demonstrate that end-grafted chains strongly increase the local Tg of matrix chains by ≈45 K relative to bulk Tg, independent of grafted chain molecular weight from Mn = 8.6 to 212 kg/mol and chemical end-group, over a wide range of grafting densities σ = 0.003 to 0.33 chains/nm2 spanning the mushroom-to-brush transition regime. The tens-of-degree increase in local Tg resulting from immobilization of the chain ends by covalent bonding in this athermal system suggests a mechanism that substantially increases the local activation energy required for cooperative rearrangements.
Collapse
Affiliation(s)
- James H Merrill
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Ruoyu Li
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|