1
|
Chen D, Ye S, Zhang X, Zhang L, Fan F, Hu J, Fu Y, Wang T. pH-Responsive, Wide Color Gamut Dynamic Color Display Enabled by PDMAEMA Brush-Based Fabry-Perot Resonant Cavity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36892-36900. [PMID: 38963902 DOI: 10.1021/acsami.4c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.
Collapse
Affiliation(s)
- Dan Chen
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Shunsheng Ye
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liying Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fuqiang Fan
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jianshe Hu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
2
|
Zhang M, Liu Y, Zuo X, Qian S, Pingali SV, Gillilan RE, Huang Q, Zhang D. pH-Dependent Solution Micellar Structure of Amphoteric Polypeptoid Block Copolymers with Positionally Controlled Ionizable Sites. Biomacromolecules 2023; 24:3700-3715. [PMID: 37478325 PMCID: PMC10428163 DOI: 10.1021/acs.biomac.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Indexed: 07/23/2023]
Abstract
While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution. The concurrent presence of oppositely charged ionizable sites on the polymer chains allows the polymer association to be electrostatically modulated in a broad pH range (ca. 2-12). Micellization of the amphoteric polypeptoid BCP in dilute aqueous solution and the resulting micellar structure at different solution pHs was investigated by a combination of scattering and microscopic methods. Negative-stain transmission-electron microscopy (TEM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) analyses revealed the dominant presence of core-shell-type spherical micelles and occasional rod-like micelles with liquid crystalline (LC) domains in the micellar core. The micellar structures (e.g., aggregation number, radius of gyration, chain packing in the micelle) were found to be dependent on the solution pH and the position of the ionizable site along the chain. This study has highlighted the potential of controlling the position of ionizable sites along the BCP polymer to modulate the electrostatic and LC interactions, thus tailoring the micellar structure at different solution pH values in water.
Collapse
Affiliation(s)
- Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yun Liu
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shuo Qian
- Neutron
Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Richard E. Gillilan
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, New York 14850, United States
| | - Qingqiu Huang
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, New York 14850, United States
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Ye L, Liu M, Wang X, Yu Z, Huang Z, Zhou N, Zhang Z, Zhu X. Sequence effect on the self-assembly of discrete amphiphilic co-oligomers with fluorene-azobenzene semirigid backbones. RSC Adv 2023; 13:24181-24190. [PMID: 37575403 PMCID: PMC10416705 DOI: 10.1039/d3ra04205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution. These oligomer isomers assembled into different nanoparticles, including nanofibers, hollow vesicles and spherical micellar complexes, in a THF/water/HCl mixture under the same conditions. UV-vis absorption spectra, differential scanning calorimetry (DSC) and X-ray scattering (XRD) experiments combined with theoretical calculations reveal that the sequence-controlled co-oligomers induce different molecular packing conformations and arrangement modes of building blocks in self-assembly. Furthermore, these self-assembled nanoparticles demonstrate photoresponsive morphological transformation and fluorescence emission under UV light irradiation due to trans-to-cis photoisomerization of azobenzene. This work demonstrates that customizing functional nanoparticles can be achieved by controlling the sequence structure in synthetic co-oligomers.
Collapse
Affiliation(s)
- Liandong Ye
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Min Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiao Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihong Yu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihao Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Nianchen Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
4
|
Poly[(vinyl benzyl trimethylammonium chloride)]-based nanoparticulate copolymer structures encapsulating insulin. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Liu H, Zhang L, Huang J, Mao J, Chen Z, Mao Q, Ge M, Lai Y. Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Adv Colloid Interface Sci 2022; 300:102584. [PMID: 34973464 DOI: 10.1016/j.cis.2021.102584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
As a growing hot research topic, manufacturing smart switchable surfaces has attracted much attention in the past a few years. The state-of-the-art study on reversibly switchable wettability of smart surfaces has been presented in this systematic review. External stimuli are brought about to render the alteration in chemical conformation and surface morphology to drive the wettability switch. Here, starting from the fundamental theories related to the surfaces wetting principles, highlights on different triggers for switchable wettability, such as pH, light, ions, temperature, electric field, gas, mechanical force, and multi-stimuli are discussed. Different applications that have various wettability requirement are targeted, including oil-water separation, droplets manipulation, patterning, liquid transport, and so on. This review aims to provide a deep insight into responsive interfacial science and offer guidance for smart surface engineering. It ends with a summary of current challenges, future opportunities, and potential solutions on smart switch of wettability on superwetting surfaces.
Collapse
Affiliation(s)
- Hui Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Li Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China
| | - Jiajun Mao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Qinghui Mao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Mingzheng Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China.
| |
Collapse
|
6
|
Preparation of a Novel CO2-Responsive Polymer/Multiwall Carbon Nanotube Composite. Processes (Basel) 2021. [DOI: 10.3390/pr9091638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A CO2-responsive composite of multiwall carbon nanotube (MWCNT) coated with polydopamine (PDA) and polydimethylamino-ethyl methacrylate (PDMAEMA) was prepared. The PDA was first self-polymerized on the surface of carbon nanotube. 2-bromoisobutyryl bromide (BiBB) was then immobilized by PDA and then initiated the ATRP of DMAEMA on the carbon nanotube surface. The resulting composite was characterized by Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The CO2-responsive test was performed by bubbling CO2 into the mixture of MWCNT-PDA-PDMAEMA composite in water. A well-dispersed solution was obtained and the UV-Vis transmittance decreased dramatically. This is attributed to the reaction between PDMAEMA and CO2. The formation of ammonium bicarbonates on the surface of carbon nanotubes leads to the separation of nanotube bundles. This process can be reversed as the removal of CO2 by bubbling N2.
Collapse
|
7
|
Qin G, Hu C, Jiang Y, Dong S, Liu L, Zhao H. pH
/enzyme/light
triple‐responsive
vesicles from
lysine‐based
amphiphilic diblock copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoyang Qin
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin China
| | - Cong Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin China
| | - Shuqi Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
8
|
Larison T, Stefik M. Persistent Micelle Corona Chemistry Enables Constant Micelle Core Size with Independent Control of Functionality and Polyelectrolyte Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9817-9825. [PMID: 34355919 DOI: 10.1021/acs.langmuir.1c01384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer micelles have found significant uses in areas such as drug/gene delivery, medical imaging, and as templates for nanomaterials. For many of these applications, the micelle performance depends on its size and chemical functionalization. To date, however, these parameters have often been fundamentally coupled since the equilibrium size of a micelle is a function of the chemical composition in addition to other parameters. Here, we demonstrate a novel processing pathway allowing for the chemical modification to the corona of kinetically trapped "persistent" polymer micelles, termed Persistent Micelle Corona Chemistry (PMCC). Judicious planning is crucial to this size-controlled functionalization where each step requires all reagents and polymer blocks to be compatible with (1) the desired chemistry, (2) micelle persistency, and (3) micelle dispersion. A desired functionalization can be implemented with PMCC by pairing the synthetic planning with polymer solubility databases. Specifically, poly(cyclohexyl methacrylate-b-(diethoxyphosphoryl)methyl methacrylate) (PCHMA-b-PDEPMMA) was prepared to combine a glassy-core block (PCHMA) for kinetic control with a block (PDEPMMA) that is able to be hydrolyzed to yield acid groups. The processing sequence determines the resulting micelle size distribution where the hydrolyzed-then-micellized sequence yields widely varying micelle dimensions due to equilibration. In contrast, the micellized-then-hydrolyzed sequence maintains kinetically trapped micelles throughout the PMCC process. Statistically significant transmission electron microscopy (TEM) measurements demonstrate that PMCC uniquely enables this functionalization with constant average micelle core dimensions. Furthermore, these kinetically trapped micelles also subsequently maintain constant micelle core size when modifying the Coulombic interactions of the micelle corona via pH changes.
Collapse
Affiliation(s)
- Taylor Larison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
9
|
Kafetzi M, Pispas S. Effects of Hydrophobic Modifications on the Solution Self-Assembly of P(DMAEMA-co-QDMAEMA)- b-POEGMA Random Diblock Copolymers. Polymers (Basel) 2021; 13:polym13030338. [PMID: 33494531 PMCID: PMC7866081 DOI: 10.3390/polym13030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
In this work, the synthesis and the aqueous solution self-assembly behavior of novel partially hydrophobically modified poly(2-(dimethylamino) ethyl methacrylate)-b-poly(oligo(ethylelene glycol) methyl ether methacrylatetabel) pH and temperature responsive random diblock copolymers (P(DMAEMA-co-Q6/12DMAEMA)-b-POEGMA), are reported. The chemical modifications were accomplished via quaternization with 1-iodohexane (Q6) and 1-iodododecane (Q12) and confirmed by 1H-NMR spectroscopy. The successful synthesis of PDMAEMA-b-POEGMA precursor block copolymers was conducted by RAFT polymerization. The partial chemical modification of the diblocks resulted in the permanent attachment of long alkyl chains on the amine groups of the PDMAEMA block and the presence of tertiary and quaternary amines randomly distributed within the PDMAEMA block. Light scattering techniques confirmed that the increased hydrophobic character results in the formation of nanoaggregates of high mass and tunable pH and temperature response. The characteristics of the aggregates are also affected by the aqueous solution preparation protocol, the nature of the quaternizing agent and the quaternization degree. The incorporation of long alkyl chains allowed the encapsulation of indomethacin within the amphiphilic diblock copolymer aggregates. Nanostructures of increased size were detected due to the encapsulation of indomethacin into the interior of the hydrophobic domains. Drug release studies demonstrated that almost 50% of the encapsulated drug can be released on demand by aid of ultrasonication.
Collapse
|
10
|
Li TH, Robertson ML, Conrad JC. Molecular weight and dispersity affect chain conformation and pH-response in weak polyelectrolyte brushes. Polym Chem 2021. [DOI: 10.1039/d1py01056e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pH-dependence of the conformation of annealed polyelectrolyte brushes can be tuned by varying the molecular weight distribution, as characterized via weight-average molecular weight and dispersity.
Collapse
Affiliation(s)
- Tzu-Han Li
- Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, USA
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical Engineering, University of Houston, Houston, Texas, 77204, USA
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C. Conrad
- William A. Brookshire Department of Chemical Engineering, University of Houston, Houston, Texas, 77204, USA
| |
Collapse
|
11
|
Dong S, Jiang Y, Qin G, Liu L, Zhao H. Methionine-Based pH and Oxidation Dual-Responsive Block Copolymer: Synthesis and Fabrication of Protein Nanogels. Biomacromolecules 2020; 21:4063-4075. [PMID: 32914964 DOI: 10.1021/acs.biomac.0c00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we synthesized a block copolymer containing pendent thioether functionalities by reversible addition-fragmentation chain transfer polymerization of a tert-butyloxycarbonyl (Boc)-l-methionine-(2-methacryloylethyl)ester (Boc-METMA) monomer using a poly(ethylene glycol) (PEG)-based chain transfer agent. The deprotection of Boc groups resulted in an oxidation and pH dual-responsive cationic block copolymer PEG-b-P(METMA). The block copolymer PEG-b-P(METMA) possessing protonable amine groups was water-soluble at pH < 6.0 and self-assembled to form spherical micelles at pH > 6.0. In the presence of H2O2, the micelles first became highly swollen with time and completely disassembled at last, demonstrating the H2O2-responsive feature because of the oxidation of hydrophobic thioether to hydrophilic sulfoxide. The anticancer drug curcumin (Cur) was entrapped in the polymeric micelles and the Cur-loaded micelles displayed a H2O2-triggered release profile as well as a pH-dependent release behavior, making PEG-b-P(METMA) micelles promising nanocarriers for reactive oxygen species-responsive drug delivery. Taking advantage of the protonated amine groups, the cationic polyelectrolyte PEG-b-P(METMA) formed polyion complex micelles with glucose oxidase (GOx) through electrostatic interactions at pH 5.8. By cross-linking the cores of PIC micelles with glutaraldehyde, the PIC micelles were fixed to generate stable GOx nanogels under physiological conditions. The GOx nanogels were glucose-responsive and exhibited glucose-dependent H2O2-generation activity in vitro and improved storage and thermal stability of GOx. Cur can be encapsulated in the GOx nanogels, and the Cur-loaded GOx nanogels demonstrate the glucose-responsive release profile. The GOx nanogels displayed high cytotoxicity to 4T1 cells and were effectively internalized by the cells. Therefore, these GOx nanogels have potential applications in the areas of cancer starvation and oxidation therapy.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
12
|
Zhang J, Yu X, Zheng B, Shen J, Bhatia SR, Sampson NS. Cationic Amphiphilic Alternating Copolymers with Tunable Morphology. Polym Chem 2020; 11:5424-5430. [PMID: 33281956 PMCID: PMC7709945 DOI: 10.1039/d0py00782j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A series of ionic amphiphilic alternating copolymers were characterized via SAXS, TEM and DLS to help understand factors that could potentially affect self-assembly, including the degree of polymerization, the length of hydrophobic spacers between ionic units, the distance between charged groups and polymer backbone, solvent envrioment and counterions.
Collapse
Affiliation(s)
- Jingling Zhang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Bingqian Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Jiachun Shen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
13
|
Synthesis of poly(diethylaminoethyl methacrylate-co-2,2,6,6-tetramethyl-4-piperidyl methacrylate)s and their segmental motion study. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04717-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Lim J, Matsuoka H, Saruwatari Y. Effects of pH on the Stimuli-Responsive Characteristics of Double Betaine Hydrophilic Block Copolymer PGLBT- b-PSPE. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1727-1736. [PMID: 31983203 DOI: 10.1021/acs.langmuir.9b03682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the pH-responsive behavior of the carboxybetaine-sulfobetaine diblock copolymer poly(2-(2-(methacryloyloxy)ethyl)dimethylammonio)acetate-block-3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (PGLBT-b-PSPE) in aqueous solution under varying temperatures. Alongside the temperature-responsive PSPE block which induces self-assembly of polymer micelles under the upper critical solution temperature, the PGLBT motifs having protonation sites caused additional changes in the phase behaviors. In acidic conditions where the pH is lower than the pKa of PGLBT-b-PSPE, the transmittance of polymer solutions more abruptly dropped and became cloudy at higher temperatures compared to the case of salt-free solutions. There were two simultaneous diffusive modes in the turbid solutions equivalent to unimers or micelles and large aggregates over a few hundred nanometers. Unlike in neutral and basic conditions, those large aggregates did not disappear after the emergence of the polymer micelles. The trend of the temperature-responsive behavior hardly changed in the alkaline solutions; however, the critical temperature significantly decreased. The surface charge of the unimers and self-assembled objects determined by zeta potential measurement varied from neutral or negative to positive with proton addition and further positively increased below the micelle formation temperature. This indicates the cationization of PGLBT moieties and their arrangement in the outer layer of the polymer micelle surface. In spite of the positively charged outer surface, two fast and slow diffusive modes representing micelles and large clusters were repeatedly observed in acidic solutions, and to some extent, size-grown particles eventually precipitated.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd. , 7-20 Azuchi-machi, 1chome , Chuo-ku, Osaka 541-0052 , Japan
| |
Collapse
|
15
|
Chang X, Wang C, Shan G, Bao Y, Pan P. Thermoresponsivity, Micelle Structure, and Thermal-Induced Structural Transition of an Amphiphilic Block Copolymer Tuned by Terminal Multiple H-Bonding Units. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:956-965. [PMID: 31917586 DOI: 10.1021/acs.langmuir.9b03290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing noncovalent interactions has been a benign method to tune the stimuli responsivity and assembled structure of polymers in solution; this is essential for controlling the functions and properties of stimuli-responsive materials. Herein, we demonstrate a novel supramolecular strategy to manipulate the cloud point (Tcp) and assembled structure of thermoresponsive polymers in solution by using H-bonding interactions. We use poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b- poly(lactide-co-glycolide) (PLGA-PEG-PLGA) as a model thermoresponsive polymer and functionalize its chain terminals by the self-complementary quadruple H-bonding motif, 2-ureido-4[1H]-pyrimidinone (UPy). UPy end functionalization and increasing PLGA block length decrease the Tcp of copolymer. Both UPy- and nonfunctionalized copolymers form the spherical micelles at low temperature. They undergo the intermicellar aggregation and form large compound micelles during heating; this thermally induced structural transition causes the presence of Tcp. Due to the UPy-UPy H-bonding interactions, UPy end functionalization leads to more copolymer chains to associate in one micelle, thus, enhancing the hydrodynamic, gyration radii, core size, as well as the packing density of PLGA in micelle core and grafting density of PEG on core-shell interface. The decreased Tcp of UPy-functionalized copolymer stemmed from the stronger intermicellar attractions at high temperature. Furthermore, UPy-functionalized copolymers exhibit higher drug loading content, slower drug release rate, and better separation efficiency in removing the hydrophobic substances from water than PLGA-PEG-PLGA precursors.
Collapse
Affiliation(s)
- Xiaohua Chang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Chen Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| |
Collapse
|
16
|
Skandalis A, Murmiliuk A, Štěpánek M, Pispas S. Physicochemical Evaluation of Insulin Complexes with QPDMAEMA- b-PLMA- b-POEGMA Cationic Amphiphlic Triblock Terpolymer Micelles. Polymers (Basel) 2020; 12:E309. [PMID: 32028685 PMCID: PMC7077422 DOI: 10.3390/polym12020309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, poly[quaternized 2-(dimethylamino)ethyl methacrylate-b-lauryl methacrylate-b-(oligo ethylene glycol)methacrylate] (QPDMAEMA-b-PLMA-b-POEGMA) cationic amphiphilic triblock terpolymers were used as vehicles for the complexation/encapsulation of insulin (INS). The terpolymers self-assemble in spherical micelles with PLMA cores and mixed QPDMAEMA/POEGMA coronas in aqueous solutions. The cationic micelles were complexed via electrostatic interactions with INS, which contains anionic charges at pH 7. The solutions were colloidally stable in all INS ratios used. Light-scattering techniques were used for investigation of the complexation ability and the size and surface charge of the terpolymer/INS complexes. The results showed that the size of the complexes increases as INS ratio increases, while at the same time the surface charge remains positive, indicating the formation of clusters of micelles/INS complexes in the solution. Fluorescence spectroscopy measurements revealed that the conformation of the protein is not affected after the complexation with the terpolymer micellar aggregates. It was observed that as the solution ionic strength increases, the size of the QPDMAEMA-b-PLMA-b-POEGMA/INS complexes initially decreases and then remains practically constant at higher ionic strength, indicating further aggregation of the complexes. atomic force microscopy (AFM) measurements showed the existence of both clusters and isolated nanoparticulate terpolymer/protein complexes.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic (M.Š.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
17
|
Simonova MA, Khairullin AR, Tyurina VO, Filippov AP, Sadikov AY, Kamorin DM, Kamorina SI. Self-Organization Processes in Poly(N-[2-(diethylamino)ethyl]acrylamide) Buffer Solutions with Change in Concentration and pH of a Medium. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Dolz-Pérez I, Sallam MA, Masiá E, Morelló-Bolumar D, Pérez Del Caz MD, Graff P, Abdelmonsif D, Hedtrich S, Nebot VJ, Vicent MJ. Polypeptide-corticosteroid conjugates as a topical treatment approach to psoriasis. J Control Release 2019; 318:210-222. [PMID: 31843640 DOI: 10.1016/j.jconrel.2019.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Topical treatment of mild-to-moderate psoriasis with corticosteroids suffers from challenges that include reduced drug bioavailability at the desired site of action. The retention of therapeutics within the epidermis can safely treat skin inflammation, scaling, and erythema associated with psoriasis while avoiding possible side effects associated with systemic treatments. We successfully synthesized and characterized a pH-responsive biodegradable poly-L-glutamic acid (PGA)-fluocinolone acetonide (FLUO) conjugate that allows the controlled release of the FLUO to reduce skin inflammation. Additionally, the application of a hyaluronic acid (HA)-poly-L-glutamate cross polymer (HA-CP) vehicle boosted skin permeation. During in vitro and ex vivo analyses, we discovered that PGA-FLUO inhibited pro-inflammatory cytokine release, suggesting that polypeptidic conjugation fails to affect the anti-inflammatory activity of FLUO. Additionally, ex vivo human skin permeation studies using confocal microscopy revealed the presence of PGA-FLUO within the epidermis, but a minimal presence in the dermis, thereby reducing the likelihood of FLUO entering the systemic circulation. Finally, we demonstrated that PGA-FLUO applied within HA-CP effectively reduced psoriasis-associated phenotypes in an in vivo mouse model of human psoriasis while also lowering levels of pro-inflammatory cytokines in tissue and serum. Overall, our experimental results demonstrate that PGA-FLUO within an HA-CP penetration enhancer represents an effective topical treatment for psoriasis.
Collapse
Affiliation(s)
- Irene Dolz-Pérez
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, El Sultan Hussein St Azarita, Egypt; John A. Paulson school of engineering and applied sciences and Wyss institute for biologically inspired engineering, Harvard University, 52 Oxford St, Cambridge, MA 02138, USA
| | - Esther Masiá
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain; Screening Platform, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Daniel Morelló-Bolumar
- Polypeptide Therapeutic Solutions S.L. C/ Benjamin Franklin 19 (Paterna), Valencia 46980, Spain
| | - M Dolores Pérez Del Caz
- Servicio de cirugía plástica, Hospital Universitario y Politécnico La Fe, Av. de Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Patrick Graff
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Königin-Luise Str. 2+4, Berlin 14195, Germany
| | - Doaa Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, El Sultan Hussein St Azarita, Egypt
| | - Sarah Hedtrich
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Königin-Luise Str. 2+4, Berlin 14195, Germany; Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada
| | - Vicent J Nebot
- Polypeptide Therapeutic Solutions S.L. C/ Benjamin Franklin 19 (Paterna), Valencia 46980, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain; Screening Platform, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| |
Collapse
|
19
|
Jung FA, Panteli PA, Ko CH, Kang JJ, Barnsley LC, Tsitsilianis C, Patrickios CS, Papadakis CM. Structural Properties of Micelles Formed by Telechelic Pentablock Quaterpolymers with pH-Responsive Midblocks and Thermoresponsive End Blocks in Aqueous Solution. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Florian A. Jung
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck Str. 1, 85748 Garching, Germany
| | - Panayiota A. Panteli
- Department of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
| | - Chia-Hsin Ko
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck Str. 1, 85748 Garching, Germany
| | - Jia-Jhen Kang
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck Str. 1, 85748 Garching, Germany
| | - Lester C. Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | | | - Costas S. Patrickios
- Department of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck Str. 1, 85748 Garching, Germany
| |
Collapse
|
20
|
Swelling of multi-responsive spherical polyelectrolyte brushes across a wide range of grafting densities. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04585-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Lu D, Zhou J, Hou S, Xiong Q, Chen Y, Pu K, Ren J, Duan H. Functional Macromolecule-Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902733. [PMID: 31463987 DOI: 10.1002/adma.201902733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of well-defined inorganic colloidal nanostructures using functional macromolecules is an enabling technology that offers the possibility of fine-tuning the physicochemical properties of nanomaterials and has contributed to a broad range of practical applications. The utilization of functional reactive polymers and their colloidal assemblies leads to a high level of control over structural parameters of inorganic nanoparticles that are not easily accessible by conventional methods based on small-molecule ligands. Recent advances in polymerization techniques for synthetic polymers and newly exploited functions of natural biomacromolecules have opened up new avenues to monodisperse and multifunctional nanostructures consisting of integrated components with distinct chemistries but complementary properties. Here, the evolution of colloidal synthesis of inorganic nanoparticles is revisited. Then, the new developments of colloidal synthesis enabled by functional macromolecules and practical applications associated with the resulting optical, catalytic, and structural properties of colloidal nanostructures are summarized. Finally, a perspective on new and promising pathways to novel colloidal nanostructures built upon the continuous development of polymer chemistry, colloidal science, and nanochemistry is provided.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiajing Zhou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jinghua Ren
- Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
22
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Heo GS, Cho S, Wooley KL. Preparation of Degradable Polymeric Nanoparticles with Various Sizes and Surface Charges from Polycarbonate Block Copolymers. Macromol Res 2019. [DOI: 10.1007/s13233-020-8044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Wu Z, Gan Z, Chen B, Chen F, Cao J, Luo X. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomater Sci 2019; 7:3190-3203. [PMID: 31145392 DOI: 10.1039/c9bm00407f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Responding to the tumor microenvironment, functional polymers can serve as preeminent drug carriers for targeted cancer therapy. Stimuli-responsive polymeric drug carriers are reported with diverse anti-tumor effects for various polymer structures. Thus, three pH/redox dual-responsive amphiphilic zwitterionic polymer 'isomers' with different locations of pH/redox responsive units were prepared to understand the relationship between polymer structure and anti-tumor effect. Containing poly(ε-caprolactone) (PCL), poly(N,N-diethylaminoethyl methacrylate) (PDEA) and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), polymers PCL-ss-P(DEA-r-MPC) (SDRM), PCL-ss-PDEA-b-PMPC (SDBM) and PCL-PDEA-ss-PMPC (DSM) with a precisely controlled structure were constructed and confirmed through NMR, FITR and EA. The formed micellar drug carriers were characterized by their morphology, loading capacity, acid/redox sensitivity, drug release, in vitro cytotoxicity and in vivo antitumor effects. Micelles with uniform spherical morphologies can effectively encapsulate anti-tumor drugs such as DOX. Among these micelles, DSM@DOX displays the most excellent drug encapsulation capacity (13.4%) with neutral surface charge (-1.02 mV) and good stability, and is different from SDRM@DOX with positive charge (+11.1 mV) and SDBM@DOX with poor stability. All micelles respond to acid and reducing environments and present fast drug release at mildly acidic pH and high concentrations of GSH, exhibiting low burst release under the physiological conditions of plasma. There is no significant difference between these micelles in tumor cell cytotoxicity against MCF-7 and 4T1 cells. Internalization of SDRM@DOX and DSM@DOX by the tumor cells is stronger than that of SDBM@DOX. Notably, DSM@DOX has longer blood circulation and more effective accumulation at the tumor site than the other two micelles. As a result, DSM@DOX shows enhanced antitumor efficacy in 4T1 tumor-bearing mice with reduced side toxicities. Overall, structures of the above polymers significantly influence the in vivo antitumor effects of the drug carriers through blood circulation and cellular uptake.
Collapse
Affiliation(s)
- Zhengzhong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Ziying Gan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Bin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jun Cao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China. and State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
25
|
Cerqueira MA, Pinheiro AC, Pastrana LM, Vicente AA. Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Zhu H, Cui Y, Wang J, Qiu H. Formation of disk-like micelles of triblock copolymers in frustrating solvents. RSC Adv 2019; 9:9443-9448. [PMID: 35520696 PMCID: PMC9062166 DOI: 10.1039/c9ra01145e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Coil–coil block copolymers rarely self-assemble into flat low-curvature micelles due to the lack of proper interchain association. Here, we report a facile route to prepare disk-like micelles through the self-assembly of amphiphilic polystyrene-b-polybutadiene-b-poly(2-vinylpyridine) triblock copolymers in a mixture of acetone and cyclohexane, which shows distinct selectivity towards the PS, PB and P2VP blocks. Subtle solvation/aggregation of these blocks in this frustrating solvent system provides access to low-curvature micellar structures, and thus favors the formation of uniform disk-like micelles. Further variation of the volume ratio of the mixed solvents also leads to the emergence of other interesting morphologies, including disk arrays, disk clusters and perforated disk-like micelles. This work provides a complementary insight into the solution self-assembly of block copolymers in a view of selective solvents and demonstrates a distinctive pathway to unconventional micellar nanostructures through the use of complex solvent systems. Self-assembly of amphiphilic triblock copolymers in a frustrating solvent system leads to the formation of various low-curvature micellar structures.![]()
Collapse
Affiliation(s)
- Hongyan Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Cui
- School of Chemistry and Chemical Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China .,Shanghai Advanced Research Institute, Zhangjiang Lab, Chinese Academy of Sciences Shanghai 201204 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
27
|
Synthesis of pH-sensitive sulfonamide-based hydrogels with controllable crosslinking density by post thermo-curing. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-018-1672-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Sternhagen GL, Gupta S, Zhang Y, John V, Schneider GJ, Zhang D. Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers. J Am Chem Soc 2018; 140:4100-4109. [PMID: 29506382 DOI: 10.1021/jacs.8b00461] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5-10 nm range and critical micellar concentration (CMC) in the 0.034-0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number ( Nagg) and the micellar radius ( Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number ( n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
Collapse
Affiliation(s)
- Garrett L Sternhagen
- Department of Chemistry and Macromolecular Studies Group , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Sudipta Gupta
- Department of Chemistry and Macromolecular Studies Group , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Yueheng Zhang
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - Vijay John
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - Gerald J Schneider
- Department of Chemistry and Macromolecular Studies Group , Louisiana State University , Baton Rouge , Louisiana 70803 , United States.,Department of Physics , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
30
|
Wang Z, Deng X, Ding J, Zhou W, Zheng X, Tang G. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. Int J Pharm 2018; 535:253-260. [DOI: 10.1016/j.ijpharm.2017.11.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022]
|
31
|
Chrysostomou V, Pispas S. Stimuli-responsive amphiphilic PDMAEMA-b
-PLMA copolymers and their cationic and zwitterionic analogs. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28931] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave; Athens 11635 Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave; Athens 11635 Greece
| |
Collapse
|
32
|
Szafraniec J, Błażejczyk A, Kus E, Janik M, Zając G, Wietrzyk J, Chlopicki S, Zapotoczny S. Robust oil-core nanocapsules with hyaluronate-based shells as promising nanovehicles for lipophilic compounds. NANOSCALE 2017; 9:18867-18880. [PMID: 29177344 DOI: 10.1039/c7nr05851a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of nanodelivery systems has been recently considered as a solution to the major challenge in pharmaceutical research - poor bioavailability of lipophilic drugs. Nanocapsules with liquid oil cores and shells based on amphiphilic polysaccharides were developed here as robust carriers of hydrophobic active compounds. A series of modified charged hyaluronates were synthesized and used as stabilizing shells ensuring also the biocompatibility of the nanocapsules that is crucial for applications related to the delivery of lipophilic drugs in vivo. Importantly, the oil nanodroplets were found to be stably suspended in water for at least 15 months without addition of low molar mass surfactants. Moreover, their size and stability may be tuned by varying the relative content of hydrophobic and hydrophilic groups in the hyaluronate derivatives as was confirmed by dynamic light scattering and nanoparticle tracking analysis as well as electron microscopy. In vivo studies demonstrated that hyaluronate-based nanocapsules accumulated preferentially in the liver as well as in the lungs. Moreover, their accumulation was dramatically potentiated in endotoxemic mice. In vitro studies showed that the nanocapsules were taken up by liver sinusoidal endothelial cells and by mouse lung vascular endothelial cells. Importantly, the capsules were found to be nontoxic in an acute oral toxicity experiment even at a dose of 2000 mg per kg b.w. Biocompatible hyaluronate-based nanocapsules with liquid cores described herein represent a promising and tunable nanodelivery system for lipophilic active compounds via both oral and intravenous administration.
Collapse
Affiliation(s)
- Joanna Szafraniec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wright DB, Touve MA, Adamiak L, Gianneschi NC. ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Lett 2017; 6:925-929. [PMID: 35650892 DOI: 10.1021/acsmacrolett.7b00408] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we report a polymerization-induced self-assembly (PISA) process with ring-opening metathesis polymerization (ROMP). We utilize a peptide-based norbornenyl monomer as a hydrophobic unit to provide a range of nanostructures at room temperature yet at high solids concentrations of 20 wt % in combination with an oligoethylene glycol based norbornenyl monomer. Evaluation of the polymerizations under mild conditions highlight that good control is maintained along with high monomer conversion of greater than 99%, indicating that the living polymerization is unaffected during the PISA process. The demonstration broadens the scope of the PISA process to a new living polymerization methodology toward the development of easily accessible and highly functionalized nanostructures in situ.
Collapse
Affiliation(s)
- Daniel B. Wright
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Mollie A. Touve
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Lisa Adamiak
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Nathan C. Gianneschi
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| |
Collapse
|
34
|
Azmy B, Standen G, Kristova P, Flint A, Lewis AL, Salvage JP. Nanostructured DPA-MPC-DPA triblock copolymer gel for controlled drug release of ketoprofen and spironolactone. ACTA ACUST UNITED AC 2017; 69:978-990. [PMID: 28480594 DOI: 10.1111/jphp.12733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/26/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Uncontrolled rapid release of drugs can reduce their therapeutic efficacy and cause undesirable toxicity; however, controlled release from reservoir materials helps overcome this issue. The aims of this study were to determine the release profiles of ketoprofen and spironolactone from a pH-responsive self-assembling DPA-MPC-DPA triblock copolymer gel and elucidate underlying physiochemical properties. METHODS Drug release profiles from DPA50 -MPC250 -DPA50 gel (pH 7.5), over 32 h (37 °C), were determined using UV-Vis spectroscopy. Nanoparticle size was measured by dynamic light scattering (DLS) and critical micelle concentration (CMC) by pyrene fluorescence. Polymer gel viscosity was examined via rheology, nanoparticle morphology investigated using scanning transmission electron microscopy (STEM) and the gel matrix observed using cryo-scanning electron microscopy (Cryo-SEM). KEY FINDINGS DPA50 -MPC250 -DPA50 copolymer (15% w/v) formed a free-standing gel (pH 7.5) that controlled drug release relative to free drugs. The copolymer possessed a low CMC, nanoparticle size increased with copolymer concentration, and DLS data were consistent with STEM. The gel displayed thermostable viscosity at physiological temperatures, and the gel matrix was a nanostructured aggregation of smaller nanoparticles. CONCLUSIONS The DPA50 -MPC250 -DPA50 copolymer gel could be used as a drug delivery system to provide the controlled drug release of ketoprofen and spironolactone.
Collapse
Affiliation(s)
- Bahaa Azmy
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Guy Standen
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Petra Kristova
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Andrew Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Andrew L Lewis
- Biocompatibles UK Ltd, a BTG International plc Group Company, Innovation Group, Lakeview, Riverside Way, Watchmoor Park, Camberley, UK
| | - Jonathan P Salvage
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
35
|
Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 2017; 253:46-63. [DOI: 10.1016/j.jconrel.2017.02.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
|
36
|
Stubbs E, Laskowski E, Conor P, Heinze DA, Karis D, Glogowski EM. Control of pH- and temperature-responsive behavior of mPEG-b-PDMAEMA copolymers through polymer composition. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1282694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Sun L, Ma S, Wang C, Chi Y, Dong J. Supramolecular self-assembly of a polyelectrolyte chain based on step-growth polymerization of hydrophobic and hydrophilic monomers. RSC Adv 2017. [DOI: 10.1039/c7ra09205a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Polymerization of citric acid and hexamethylene diisocyanate and hydrolysis results in a polyelectrolyte PHMC. Noncovalent cross-linking of cooperative H-bonding units stabilizes the self-assembly of the PHMC chains into nanoparticles in water.
Collapse
Affiliation(s)
- Li Sun
- College of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- China
- School of Materials Science and Chemical Engineering
| | - Shang Ma
- College of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- China
| | - Chen Wang
- College of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- China
| | - Yongmei Chi
- College of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- China
- School of Materials Science and Chemical Engineering
| | - Jian Dong
- College of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- China
- School of Materials Science and Chemical Engineering
| |
Collapse
|
38
|
Seetharaman G, Kallar AR, Vijayan VM, Muthu J, Selvam S. Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. J Colloid Interface Sci 2016; 492:61-72. [PMID: 28068545 DOI: 10.1016/j.jcis.2016.12.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/08/2023]
Abstract
We report a new prodrug micelle-based approach in which a model hydrophobic non-steroidal anti-inflammatory drug (NSAID), ibuprofen (Ibu), is tethered to amphiphilic methoxy polyethylene glycol-polypropylene fumarate (mPEG-PPF) diblock copolymer via hydrolytic anhydride linkages for potential controlled release applications of NSAIDs. Synthesized mPEG-PPF-Ibu polymer drug conjugates (PDCs) demonstrated high drug conjugation efficiency (∼90%) and self-assembled to form micellar nanostructures in aqueous medium with critical micelle concentrations ranging between 16 and 30μg/mL. The entrapment efficiency of Ibu in prepared PDC micelles was as high as 18% (w/w). Crosslinking of prodrug micelles with N,N'-dimethylaminoethyl methacrylate conferred pH-responsive characteristics. pH-responsive PDC micelles averaged 100nm in size at pH 7.4 and exhibited concomitant changes in size upon incubation in physiologically relevant mildly acidic conditions. Ibu release was observed to increase with increasing acidic conditions and could be controlled by varying the amount of crosslinker used. Furthermore, the prepared mPEG-PPF-based micelles demonstrated excellent cytocompatibility and cellular internalization in vitro. More importantly, PDC micelles exerted anti-inflammatory effects by significantly decreasing monosodium urate crystal-induced prostaglandin E2 levels in rabbit synoviocyte cultures in vitro. Cumulatively, our results indicate that this new prodrug micelle approach is promising for NSAID-based therapies in the treatment of arthritis and cancer.
Collapse
Affiliation(s)
- Girija Seetharaman
- Polymer Science Division, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Adarsh R Kallar
- Polymer Science Division, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Vineeth M Vijayan
- Polymer Science Division, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Jayabalan Muthu
- Polymer Science Division, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Shivaram Selvam
- Polymer Science Division, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India.
| |
Collapse
|
39
|
Cohen N, Binyamin L, Levi-Kalisman Y, Berguig GY, Convertine A, Stayton P, Yerushalmi Rozen R. pH and Salt Effects on Surface Activity and Self-Assembly of Copolymers Containing a Weak Polybase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9286-9292. [PMID: 27556595 DOI: 10.1021/acs.langmuir.6b02452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Copolymers with well-defined architectures, controlled molecular weights, and narrow molar mass dispersities (Đ) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymers contain different combinations of the pH-responsive monomer 2-(diethylaminoethyl) methacrylate (DEAEMA), the hydrophobic comonomer butyl methacrylate (BMA), and a neutral hydrophilic stabilizing monomer polyethylene glycol monomethyl ether methacrylate (designated O950). Surface tension and cryo-TEM measurements of native and heavy-atom stained samples were used to characterize the pH and salt responsiveness of the different polymers as a function of their composition. These studies indicate that while the polymers predominately self-assemble to form spherical micelles, a narrow size distribution is observed in aqueous solutions of poly(O950)-b-(BMA) and poly(O950)-b-(DEAEMA-co-BMA), whereas a broad size distribution characterizes the assemblies of poly(O950)-b-(DEAEMA) and poly(DEAEMA-co-BMA). In the latter case, micelles having diameters around 15-25 nm are found along with smaller aggregates (about 10 nm) mostly arranged in elongated necklace-like structures. The pH and salt-responsiveness of the DEAEMA residue, as indicated by the surface activity of the copolymers, was found to depend on the nature of the additional components: covalently linked hydrophobic groups (BMA) moderated the pH response of the copolymer as compared to nonionic and hydrophilic groups as in poly(O950)-b-(DEAEMA). These results suggest that mutual interactions among the building blocks of self-assembling copolymers should be taken into account when designing responsive copolymers.
Collapse
Affiliation(s)
- Neta Cohen
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| | - Lana Binyamin
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| | - Yael Levi-Kalisman
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
- The Institute for Life Sciences, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Geoffrey Y Berguig
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Anthony Convertine
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Patrick Stayton
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Rachel Yerushalmi Rozen
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| |
Collapse
|
40
|
Lu Y, Ballauff M. Spherical polyelectrolyte brushes as nanoreactors for the generation of metallic and oxidic nanoparticles: Synthesis and application in catalysis. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Sedlák M. A novel approach to controlled self-assembly of pH-responsive thermosensitive homopolymer polyelectrolytes into stable nanoparticles. Adv Colloid Interface Sci 2016; 232:57-69. [PMID: 26792020 DOI: 10.1016/j.cis.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022]
Abstract
This review addresses the recent research progress in introducing and elaborating a novel approach to controlled polymer self-assembly into stable nanoparticles using pH-responsive thermosensitive homopolymer polyelectrolytes. Interesting aspect of this approach is that stable polymeric nanoparticles are formed from homopolymers of one type only and without any assembly-triggering additives. The process of their formation can be monitored online e.g. by light scattering and particle size can be finely custom tuned. Obtained nanoparticles have interesting properties and are very stable over long periods of time and over a broad range of salt concentrations including physiological conditions. Much effort was devoted not only to finding optimum experimental protocols and to characterizing resulting nanoparticles in detail, but also to understanding physical processes behind these successful protocols.
Collapse
|
42
|
Viswanathan G, Hsu YH, Voon SH, Imae T, Siriviriyanun A, Lee HB, Kiew LV, Chung LY, Yusa SI. A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Self-Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDA-MB-231 Human Breast Cancer Cells. Macromol Biosci 2016; 16:882-95. [PMID: 26900760 DOI: 10.1002/mabi.201500435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.
Collapse
Affiliation(s)
- Geetha Viswanathan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yu-Hsuan Hsu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Siew Hui Voon
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Toyoko Imae
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan.,Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Ampornphan Siriviriyanun
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shin-Ichi Yusa
- Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
43
|
Lovett J, Warren NJ, Armes SP. Order-Order Morphological Transitions for Dual Stimulus Responsive Diblock Copolymer Vesicles. Macromolecules 2016; 49:1016-1025. [PMID: 26937051 PMCID: PMC4762544 DOI: 10.1021/acs.macromol.5b02470] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/11/2016] [Indexed: 01/27/2023]
Abstract
A series of non-ionic poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer vesicles has been prepared by reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of HPMA at 70 °C at low pH using a carboxylic acid-based chain transfer agent. The degree of polymerization (DP) of the PGMA block was fixed at 43, and the DP of the PHPMA block was systematically varied from 175 to 250 in order to target vesicle phase space. Based on our recent work describing the analogous PGMA-PHPMA diblock copolymer worms [Lovett J. R.; Angew. Chem.2015, 54, 1279-1283], such diblock copolymer vesicles were expected to undergo an order-order morphological transition via ionization of the carboxylic acid end-group on switching the solution pH. Indeed, irreversible vesicle-to-sphere and vesicle-to-worm transitions were observed for PHPMA DPs of 175 and 200, respectively, as judged by turbidimetry, transmission electron microscopy (TEM), and dynamic light scattering (DLS) studies. However, such morphological transitions are surprisingly slow, with relatively long time scales (hours) being required at 20 °C. Moreover, no order-order morphological transitions were observed for vesicles comprising longer membrane-forming blocks (e.g., PGMA43-PHPMA225-250) on raising the pH from pH 3.5 to pH 6.0. However, in such cases the application of a dual stimulus comprising the same pH switch immediately followed by cooling from 20 to 5 °C, induces an irreversible vesicle-to-sphere transition. Finally, TEM and DLS studies conducted in the presence of 100 mM KCl demonstrated that the pH-responsive behavior arising from end-group ionization could be suppressed in the presence of added electrolyte. This is because charge screening suppresses the subtle change in the packing parameter required to drive the morphological transition.
Collapse
Affiliation(s)
- Joseph
R. Lovett
- Dainton
Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Nicholas J. Warren
- Dainton
Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| |
Collapse
|
44
|
Fujita M, Hiramine H, Pan P, Hikima T, Maeda M. Effects of Complementary DNA and Salt on the Thermoresponsiveness of Poly(N-isopropylacrylamide)-b-DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1148-1154. [PMID: 26750407 DOI: 10.1021/acs.langmuir.5b04141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The thermoresponsive structural transition of poly(N-isopropylacrylamide) (PNIPAAm)-b-DNA copolymers was explored. Molecular assembly of the block copolymers was facilitated by adding salt, and this assembly was not nucleated by the association between DNA strands but by the coil-globule transition of PNIPAAm blocks. Below the lower critical solution temperature (LCST) of PNIPAAm, the copolymer solution remained transparent even at high salt concentrations, regardless of whether DNA was hybridized with its complementary partner to form a double-strand (or single-strand) structure. At the LCST, the hybridized copolymer assembled in spherical nanoparticles, surrounded by double-stranded DNA; subsequently, the non-cross-linking aggregation occurred, while the nanoparticles were dispersed if the salt concentration was low or DNA blocks were unhybridized. When the DNA duplex was denatured to a single-stranded state by heating, the aggregated nanoparticles redispersed owing to the recovery of the steric repulsion of the DNA strands. The changes in the steric and electrostatic effects by hybridization and the addition of salt did not result in any specific attraction between DNA strands but merely decreased the repulsive interactions. The van der Waals attraction between the nanoparticles overcame such repulsive interactions so that the non-cross-linking aggregation of the micellar particles was mediated.
Collapse
Affiliation(s)
- Masahiro Fujita
- Bioengineering Laboratory, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
| | - Hayato Hiramine
- Department of Advanced Materials Science, School of Frontier Science, The University of Tokyo , Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8561, Japan
| | - Pengju Pan
- Bioengineering Laboratory, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, Advanced Photon Technology Division, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
- Department of Advanced Materials Science, School of Frontier Science, The University of Tokyo , Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8561, Japan
| |
Collapse
|
45
|
Behzadi S, Gallei M, Elbert J, Appold M, Glasser G, Landfester K, Crespy D. A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli. Polym Chem 2016. [DOI: 10.1039/c6py00344c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chemical structure of triblock terpolymers is exploited to achieve polymer nanocapsules responsive to three different stimuli.
Collapse
Affiliation(s)
- Shahed Behzadi
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | - Markus Gallei
- Macromolecular Chemistry Department
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Johannes Elbert
- Macromolecular Chemistry Department
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Michael Appold
- Macromolecular Chemistry Department
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Gunnar Glasser
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
- Vidyasirimedhi Institute of Science and Technology
- 555 Moo 1 Payupnai, Wangchan
| |
Collapse
|
46
|
Riley JK, An J, Tilton RD. Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13680-13689. [PMID: 26649483 DOI: 10.1021/acs.langmuir.5b03757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interactions between silica nanoparticles grafted with a brush of cationic poly(2-(dimethylamino) ethyl methacrylate) (SiO2-g-PDMAEMA) and anionic surfactant sodium dodecyl sulfate (SDS) is investigated by dynamic light scattering, electrophoretic mobility, quartz crystal microbalance with dissipation, ellipsometry, and atomic force microscopy. SiO2-g-PDMAEMA exhibits pH-dependent charge and size properties which enable the SDS binding to be probed over a range of electrostatic conditions and brush conformations. SDS monomers bind irreversibly to SiO2-g-PDMAEMA at low surfactant concentrations (∼10(-4) M) while exhibiting a pH-dependent threshold above which cooperative, partially reversible SDS binding occurs. At pH 5, SDS binding induces collapse of the highly charged and swollen brush as observed in the bulk by DLS and on surfaces by QCM-D. Similar experiments at pH 9 suggest that SDS binds to the periphery of the weakly charged and deswollen brush and produces SiO2-g-PDMAEMA/SDS complexes with a net negative charge. SiO2-g-PDMAEMA brush collapse and charge neutralization is further confirmed by colloidal probe AFM measurements, where reduced electrosteric repulsions and bridging adhesion are attributed to effects of the bound SDS. Additionally, sequential adsorption schemes with SDS and SiO2-g-PDMAEMA are used to enhance deposition relative to SiO2-g-PDMAEMA direct adsorption on silica. This work shows that the polyelectrolyte brush configuration responds in a more dramatic fashion to SDS than to pH-induced changes in ionization, and this can be exploited to manipulate the structure of adsorbed layers and the corresponding forces of compression and friction between opposing surfaces.
Collapse
Affiliation(s)
| | - Junxue An
- KTH Royal Institute of Technology , School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, Stockholm SE-100 44, Sweden
| | | |
Collapse
|
47
|
Pickering emulsions stabilized by self-assembled colloidal particles of amphiphilic branched random poly(styrene- co -acrylic acid). Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Xiao H, He B, Li J. Immobilization of cationic polyelectrolyte on polystyrene spheres and adsorption for model whitewater contaminants. J Appl Polym Sci 2015. [DOI: 10.1002/app.42509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- He Xiao
- College of Materials Engineering; Fujian Agriculture and Forestry University; Fuzhou China 350002
| | - Beihai He
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou China 510641
| | - Junrong Li
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou China 510641
| |
Collapse
|
49
|
|
50
|
Ma J, Ma C, Zhang G. Degradable Polymer with Protein Resistance in a Marine Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6471-6478. [PMID: 26023894 DOI: 10.1021/acs.langmuir.5b01720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein resistance is the central issue in marine antibiofouling. We have prepared poly(ε-caprolactone) (PCL)-based polyurethane with 2-(dimethylamino) ethyl methacrylate (DEM) as pendant groups by a combination of the thiol-ene click reaction and the condensation reaction. By the use of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR), we have investigated the adsorption of fibrinogen, bovine serum albumin (BSA), and lysozyme on the polymer surface. The polymer exhibits protein resistance in seawater but not in fresh water because DEM pendant groups carry net neutral charges in the former. The evaluation of antibacterial adhesion of the polymer by using Micrococcus luteus demonstrates that the polymer can effectively inhibit the settlement of marine bacteria. Our studies also show that the polymer is degradable in marine environments.
Collapse
Affiliation(s)
- Jielin Ma
- †Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Chunfeng Ma
- †Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guangzhao Zhang
- †Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
- ‡Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|