1
|
Park S, Roh S, Yoo J, Ahn JH, Gong G, Lee SM, Um Y, Han SO, Ko JK. Tailored polyhydroxyalkanoate production from renewable non-fatty acid carbon sources using engineered Cupriavidus necator H16. Int J Biol Macromol 2024; 263:130360. [PMID: 38387639 DOI: 10.1016/j.ijbiomac.2024.130360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
As thermoplastic, nontoxic, and biocompatible polyesters, polyhydroxyalkanoates (PHAs) are considered promising biodegradable plastic candidates for diverse applications. Short-chain-length/medium-chain-length (SCL/MCL) PHA copolymers are flexible and versatile PHAs that are typically produced from fatty acids, which are expensive and toxic. Therefore, to achieve the sustainable biosynthesis of SCL/MCL-PHAs from renewable non-fatty acid carbon sources (e.g., sugar or CO2), we used the lithoautotrophic bacterium Cupriavidus necator H16 as a microbial platform. Specifically, we synthesized tailored PHA copolymers with varying MCL-3-hydroxyalkanoate (3HA) compositions (10-70 mol%) from fructose by rewiring the MCL-3HA biosynthetic pathways, including (i) the thioesterase-mediated free fatty acid biosynthetic pathway coupled with the beta-oxidation cycle and (ii) the hydroxyacyl transferase-mediated fatty acid de novo biosynthetic pathway. In addition to sugar-based feedstocks, engineered strains are also promising platforms for the lithoautotrophic production of SCL/MCL-PHAs from CO2. The set of engineered C. necator strains developed in this study provides greater opportunities to produce customized polymers with controllable monomer compositions from renewable resources.
Collapse
Affiliation(s)
- Soyoung Park
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soonjong Roh
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
2
|
Santos-Oliveira PH, Silva JGP, Blank LM, Silva LF, Gomez JGC. Constant fed-batch cultivation with glucose and propionate as co-substrate: A strategy to fine-tune polyhydroxyalkanoates monomeric composition in Pseudomonas spp. Int J Biol Macromol 2024; 256:128287. [PMID: 37995793 DOI: 10.1016/j.ijbiomac.2023.128287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas sp. LFM693 is a 2-methylisocitrate lyase (prpB) disrupted mutant. This enzyme catalyzes a step in the 2-methylcitrate cycle, the only known and described pathway for propionate oxidation in this organism. The affected mutants can efficiently produce PHA containing even and odd-chain length hydroxyalkanoates (HAeven/odd) in the presence of propionate and glucose. In this study, a constant fed-batch configuration was utilized to control the composition of PHA and decrease the toxicity of propionate. The incorporation of HAodd into the copolymer was linear, ranging from 7 to approximately 30 %, and correlated directly with the propionate/glucose molar ratio in the feeding solution. This allowed for the molecular composition of the mclPHA to be fine-tuned with minimum process monitoring and control. The average PHA content was 52 % cell dry weight with a molar composition that favored 3-hydroxyalkanoates containing C8, C9, and C10. The conversion factor of propionate to HAodd varied between 0.36 and 0.53 mol·mol-1 (YHAodd/prop.), which are significantly lower than the theoretical maximum efficiency (1.0 mol·mol-1). These results along with the lack of 2-methylisocitrate as a byproduct provides further support for the evidence that the mutant prpB- is still capable of oxidizing propionate.
Collapse
Affiliation(s)
- Pedro Henrique Santos-Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2020; 59:119-130. [DOI: 10.1016/j.ymben.2020.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022]
|
4
|
Hanik N, Utsunomia C, Arai S, Matsumoto K, Zinn M. Influence of Unusual Co-substrates on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates Produced in Multistage Chemostat. Front Bioeng Biotechnol 2019; 7:301. [PMID: 31750296 PMCID: PMC6848797 DOI: 10.3389/fbioe.2019.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
A two-stage chemostat cultivation was used to investigate the biosynthesis of functionalized medium-chain-length polyhydroxyalkanoate (mcl-PHA) in the β-oxidation weakened strain of Pseudomonas putida KTQQ20. Chemostats were linked in sequence and allowed separation of biomass production in the first stage from the PHA synthesis in the second stage. Four parallel reactors in the second stage provided identical growth conditions and ensured that the only variable was the ratio of decanoic acid (C10) to an unusual PHA monomer precursor, such as 10-undecenoic acid (C11:1) or phenylvaleric acid (PhVA). Obtained PHA content was in the range of 10 to 25 wt%. When different ratios of C10 and C11:1 were fed to P. putida, the produced PHA had a slightly higher molar ratio in favor of C11:1-based 3-hydroxy-10-undecenoate. However, in case of PhVA a significantly lower incorporation of 3-hydroxy-5-phenylvalerate over 3-hydroxydecanoate took place when compared to the ratio of their precursors in the feed medium. A result that is explained by a less efficient uptake of PhVA compared to C10 and a 24% lower yield of polymer from the aromatic fatty acid ( y P H A - M P h V A = 0.25). In addition, PHA isolated from cultivations with PhVA resulted in the number average molecular weight M n ¯ two times lower than the PHA produced from C10 alone. Detection of products from PhVA metabolism in the culture supernatant showed that uptaken PhVA was not entirely converted into PHA, thus explaining the difference in the yield polymer from substrate. It was concluded that PhVA or its related metabolites increased the chain transfer rate during PHA biosynthesis in P. putida KTQQ20, resulting in a reduction of the polymer molecular weight.
Collapse
Affiliation(s)
- Nils Hanik
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Camila Utsunomia
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Shuzo Arai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| |
Collapse
|
5
|
Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers. ACTA ACUST UNITED AC 2019; 46:1139-1153. [DOI: 10.1007/s10295-019-02186-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Extreme environments are a unique source of microorganisms encoding metabolic capacities that remain largely unexplored. In this work, we isolated two Antarctic bacterial strains able to produce poly(3-hydroxyalkanoates) (PHAs), which were classified after 16S rRNA analysis as Pseudomonas sp. MPC5 and MPC6. The MPC6 strain presented nearly the same specific growth rate whether subjected to a temperature of 4 °C 0.18 (1/h) or 30 °C 0.2 (1/h) on glycerol. Both Pseudomonas strains produced high levels of PHAs and exopolysaccharides from glycerol at 4 °C and 30 °C in batch cultures, an attribute that has not been previously described for bacteria of this genus. The MPC5 strain produced the distinctive medium-chain-length-PHA whereas Pseudomonas sp. MPC6 synthesized a novel polyoxoester composed of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate). Batch bioreactor production of PHAs in MPC6 resulted in a titer of 2.6 (g/L) and 1.3 (g/L), accumulating 47.3% and 34.5% of the cell dry mass as PHA, at 30 and 4 °C, respectively. This study paves the way for using Antarctic Pseudomonas strains for biosynthesizing novel PHAs from low-cost substrates such as glycerol and the possibility to carry out the bioconversion process for biopolymer synthesis without the need for temperature control.
Collapse
|
6
|
|
7
|
Diverse metabolic pathways in the degradation of phenylalkanoic acids and their monohydroxylated derivatives in Cupriavidus sp. strain ST-14. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ishii-Hyakutake M, Mizuno S, Tsuge T. Biosynthesis and Characteristics of Aromatic Polyhydroxyalkanoates. Polymers (Basel) 2018; 10:polym10111267. [PMID: 30961192 PMCID: PMC6401900 DOI: 10.3390/polym10111267] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters synthesized by bacteria as a carbon and energy storage material. PHAs are characterized by thermoplasticity, biodegradability, and biocompatibility, and thus have attracted considerable attention for use in medical, agricultural, and marine applications. The properties of PHAs depend on the monomer composition and many types of PHA monomers have been reported. This review focuses on biosynthesized PHAs bearing aromatic groups as side chains. Aromatic PHAs show characteristics different from those of aliphatic PHAs. This review summarizes the types of aromatic PHAs and their characteristics, including their thermal and mechanical properties and degradation behavior. Furthermore, the effect of the introduction of an aromatic monomer on the glass transition temperature (Tg) of PHAs is discussed. The introduction of aromatic monomers into PHA chains is a promising method for improving the properties of PHAs, as the characteristics of aromatic PHAs differ from those of aliphatic PHAs.
Collapse
Affiliation(s)
- Manami Ishii-Hyakutake
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
9
|
A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020030] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37:24-38. [DOI: 10.1016/j.nbt.2016.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
11
|
Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microb Cell Fact 2016; 15:73. [PMID: 27142075 PMCID: PMC4855977 DOI: 10.1186/s12934-016-0470-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/24/2016] [Indexed: 02/02/2023] Open
Abstract
Background Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Results Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)−1)] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol metabolism, transport electron chain, sensors to assess the energy level of the cell, and PHA synthesis, as well as changes in flux distribution to increase the precursor availability for PHA synthesis (Entner–Doudoroff pathway and pyruvate metabolism) and to reduce respiration (glyoxylate shunt). Under PHA-producing conditions (N-limitation), a higher PHA yield was achieved at low dilution rate (29.7 wt% of CDW) as compared to a high rate (12.8 wt% of CDW). By-product formation (succinate, malate) was specifically modulated under these regimes. On top of experimental data, elementary flux mode analysis revealed the metabolic potential of P. putida KT2440 to synthesize PHA and identified metabolic engineering targets towards improved production performance on glycerol. Conclusion This study revealed the complex interplay of gene expression levels and metabolic fluxes under PHA- and non-PHA producing conditions using the attractive raw material glycerol as carbon substrate. This knowledge will form the basis for the development of future metabolically engineered hyper-PHA-producing strains derived from the versatile bacterium P. putida KT2440.
Collapse
|
12
|
Koller M, Rodríguez-Contreras A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Martin Koller
- Department of Physical and Theoretical Chemistry, Institute of Chemistry; University of Graz; Graz Austria
| | | |
Collapse
|
13
|
Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2015; 2:94-121. [PMID: 28955015 PMCID: PMC5597195 DOI: 10.3390/bioengineering2020094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022] Open
Abstract
Together with other so-called “bio-plastics”, Polyhydroxyalkanoates (PHAs) are expected to soon replace established polymers on the plastic market. As a prerequisite, optimized process design is needed to make PHAs attractive in terms of costs and quality. Nowadays, large-scale PHA production relies on discontinuous fed-batch cultivation in huge bioreactors. Such processes presuppose numerous shortcomings such as nonproductive time for reactor revamping, irregular product quality, limited possibility for supply of certain carbon substrates, and, most of all, insufficient productivity. Therefore, single- and multistage continuous PHA biosynthesis is increasingly investigated for production of different types of microbial PHAs; this goes for rather crystalline, thermoplastic PHA homopolyesters as well as for highly flexible PHA copolyesters, and even blocky-structured PHAs consisting of alternating soft and hard segments. Apart from enhanced productivity and constant product quality, chemostat processes can be used to elucidate kinetics of cell growth and PHA formation under constant process conditions. Furthermore, continuous enrichment processes constitute a tool to isolate novel powerful PHA-producing microbial strains adapted to special environmental conditions. The article discusses challenges, potential and case studies for continuous PHA production, and shows up new strategies to further enhance such processes economically by developing unsterile open continuous processes combined with the application of inexpensive carbon feedstocks.
Collapse
|
14
|
Agrawal T, Kotasthane AS, Kushwah R. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech 2015; 5:45-60. [PMID: 28324359 PMCID: PMC4327755 DOI: 10.1007/s13205-014-0198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/30/2014] [Indexed: 11/06/2022] Open
Abstract
A diverse and versatile spectrum of metabolic activities among isolates of fluorescent Pseudomonas putida indicates their adaptability to various niches. These polyhydroxybutyrate producing and phosphate solubilizing isolates showed a high level of functional and genetic versatility among themselves. One of the potential P. putida isolate P132 can contribute as a candidate agent for both biocontrol and PGPR applications. Identified as one of the most efficient PHB producer and phosphate solubilizer, in vitro detection of P132 showed the presence of genes for phenazine, pyrrolnitrin, pyoluteorin and 2,4 diacetylphloroglucinol along with polyhydroxyalkanoate.
Collapse
Affiliation(s)
- Toshy Agrawal
- Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India.
| | - Anil S Kotasthane
- Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India
| | - Renu Kushwah
- Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India
| |
Collapse
|
15
|
Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int J Biol Macromol 2014; 71:42-52. [DOI: 10.1016/j.ijbiomac.2014.05.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022]
|
16
|
Guzik MW, Narancic T, Ilic-Tomic T, Vojnovic S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu RP, Nikodinovic-Runic J, O'Connor KE. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. MICROBIOLOGY-SGM 2014; 160:1760-1771. [PMID: 24794972 DOI: 10.1099/mic.0.078758-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (β-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 °C and pH 6.5-7.
Collapse
Affiliation(s)
- Maciej W Guzik
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Tatjana Ilic-Tomic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Shane T Kenny
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - William T Casey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Gearoid F Duane
- School of Chemical and Bioprocess Engineering, Engineering and Materials Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, Engineering and Materials Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trevor Woods
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Ramesh Padamati Babu
- Centre for Research, Adoptive Nano Structures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
|
18
|
Sukan A, Roy I, Keshavarz T. Agro-Industrial Waste Materials as Substrates for the Production of Poly(3-Hydroxybutyric Acid). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbnb.2014.54027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Five-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic model. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Ienczak JL, Schmidell W, Aragão GMFD. High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 2013; 40:275-86. [PMID: 23455696 DOI: 10.1007/s10295-013-1236-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
This article gives an overview of high-cell-density cultures for polyhydroxyalkanoate (PHA) production and their modes of operation for increasing productivity. High cell densities are very important in PHA production mainly because this polymer is an intracellular product accumulated in various microorganisms, so a high cellular content is needed for the polymer production. This review describes relevant results from fed-batch, repeated batch, and continuous modes of operation without and with cell recycle for the production of these polymers by microorganisms. Finally, recombinant microorganisms for PHA production, as well future directions for PHA production, are discussed.
Collapse
Affiliation(s)
- Jaciane Lutz Ienczak
- Brazilian Bioethanol Science and Technology Laboratory, CTBE/CNPEM, Campinas, SP, Brazil
| | | | | |
Collapse
|
21
|
Poblete-Castro I, Binger D, Rodrigues A, Becker J, Martins dos Santos VA, Wittmann C. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 2013; 15:113-23. [DOI: 10.1016/j.ymben.2012.10.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/01/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
|
22
|
Jagoda A, Zinn M, Bieler E, Meier W, Kita-Tokarczyk K. Biodegradable polymer–lipid monolayers as templates for calcium phosphate mineralization. J Mater Chem B 2013; 1:368-378. [DOI: 10.1039/c2tb00083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Horvat P, Vrana Špoljarić I, Lopar M, Atlić A, Koller M, Braunegg G. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioprocess Biosyst Eng 2012; 36:1235-50. [PMID: 23135491 DOI: 10.1007/s00449-012-0852-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
A multistage system for poly(hydroxyalkanoate) (PHA) production consisting of five continuous stirred tank reactors in series (5-CSTR) with Cupriavidus necator DSM 545 as production strain was modelled using formal kinetic relations. Partially growth-associated production of PHA under nitrogen limited growth was chosen as modelling strategy, thus the Luedeking-Piret's model of partial growth-associated product synthesis was applied as working hypothesis. Specific growth rate relations adjusted for double substrate (C and N source) limited growth according to Megee et al. and Mankad-Bungay relation were tested. The first stage of the reactor cascade was modelled according to the principle of nutrient balanced continuous biomass production system, the second one as two substrate controlled process, while the three subsequent reactors were adjusted to produce PHB under continuous C source fed and nitrogen deficiency. Simulated results of production obtained by the applied mathematical models and computational optimization indicate that PHB productivity of the whole system could be significantly increased (from experimentally achieved 2.14 g L(-1) h(-1) to simulated 9.95 g L(-1) h(-1)) if certain experimental conditions would have been applied (overall dilution rate, C and N source feed concentration). Additionally, supplemental feeding strategy for switching from batch to continuous mode of cultivation was proposed to avoid substrate inhibition.
Collapse
Affiliation(s)
- Predrag Horvat
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6/IV, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
24
|
Jagoda A, Zinn M, Meier W, Kita-Tokarczyk K. Head Group Influence on Lipid Interactions With a Polyhydroxyalkanoate Biopolymer. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Babinot J, Guigner JM, Renard E, Langlois V. A micellization study of medium chain length poly(3-hydroxyalkanoate)-based amphiphilic diblock copolymers. J Colloid Interface Sci 2012; 375:88-93. [DOI: 10.1016/j.jcis.2012.02.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/29/2022]
|
26
|
Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Lam CMC, Schomburg D, Prieto MA, Martins dos Santos VAP. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb Cell Fact 2012; 11:34. [PMID: 22433058 PMCID: PMC3325844 DOI: 10.1186/1475-2859-11-34] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs), which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h)-1) was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs.
Collapse
|
27
|
Toward the controlled production of oligoesters by microwave-assisted degradation of poly(3-hydroxyalkanoate)s. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2011.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Ramier J, Renard E, Grande D. Microwave-assisted synthesis and characterization of biodegradable block copolyesters based on poly(3-hydroxyalkanoate)s and poly(D,L
-lactide). ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25916] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Follonier S, Henes B, Panke S, Zinn M. Putting cells under pressure: A simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol Bioeng 2011; 109:451-61. [DOI: 10.1002/bit.23312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 11/06/2022]
|
30
|
Zinn M, Durner R, Zinn H, Ren Q, Egli T, Witholt B. Growth and accumulation dynamics of poly(3-hydroxyalkanoate) (PHA) in Pseudomonas putida GPo1 cultivated in continuous culture under transient feed conditions. Biotechnol J 2011; 6:1240-52. [DOI: 10.1002/biot.201100219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 11/06/2022]
|
31
|
Follonier S, Panke S, Zinn M. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Microb Cell Fact 2011; 10:25. [PMID: 21513516 PMCID: PMC3107774 DOI: 10.1186/1475-2859-10-25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/22/2011] [Indexed: 11/15/2022] Open
Abstract
Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA) is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate), PHA-unrelated (gluconate) and poor PHA substrate (citrate). The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively) but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might reach deep into physiological regulation, effectively makes P. putida KT2440 and KT2442 two different strains in terms of mcl-PHA production. The differences include the onset of mcl-PHA production (nitrogen limitation) and the resulting strain performance (growth rate). It remains difficult to predict a prioriwhere such major changes might occur, as illustrated by the comparable behavior on octanoate. Consequently, experimental data on mcl-PHA production acquired for P. putida KT2442 cannot always be extrapolated to KT2440 and vice versa, which potentially reduces the body of available knowledge for each of these two model strains for mcl-PHA production substantially.
Collapse
Affiliation(s)
- Stéphanie Follonier
- Laboratory for Biomaterials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9000 St, Gallen, Switzerland
| | | | | |
Collapse
|
32
|
Babinot J, Renard E, Langlois V. Controlled Synthesis of Well Defined Poly(3-hydroxyalkanoate)s-based Amphiphilic Diblock Copolymers Using Click Chemistry. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.201000562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Hartmann R, Hany R, Witholt B, Zinn M. Simultaneous biosynthesis of two copolymers in Pseudomonas putida GPo1 using a two-stage continuous culture system. Biomacromolecules 2010; 11:1488-93. [PMID: 20459087 DOI: 10.1021/bm100118t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial production of medium-chain-length polyhydroxyalkanoate (PHA) in continuous two-stage cultivation was investigated. Two chemostats were linked in sequence and Pseudomonas putida GPo1 was supplied with different concentrations of octanoic acid in the first and 10-undecenoic acid in the second reactor. PHA isolated from the second bioreactor was a blend of two copolymers typically consisting of poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate) (PHO) and poly(3-hydroxy-10-undecenoate-co-3-hydroxy-8-nonenoate-co-3-hydroxy-6-heptenoate) (PHUE) with structural (monomeric) purities of 85-95 mol %, indicating simultaneous PHA accumulation and degradation inside the cell. The maximum PHA content was found to be 53.8% of total cell dry weight, which is very high for mcl-PHA.
Collapse
Affiliation(s)
- René Hartmann
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
34
|
Wampfler B, Ramsauer T, Rezzonico S, Hischier R, Köhling R, Thöny-Meyer L, Zinn M. Isolation and Purification of Medium Chain Length Poly(3-hydroxyalkanoates) (mcl-PHA) for Medical Applications Using Nonchlorinated Solvents. Biomacromolecules 2010; 11:2716-23. [DOI: 10.1021/bm1007663] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Wampfler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| | - T. Ramsauer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| | - S. Rezzonico
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| | - R. Hischier
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| | - R. Köhling
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| | - L. Thöny-Meyer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| | - M. Zinn
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, and Sigma-Aldrich Production GmbH, Research and Development, Industriestrasse 25, CH-9471 Buchs, Switzerland
| |
Collapse
|
35
|
Factors controlling bacterial attachment and biofilm formation on medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B Biointerfaces 2010; 76:104-11. [DOI: 10.1016/j.colsurfb.2009.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/27/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022]
|
36
|
|
37
|
Silva-Queiroz S, Silva L, Pradella J, Pereira E, Gomez J. PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. J Biotechnol 2009; 143:111-8. [DOI: 10.1016/j.jbiotec.2009.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
|
38
|
Hany R, Brinkmann M, Ferri D, Hartmann R, Pletscher E, Rentsch D, Zinn M. Crystallization of an Aromatic Biopolyester. Macromolecules 2009. [DOI: 10.1021/ma900995w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roland Hany
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Functional Polymers, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Martin Brinkmann
- Institut Charles Sadron CNRS − Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Davide Ferri
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Solid State Chemistry and Catalysis, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - René Hartmann
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Ernst Pletscher
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Daniel Rentsch
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Functional Polymers, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Manfred Zinn
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
39
|
Ihssen J, Magnani D, Thöny-Meyer L, Ren Q. Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly[(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate)] granules. Biomacromolecules 2009; 10:1854-64. [PMID: 19459673 DOI: 10.1021/bm9002859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyhydroxyalkanoates (PHA), which are produced by many microorganisms, are promising polymers for biomedical applications due to their biodegradability and biocompatibility. In this study, we evaluated the suitability of medium chain length (mcl) PHA as surface materials for immobilizing proteins. Self-stabilized, artificial mcl-PHA beads with a size of 200-300 nm were fabricated. Five of six tested proteins adsorbed nonspecifically to mcl-PHA beads in amounts of 0.4-1.8 mg m(-2) bead surface area. The binding capacity was comparable to similar-sized polystyrene particles commonly used for antibody immobilization in clinical diagnostics. A targeted immobilization of fusion proteins was achieved by using inactive extracellular PHA depolymerase (ePHA(mcl)) from Pseudomonas fluorescens as the capture ligand. The N-terminal part of ePhaZ(MCL) preceding the catalytic domain was identified to comprise the substrate binding domain and was sufficient for mediating the binding of fusion proteins to mcl-PHA. We suggest mcl-PHA to be prime candidates for both nonspecific and targeted immobilization of proteins in applications such as drug delivery, protein microarrays, and protein purification.
Collapse
Affiliation(s)
- Julian Ihssen
- Laboratory of Biomaterials, Swiss Federal Laboratories for Materials Testing and Research (EMPA), CH-9014 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
40
|
Erduranlı H, Hazer B, Borcaklı M. Post Polymerization of Saturated and Unsaturated Poly(3-hydroxy alkanoate)s. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200850920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Volova TG, Kalacheva GS, Steinbüchel A. Biosynthesis of Multi-Component Polyhydroxyalkanoates by the BacteriumWautersia eutropha. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200850901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Bassas M, Marqués A, Manresa A. Study of the crosslinking reaction (natural and UV induced) in polyunsaturated PHA from linseed oil. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Grubelnik A, Wiesli L, Furrer P, Rentsch D, Hany R, Meyer VR. A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates. J Sep Sci 2008; 31:1739-44. [DOI: 10.1002/jssc.200800033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Volova TG, Kalacheva GS, Kozhevnikov IV, Steinbüchel A. Biosynthesis of multicomponent polyhydroxyalkanoates by Wautersia eutropha. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Ren Q, Ruth K, Thöny-Meyer L, Zinn M. Process Engineering for Production of Chiral Hydroxycarboxylic Acids from Bacterial Polyhydroxyalkanoates. Macromol Rapid Commun 2007. [DOI: 10.1002/marc.200700389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Liu W, Chen GQ. Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 2007; 76:1153-9. [PMID: 17668200 DOI: 10.1007/s00253-007-1092-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/14/2007] [Accepted: 06/17/2007] [Indexed: 10/23/2022]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) consisting of 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO), 3-hydroxydecanoate, 3-hydroxydodecanoate, and high-content 3-hydroxytetradecanoate (HTD) was produced by knockout mutant Pseudomonas putida KT2442 termed P. putida KTOY06. When grown on 6 to14 g/L single-carbon-source tetradecanoic acid, P. putida KTOY06, which beta-oxidation pathway was weakened by deleting genes of 3-ketoacyl-coenzyme A (CoA) thiolase (fadA) and 3-hydroxyacyl-CoA dehydrogenase (fadB), for the first time, produced several mcl-PHA including 31 to 49 mol% HTD as a major monomer. HHx contents in these mcl-PHAs remained approximately constant at less than 3 mol%. In addition, large amounts of oligo-HTD were detected in cells, indicating the limited ability of P. putida KTOY06 in polymerizing long-chain-length 3-hydroxyalkanoates. The mcl-PHA containing high HTD monomer contents was found to have both higher crystallinity and improved tensile strength compared with that of typical mcl-PHA.
Collapse
Affiliation(s)
- Wenkuan Liu
- Multidisciplinary Research Center, Shantou University, Shantou 515063, China
| | | |
Collapse
|
47
|
Schmid M, Ritter A, Grubelnik A, Zinn M. Autoxidation of medium chain length polyhydroxyalkanoate. Biomacromolecules 2007; 8:579-84. [PMID: 17291081 DOI: 10.1021/bm060785m] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of biopolymers that are currently the subject of intensive research for various applications (packaging, consumer products, medical applications, etc.). It is known from synthetic polymers that all plastic materials show more or less pronounced autoxidation (aging induced by UV radiation, temperature, heavy metal ions, etc.). There is less knowledge as yet regarding the autoxidation behavior of biopolymers. The autoxidative behavior of medium chain length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) was therefore investigated. mcl-PHA (co)polymers with amounts of 0, 10, 50, and 75 mol % of olefinic side chains with terminal double bonds were tempered at 60 degrees C in air for 3 months. After 1, 2, 4, 8, and 12 weeks, samples were removed and analyzed for changes in chemical and physical properties by sol-gel analysis (Soxhlet extraction), size exclusion chromatography (SEC), infrared analysis (IR), and gas chromatography/flame ionization detection (GC/FID). It became apparent that the content of double bonds greatly influences the autoxidation of mcl-PHA. A low amount of unsaturated moiety (0 and 10 mol %) resulted in chain scission, whereas samples with 50 and 75 mol % olefinic side chains showed cross-linking and became insoluble after a few weeks. Kinetic data of oxidation behavior were investigated by performing isothermal DSC experiments at elevated temperatures. The kinetic data combined with the experiment enabled the gelation time to be predicted and the shelf-life of mcl-PHA to be estimated. Because of the detected sensitivity of mcl-PHA regarding autoxidation, it is recommended that these biopolymers should be stored cold (at least -5 degrees C) and in an inert gas atmosphere or stabilized by suitable additives (antioxidants).
Collapse
Affiliation(s)
- Manfred Schmid
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| | | | | | | |
Collapse
|
48
|
Timbart L, Renard E, Tessier M, Langlois V. Monohydroxylated Poly(3-hydroxyoctanoate) Oligomers and Its Functionalized Derivatives Used as Macroinitiators in the Synthesis of Degradable Diblock Copolyesters. Biomacromolecules 2007; 8:1255-65. [PMID: 17338561 DOI: 10.1021/bm060981t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence of a hydroxyl group at the end of poly(3-hydroxyoctanoate) oligomers, noted PHO oligomers, is required to prepare diblock copolymers with improved properties by ring-opening polymerization of cyclic monomer as epsilon-caprolactone. Several chemical methods such as basic hydrolysis, acid-catalyzed reaction with APTS, and methanolysis were used to prepare well-defined low molar masses PHO oligomers. The methanolysis reaction was allowed to proceed for 10-60 min to produce PHO oligomers with Mn values ranging from 20,000 to 800 g mol-1 with low polydispersity index. Detailed analysis of the MALDI-TOF mass spectra of the obtained oligomers has revealed the presence of linear structures bearing methyl ester on one side and hydroxyl end group on the other side. The same procedure was applied to poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate), PHOU, a poly(3-hydroxyalkanoate) containing unsaturated units in its side chains. These oligomers were further used to initiate the polymerization of epsilon-caprolactone by varying the PHO (or PHOU) and PCL lengths. By copolymerization with epsilon-caprolactone, the properties of PHO or PHOU have been improved. The crystallinity of the obtained copolymers was modified by controlling the length of the two different blocks. The unsaturations in the side chains of the PHOU block were oxidized in acid carboxylic functions to obtain a novel artificial biopolyester. Moreover, degradation was followed to study the influence of carboxylic groups on the hydrolysis of the copolymers.
Collapse
Affiliation(s)
- Laurianne Timbart
- Laboratoire de Recherche sur les Polymères, UMR 7581, Université Paris 12-Val de Marne, CNRS, 2 à 8 rue H. Dunant, 94 320 Thiais, France
| | | | | | | |
Collapse
|
49
|
Ruth K, Grubelnik A, Hartmann R, Egli T, Zinn M, Ren Q. Efficient Production of (R)-3-Hydroxycarboxylic Acids by Biotechnological Conversion of Polyhydroxyalkanoates and Their Purification. Biomacromolecules 2007; 8:279-86. [PMID: 17206818 DOI: 10.1021/bm060585a] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient method to prepare enantiomerically pure (R)-3-hydroxycarboxylic acids from bacterial polyhydroxyalkanoates (PHAs) accumulated by Pseudomonas putida GPo1 is reported in this study. (R)-3-Hydroxycarboxylic acids from whole cells were obtained when conditions were provided to promote in vivo depolymerization of intracellular PHA. The monomers were secreted into the extracellular environment. They were separated and purified by acidic precipitation, preparative reversed-phase column chromatography, and subsequent solvent extraction. Eight (R)-3-hydroxycarboxylic acids were isolated: (R)-3-hydroxyoctanoic acid, (R)-3-hydroxyhexanoic acid, (R)-3-hydroxy-10-undecenoic acid, (R)-3-hydroxy-8-nonenoic acid, (R)-3-hydroxy-6-heptenoic acid, (R)-3-hydroxyundecanoic acid, (R)-3-hydroxynonanoic acid, and (R)-3-hydroxyheptanoic acid. The overall yield based on released monomers was around 78 wt % for (R)-3-hydroxyoctanoic acid. All obtained monomers had a purity of over 95 wt %. The physical properties of the purified monomers and their antimicrobial activities were also investigated.
Collapse
Affiliation(s)
- Katinka Ruth
- Laboratories for Biomaterials, Swiss Federal Laboratories for Materials Testing and Research, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Hazer B, Steinbüchel A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 2006; 74:1-12. [PMID: 17146652 DOI: 10.1007/s00253-006-0732-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/16/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
A wide range of diverse polyhydroxyalkanoates, PHAs, is currently available due to the low substrate specificity of PHA synthases and subsequent modifications by chemical reactions. These polymers are promising materials for a number of different applications due to their biocompatibility and biodegradability. This review summarizes the large variability of PHAs regarding chemical structure and material properties that can be currently produced. In the first part, in vivo and in vitro biosynthesis processes for production of a large variety of different PHAs will be summarized with regard to obtaining saturated and unsaturated copolyesters and side chain functionalized polyesters, including brominated, hydroxylated, methyl-branched polyesters, and phenyl derivatives of polyesters. In the second part, established chemical modifications of PHAs will be summarized as that by means of grafting reactions and graft/block copolymerizations, as well as by chlorination, cross-linking, epoxidation, hydroxylation, and carboxylation, reactions yield further functionalized PHAs.
Collapse
Affiliation(s)
- Baki Hazer
- Department of Chemistry, Zonguldak Karaelmas University, Zonguldak, 67100, Turkey.
| | | |
Collapse
|