1
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
2
|
Williams-Pavlantos K, Brigham-Stinson NC, Becker ML, Wesdemiotis C. Application of surface-layer matrix-assisted laser desorption/ionization mass spectrometry imaging to pharmaceutical-loaded poly(ester urea) films. Anal Chim Acta 2023; 1283:341963. [PMID: 37977787 PMCID: PMC10657383 DOI: 10.1016/j.aca.2023.341963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Polymer thin films are often used in transdermal patches as a method of continuous drug administration for patients with chronic illness. Understanding the drug segregation and distribution within these films is important for monitoring proper drug release over time. Surface-layer matrix-assisted laser desorption/ionization mass spectrometry imaging (SL-MALDI-MSI) is a unique analytical technique that provides an optical representation of chemical compositions that exist at the surface of polymeric materials. Solvent-free sublimation is employed for application of matrix to the sample surface, so that only molecules in direct contact with the matrix layer are detected. Here, these methodologies are utilized to visualize variations in drug concentration at both the air and substrate interface in pharmaceutical-loaded polymer films.
Collapse
Affiliation(s)
| | | | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA; Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC, 27708, USA; Departments of Biomedical Engineering and Orthopedic Surgery, Duke University, Durham, NC, 27708, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
3
|
McDonald SM, Yang Q, Hsu YH, Nikam SP, Hu Z, Wang Z, Asheghali D, Yen T, Dobrynin AV, Rogers JA, Becker ML. Resorbable barrier polymers for flexible bioelectronics. Nat Commun 2023; 14:7299. [PMID: 37949871 PMCID: PMC10638316 DOI: 10.1038/s41467-023-42775-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks-representing a considerable step towards translational devices.
Collapse
Affiliation(s)
| | - Quansan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Zilu Wang
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Tiffany Yen
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Andrey V Dobrynin
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Rogers
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Orthopedic Surgery, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
4
|
Kuenen MK, Reilly KS, Letteri RA. Elucidating the Effect of Amine Charge State on Poly(β-amino ester) Degradation Using Permanently Charged Analogs. ACS Macro Lett 2023; 12:1416-1422. [PMID: 37793066 PMCID: PMC10986903 DOI: 10.1021/acsmacrolett.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
With synthetic ease and tunable degradation lifetimes, poly(β-amino ester)s (PBAEs) have found use in increasingly diverse applications, from gene therapy to thermosets. Protonatable amines in each repeating unit impart pH-dependent solution behavior and lifetimes, with acidic conditions favoring solubility, yet slowing hydrolysis. Due in part to these interconnected phenomena governing pH-dependent PBAE degradation, predictive degradation models, which would enable user-defined lifetimes, remain elusive. To separate the effects of charge state and solution pH on PBAE degradation, we synthesized poly(β-quaternary ammonium ester)s (PBQAEs), which differ from their parent PBAEs only by an additional methyl group, generating polymers with pH-independent cationic charge. Like PBAEs, PBQAE hydrolysis accelerates with increasing pH, although at a given pH, PBAE degradation outpaces PBQAE degradation. This difference is more pronounced in basic solutions, suggesting that deprotonated PBAE amines accelerate hydrolysis, providing an additional tuning parameter to PBAE lifetime and informing the degradation of PBAEs and other pH-responsive polymers.
Collapse
Affiliation(s)
- Mara K Kuenen
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Keelin S Reilly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
5
|
N. Kamble G, Chandra Joshi D, Syamakumari A. Design and synthesis of photocrosslinker and light blocker based on l-Amino acid polyester and their application in solvent-free resin formulation for DLP/SLA 3D printing. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Wu F, Zhang W, Du Y, Cheng F, Li H. Tunable shape memory properties of highly stretchable poly(ester urea) random copolymers based on α-amino acids. SOFT MATTER 2022; 18:7959-7967. [PMID: 36214048 DOI: 10.1039/d2sm00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The exploration of biodegradable polymers with shape memory effects (SMEs) holds great promise in biomedical fields. Revealing the relationship between the SMEs and polymer structures not only contributes to interpreting the SME mechanisms, but also prompts the customization of materials properties for specific requirements. Herein, we developed a series of poly(ester urea) (PEU) random copolymers composed of two different diamine monomers based on L-alanine and L-valine, respectively. It was shown that the shape memory performance of the PEU copolymers strongly depended on the composition of two different diamine monomers in the PEU copolymers and other physical properties. This tunability likely arose from the change of polymer chain mobility and crystallinity, which were impacted by the choice of α-amino acids. Intriguingly, thin films of the PEU copolymers exhibited a high strain at break of 347-743% around the physiological temperature (35 °C). Moreover, the random copolymerization of two different sorts of diamine monomers has been demonstrated as a facile approach to precisely tailor the physical properties of the PEUs according to custom needs.
Collapse
Affiliation(s)
- Fangyun Wu
- CNNC Nuclear Power Operations Management Co., Ltd, Haiyan, 314300, China
| | - Wei Zhang
- CNNC Nuclear Power Operations Management Co., Ltd, Haiyan, 314300, China
| | - Yanqiu Du
- College of Material and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China.
| | - Fengmei Cheng
- College of Material and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China.
| | - Haidong Li
- College of Material and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
7
|
Kumari S, Avais M, Chattopadhyay S. High molecular weight multifunctional fluorescent polyurea: Isocyanate-free fast synthesis, coating applications and photoluminescence studies. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Li M, Li N, Qiu W, Wang Q, Jia J, Wang X, Yu J, Li X, Li F, Wu D. Phenylalanine-based poly(ester urea)s composite films with nitric oxide-releasing capability for anti-biofilm and infected wound healing applications. J Colloid Interface Sci 2021; 607:1849-1863. [PMID: 34688976 DOI: 10.1016/j.jcis.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022]
Abstract
Infected wounds show delayed and incomplete healing processes and even render patients at a high risk of death due to the formed bacterial biofilms in the wound site, which protect bacteria against antimicrobial treatments and immune response. Nitric oxide based therapy is considered a promising strategy for eliminating biofilms and enhancing wound healing, which encounters a significant challenge of controlling the NO release behavior at the wound site. Herein, a kind of phenylalanine based poly(ester urea)s with high thermal stability are synthesized and fabricated to electrospun films as NO loading vehicle for infected wound treatment. The resultant films can continuously and stably release nitric oxide for 360 h with a total concentration of 1.15 μmol L-1, which presents obvious advantages in killing the bacteria and removing biofilms. The results exhibit the films have no cytotoxicity and may accelerate the wound repair without causing inflammation, hemolysis, or cytotoxic reactions as well as stimulate the proliferation of fibroblasts and increase the synthesis of collagen. Therefore, the films may be a suitable NO releasing dressing for removing biofilms and repairing infected wounds.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Jie Jia
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China.
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
9
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Brigham NC, Nofsinger R, Luo X, Dreger NZ, Abel AK, Gustafson TP, Forster SP, Hermans A, Ji RR, Becker ML. Controlled release of etoricoxib from poly(ester urea) films for post-operative pain management. J Control Release 2020; 329:316-327. [PMID: 33278481 DOI: 10.1016/j.jconrel.2020.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Medical prescriptions for the alleviation of post-surgical pain are the most abundant source of opioids in circulation. As a systemic drug delivery source, opioids leave patients at high risk for side effects after being dosed. Given the significant rate of unauthorized use, distribution, addiction, and opioid related deaths, an alternative method of post-surgical analgesia is needed. Herein, we report the use of bio-resorbable poly(ester urea) (PEU) films that controllably deliver a non-opioid COX-2 inhibitor, etoricoxib, in vivo and in vitro as a model system for post-surgical pain control. PEU composition, drug-load, and film thickness were varied to selectively control etoricoxib elution. Elution data were fit to a Higuchi model, and the diffusion constant of etoricoxib was calculated in each of the films. Pharmacokinetic (pK) data from an in vivo rat model showed the local tissue concentration of etoricoxib at the study endpoint to be up to 23-fold higher in tissue then plasma. In a well-established mouse model of diabetic neuropathic pain in vivo film implantation showed effective relief of pain for more than 4 days post-implantation and efficacious local etoricoxib delivery. Overall, implementation of local drug delivery systems such as this could reduce the need for opioid prescriptions associated with current pain management strategies.
Collapse
Affiliation(s)
- Natasha C Brigham
- Department of Chemistry, Duke University, Durham, NC, United States; Department of Polymer Science, The University of Akron, Akron, OH, United States
| | - Rebecca Nofsinger
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, United States
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Nathan Z Dreger
- Department of Polymer Science, The University of Akron, Akron, OH, United States
| | - Alexandra K Abel
- Department of Polymer Science, The University of Akron, Akron, OH, United States
| | | | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, United States
| | - Andre Hermans
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Material Science, Biomedical Engineering, Orthopaedic Surgery, Duke University, Durham, NC, United States.
| |
Collapse
|
11
|
Sommerfeld SD, Murthy NS, Cohen J, Zhang Z, Kaduk JA, Kohn J. Structural Investigations of Polycarbonates whose Mechanical and Erosion Behavior Can Be Controlled by Their Isomer Sequence. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sven D. Sommerfeld
- Department of Chemistry and Chemical Biology, Rutgers − The State University of NJ, 123 Bevier Road, Piscataway, New Jersey 08854 United States
| | - N. Sanjeeva Murthy
- Department of Chemistry and Chemical Biology, Rutgers − The State University of NJ, 123 Bevier Road, Piscataway, New Jersey 08854 United States
| | - Jarrod Cohen
- Department of Chemistry and Chemical Biology, Rutgers − The State University of NJ, 123 Bevier Road, Piscataway, New Jersey 08854 United States
| | - Zheng Zhang
- Department of Chemistry and Chemical Biology, Rutgers − The State University of NJ, 123 Bevier Road, Piscataway, New Jersey 08854 United States
| | - James A. Kaduk
- Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, United States
- North Central College, 131 S. Loomis St., Naperville, Illinois 60540, United States
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers − The State University of NJ, 123 Bevier Road, Piscataway, New Jersey 08854 United States
| |
Collapse
|
12
|
Sayko R, Wang Z, Liang H, Becker ML, Dobrynin AV. Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Sayko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zilu Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Nikam SP, Nettleton K, Everitt JI, Barton HA, Becker ML. Antibiotic eluting poly(ester urea) films for control of a model cardiac implantable electronic device infection. Acta Biomater 2020; 111:65-79. [PMID: 32447067 DOI: 10.1016/j.actbio.2020.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Cardiac implantable electronic device (CIED) infections acquired during or after surgical procedures are a major complication that are challenging to treat therapeutically, resulting in chronic and sometimes fatal infections. Localized delivery of antibiotics at the surgical site could be used to supplement traditional systemic administration as a preventative measure. Herein, we investigate a cefazolin-eluting l-valine poly(ester urea) (PEU) films as a model system for localized antibiotic delivery for CIEDs. Poly(1-VAL-8) PEU was used to fabricate a series of antibiotic-loaded films with varied loading concentrations (2%, 5%, 10% wt/wt) and thicknesses (40 µm, 80 µm, 140 µm). In vitro release measurements show thickness and loading concentration influence the amount and rate of cefazolin release. Group 10%-140 µm (load-thickness) showed 22.5% release of active pharmaceutical ingredient (API) in the first 24 h and 81.2% of cumulative percent release through day 14 and was found most effective in bacterial clearance in vitro. This group was also effective in clearing a bacterial infection in a model in vivo rat study while eliciting a limited inflammatory response. Our results suggest the feasibility of cefazolin-loaded PEU films as an effective sustained release matrix for localized delivery of antibiotics. SIGNIFICANCE STATEMENT: Implant-associated infections acquired during surgical procedures are a major complication that have proven a challenge to treat clinically, resulting in chronic and sometimes fatal infections. In this manuscript, we investigate an antibiotic-eluting L-valine poly(ester urea) (PEU) films as a model system for localized delivery of cefazolin. Significantly, we demonstrate a wide variation in temporal delivery and dosing within this family of PEUs and show that the delivery can be extended by varying the film thickness. The in vivo results show efficacy in an infected wound model and suggest antibiotic loaded PEU films function as an effective sustained release matrix for localized delivery of antibiotics across a number of clinical indications.
Collapse
|
14
|
Abel AK, Dreger NZ, Nettleton K, Gustafson TP, Forster SP, Becker ML. Amino Acid-Based Poly(ester urea)s as a Matrix for Extended Release of Entecavir. Biomacromolecules 2020; 21:946-954. [DOI: 10.1021/acs.biomac.9b01586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra K. Abel
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan Z. Dreger
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Karissa Nettleton
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tiffany P. Gustafson
- Department of Pharmaceutical Sciences, Merck & Co., Inc., 90 E. Scott Ave., Rahway, New Jersey 07065, United States
| | - Seth P. Forster
- Department of Pharmaceutical Sciences, Merck & Co., Inc., 90 E. Scott Ave., Rahway, New Jersey 07065, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
- Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Synthesis of mechanically robust renewable poly(ester-amide)s through co-polymerisation of unsaturated polyesters and synthetic polypeptides. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Strauss MJ, Asheghali D, Evans AM, Li RL, Chavez AD, Sun C, Becker ML, Dichtel WR. Cooperative Self‐Assembly of Pyridine‐2,6‐Diimine‐Linked Macrocycles into Mechanically Robust Nanotubes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael J. Strauss
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Darya Asheghali
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - Austin M. Evans
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Rebecca L. Li
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Anton D. Chavez
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Chao Sun
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Matthew L. Becker
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - William R. Dichtel
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
17
|
Strauss MJ, Asheghali D, Evans AM, Li RL, Chavez AD, Sun C, Becker ML, Dichtel WR. Cooperative Self‐Assembly of Pyridine‐2,6‐Diimine‐Linked Macrocycles into Mechanically Robust Nanotubes. Angew Chem Int Ed Engl 2019; 58:14708-14714. [DOI: 10.1002/anie.201907668] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Michael J. Strauss
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Darya Asheghali
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - Austin M. Evans
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Rebecca L. Li
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Anton D. Chavez
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Chao Sun
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Matthew L. Becker
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - William R. Dichtel
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
18
|
Dreger NZ, Zander ZK, Hsu YH, Luong D, Chen P, Le N, Parsell T, Søndergaard C, Dunbar ML, Koewler NJ, Suckow MA, Becker ML. Zwitterionic amino acid-based Poly(ester urea)s suppress adhesion formation in a rat intra-abdominal cecal abrasion model. Biomaterials 2019; 221:119399. [PMID: 31421314 DOI: 10.1016/j.biomaterials.2019.119399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Hernia repair outcomes have improved with more robust material options for surgeons and optimized surgical techniques. However, ventral hernia repairs remain challenging with an inherent risk of post-surgical adhesions in the peritoneal space which can occur regardless of interventional material or its surgical placement. Herein, amino acid-based poly(ester urea)s (PEUs) with varied amount of an allyl ether side chains were modified post polymerization modification with the zwitterionic sulfnate group (3-((3-((3-mercaptopropanoyl)oxy)propyl) dimethylammonio)propane-1-sulfonate) to promote anti-adhesive properties. These alloc-PEUs were processed using roll-to-roll fabrication methods to afford films that were amenable to surface functionalization via a zwitterion-thiol. Functional group availability on the surface was confirmed via fluorescence microscopy, x-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) measurements. Zwitterionic treated PEUs exhibited reduced fibrinogen adsorption in vitro when compared to unfunctionalized control polymer. A rat intrabdominal cecal abrasion adhesion model was used to assess the extent and tenacity of adhesion formation in the presence of the PEUs. The 10% alloc-PEU zwitterion functionalized material was found to reduce the extent and tenacity of adhesions when compared to adhesion controls and the unfunctionalized PEU controls.
Collapse
Affiliation(s)
- Nathan Z Dreger
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Zachary K Zander
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Yen-Hao Hsu
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Derek Luong
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Peiru Chen
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Nancy Le
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | | | | | - Misha L Dunbar
- College of Veterinary Medicine, The University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nathan J Koewler
- College of Veterinary Medicine, The University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark A Suckow
- Department of Biomedical Engineering, The University of Kentucky, Lexington, KY, 40506, USA
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA; Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA; Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA; Orthopaedic Surgery, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
19
|
Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Song H, Kim KH, Kwon EE, Jeon YJ. Production of bioplastic through food waste valorization. ENVIRONMENT INTERNATIONAL 2019; 127:625-644. [PMID: 30991219 DOI: 10.1016/j.envint.2019.03.076] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/10/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The tremendous amount of food waste from diverse sources is an environmental burden if disposed of inappropriately. Thus, implementation of a biorefinery platform for food waste is an ideal option to pursue (e.g., production of value-added products while reducing the volume of waste). The adoption of such a process is expected to reduce the production cost of biodegradable plastics (e.g., compared to conventional routes of production using overpriced pure substrates (e.g., glucose)). This review focuses on current technologies for the production of polyhydroxyalkanoates (PHA) from food waste. Technical details were also described to offer clear insights into diverse pretreatments for preparation of raw materials for the actual production of bioplastic (from food wastes). In this respect, particular attention was paid to fermentation technologies based on pure and mixed cultures. A clear description on the chemical modification of starch, cellulose, chitin, and caprolactone is also provided with a number of case studies (covering PHA-based products) along with a discussion on the prospects of food waste valorization approaches and their economic/technical viability.
Collapse
Affiliation(s)
- Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - Pallabi Samadar
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Yi Yang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Pusan 48513, Republic of Korea
| |
Collapse
|
20
|
Dreger NZ, Fan Z, Zander ZK, Tantisuwanno C, Haines MC, Waggoner M, Parsell T, Søndergaard CS, Hiles M, Premanandan C, Becker ML. Amino acid-based Poly(ester urea) copolymer films for hernia-repair applications. Biomaterials 2018; 182:44-57. [DOI: 10.1016/j.biomaterials.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
21
|
Chen K, Dreger NZ, Peng F, Vogt BD, Becker ML, Cakmak M. Nonlinear Mechano-Optical Behavior and Strain-Induced Structural Changes of l-Valine-Based Poly(ester urea)s. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Childers EP, Dreger NZ, Ellenberger AB, Wandel MB, Domino K, Xu Y, Luong D, Yu J, Orsini D, Bell RH, Premanandan C, Fening SD, Becker ML. Enhanced Rotator-Cuff Repair Using Platelet-Rich Plasma Adsorbed on Branched Poly(ester urea)s. Biomacromolecules 2018; 19:3129-3139. [DOI: 10.1021/acs.biomac.8b00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Erin P. Childers
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan Z. Dreger
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Alex B. Ellenberger
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Mary Beth Wandel
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Karen Domino
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yanyi Xu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Derek Luong
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jiayi Yu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - David Orsini
- Summa Health System, Akron, Ohio 44304, United States
| | - Robert H. Bell
- Department of Orthopaedics, Crystal Clinic, Inc., Akron, Ohio 44333, United States
| | - Christopher Premanandan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephen D. Fening
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
23
|
Lowinger MB, Barrett SE, Zhang F, Williams RO. Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics 2018; 10:E55. [PMID: 29747409 PMCID: PMC6027189 DOI: 10.3390/pharmaceutics10020055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.
Collapse
Affiliation(s)
- Michael B Lowinger
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
- MRL, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA.
| | | | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Aluri R, Saxena S, Joshi DC, Jayakannan M. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells. Biomacromolecules 2018; 19:2166-2181. [DOI: 10.1021/acs.biomac.8b00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rajendra Aluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
25
|
Chen X, Zhao L, Kang Y, He Z, Xiong F, Ling X, Wu J. Significant Suppression of Non-small-cell Lung Cancer by Hydrophobic Poly(ester amide) Nanoparticles with High Docetaxel Loading. Front Pharmacol 2018; 9:118. [PMID: 29541026 PMCID: PMC5835838 DOI: 10.3389/fphar.2018.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for over 85% of clinical lung cancer cases, which is the leading cause of cancer-related death. To develop new therapeutic strategy for NSCLC, a library of L-phenylalanine-based poly(ester amide) (Phe-PEA) polymers was synthesized and assembled with docetaxel (Dtxl) to form Dtxl-loaded Phe-PEA nanoparticles (NPs). The hydrophobic Phe-PEA polymers were able to form NPs by nanoprecipitation method and the characterization results showed that the screened Dtxl-8P4 NPs have small particle size (∼100 nm) and high Dtxl loading (∼20 wt%). In vitro experiments showed that Dtxl-8P4 NPs were rapidly trafficked into cancer cells, then effectively escaped from lysosomal degradation and achieved significant tumor cell inhibition. In vivo results demonstrated that Dtxl-8P4 NPs with prolonged blood circulation could efficiently deliver Dtxl to A549 tumor sites, leading to reduced cell proliferation, block metastasis, and increase apoptosis, then persistent inhibition of tumor growth. Therefore, Phe-PEA NPs are able to load high amount of hydrophobic drugs and could be a promising therapeutic approach for NSCLC and other cancer treatments.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lili Zhao
- Digestive Endoscopy Center, Jiangsu Province Hospital, Nanjing, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhiyu He
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Fei Xiong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiang Ling
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Dreger NZ, Wandel MB, Robinson LL, Luong D, Søndergaard CS, Hiles M, Premanandan C, Becker ML. Preclinical in Vitro and in Vivo Assessment of Linear and Branched l-Valine-Based Poly(ester urea)s for Soft Tissue Applications. ACS Biomater Sci Eng 2018; 4:1346-1356. [PMID: 33418665 DOI: 10.1021/acsbiomaterials.7b00920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | | | - Michael Hiles
- Cook Biotech Incorporated, West Lafayette, Indiana 47906, United States
| | - Christopher Premanandan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
27
|
Yu J, Xu Y, Li S, Seifert GV, Becker ML. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules 2017; 18:4171-4183. [PMID: 29020441 DOI: 10.1021/acs.biomac.7b01222] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer-bioceramic composites incorporate the desirable properties of each material while mitigating the limiting characteristics of each component. 1,6-Hexanediol l-phenylalanine-based poly(ester urea) (PEU) blended with hydroxyapatite (HA) nanocrystals were three-dimensional (3D) printed into porous scaffolds (75% porosity) via fused deposition modeling and seeded with MC3T3-E1 preosteoblast cells in vitro to examine their bioactivity. The resulting 3D printed scaffolds exhibited a compressive modulus of ∼50 MPa after a 1-week incubation in PBS at 37 °C, cell viability >95%, and a composition-dependent enhancement of radio-contrast. The influence of HA on MC3T3-E1 proliferation and differentiation was measured using quantitative real-time polymerase chain reaction, immunohistochemistry and biochemical assays. After 4 weeks, alkaline phosphatase activity increased significantly for the 30% HA composite with values reaching 2.5-fold greater than the control. Bone sialoprotein showed approximately 880-fold higher expression and 15-fold higher expression of osteocalcin on the 30% HA composite compared to those of the control. Calcium quantification results demonstrated a 185-fold increase of calcium concentration in mineralized extracellular matrix deposition after 4 weeks of cell culture in samples with higher HA content. 3D printed HA-containing PEU composites promote bone regeneration and have the potential to be used in orthopedic applications.
Collapse
Affiliation(s)
- Jiayi Yu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yanyi Xu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Shan Li
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Gabrielle V Seifert
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
28
|
Li S, Xu Y, Yu J, Becker ML. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials 2017; 141:176-187. [DOI: 10.1016/j.biomaterials.2017.06.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 12/28/2022]
|
29
|
Gao Y, Xu Y, Land A, Harris J, Policastro GM, Childers EP, Ritzman T, Bundy J, Becker ML. Sustained Release of Recombinant Human Growth Hormone from Bioresorbable Poly(ester urea) Nanofibers. ACS Macro Lett 2017. [DOI: 10.1021/acsmacrolett.7b00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaohua Gao
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Yanyi Xu
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Adam Land
- Summa Health System, Akron, Ohio 44304, United States
| | - Justin Harris
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Gina M. Policastro
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Erin P. Childers
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Todd Ritzman
- Department
of Pediatric Orthopedic Surgery, Akron Children’s Hospital, Akron, Ohio 44308-1062, United States
| | - Joshua Bundy
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Matthew L. Becker
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
30
|
Peterson GI, Childers EP, Li H, Dobrynin AV, Becker ML. Tunable Shape Memory Polymers from α-Amino Acid-Based Poly(ester urea)s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gregory I. Peterson
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Erin P. Childers
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hao Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Andrey V. Dobrynin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
31
|
Chen K, Yu J, Guzman G, Es-haghi SS, Becker ML, Cakmak M. Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of l-Phenylalanine-Based Poly(ester urea)s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keke Chen
- Department
of Polymer Engineering, ‡Department of Polymer Science, and §Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
- School of Materials
Engineering and ⊥School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiayi Yu
- Department
of Polymer Engineering, ‡Department of Polymer Science, and §Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
- School of Materials
Engineering and ⊥School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gustavo Guzman
- Department
of Polymer Engineering, ‡Department of Polymer Science, and §Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
- School of Materials
Engineering and ⊥School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - S. Shams Es-haghi
- Department
of Polymer Engineering, ‡Department of Polymer Science, and §Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
- School of Materials
Engineering and ⊥School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew L. Becker
- Department
of Polymer Engineering, ‡Department of Polymer Science, and §Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
- School of Materials
Engineering and ⊥School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Miko Cakmak
- Department
of Polymer Engineering, ‡Department of Polymer Science, and §Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
- School of Materials
Engineering and ⊥School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Van Horn BA, Davis LL, Nicolau SE, Burry EE, Bailey VO, Guerra FD, Alexis F, Whitehead DC. Synthesis and conjugation of a triiodohydroxylamine for the preparation of highly X-ray opaque poly(ε-caprolactone) materials. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Brooke A. Van Horn
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Lundy L. Davis
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Samantha E. Nicolau
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Emma E. Burry
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Victoria O. Bailey
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Fernanda D. Guerra
- Department of Bioengineering; Clemson University, 203 Rhodes Research Center Annex; Clemson South Carolina 29634
| | - Frank Alexis
- Department of Bioengineering; Clemson University, 203 Rhodes Research Center Annex; Clemson South Carolina 29634
- Department of Bioengineering; Institute of Biological Interfaces of Engineering, Clemson University; Clemson South Carolina 29634-0905
| | - Daniel C. Whitehead
- Department of Chemistry; Clemson University, 467 Hunter Laboratories; Clemson South Carolina 29634
| |
Collapse
|
33
|
Biodegradable Nanoparticles Made of Amino-Acid-Based Ester Polymers: Preparation, Characterization, and In Vitro Biocompatibility Study. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6120444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Zhou J, Bhagat V, Becker ML. Poly(ester urea)-Based Adhesives: Improved Deployment and Adhesion by Incorporation of Poly(propylene glycol) Segments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33423-33429. [PMID: 27960413 DOI: 10.1021/acsami.6b09676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The adhesive nature of mussels arises from the catechol moiety in the 3,4-dihydroxyphenylalanine (DOPA) amino acid, one of the many proteins that contribute to the unique adhesion properties of mussels. Inspired by these properties, many biomimetic adhesives have been developed over the past few years in an attempt to replace adhesives such as fibrin, cyanoacrylate, and epoxy glues. In the present work, we synthesized ethanol soluble but water insoluble catechol functionalized poly(ester urea) random copolymers that help facilitate delivery and adhesion in wet environments. Poly(propylene glycol) units incorporated into the polymer backbone impart ethanol solubility to these polymers, making them clinically relevant. A catechol to cross-linker ratio of 10:1 with a curing time of 4 h exceeded the performance of commercial fibrin glue (4.8 ± 1.4 kPa) with adhesion strength of 10.6 ± 2.1 kPa. These adhesion strengths are significant with the consideration that the adhesion studies were performed under wet conditions.
Collapse
Affiliation(s)
- Jinjun Zhou
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Vrushali Bhagat
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
- Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
35
|
Aluri R, Jayakannan M. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Biomacromolecules 2016; 18:189-200. [DOI: 10.1021/acs.biomac.6b01476] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rajendra Aluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
36
|
Holt BD, Wright ZM, Arnold AM, Sydlik SA. Graphene oxide as a scaffold for bone regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27781398 DOI: 10.1002/wnan.1437] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Graphene oxide (GO), the oxidized form of graphene, holds great potential as a component of biomedical devices, deriving utility from its ability to support a broad range of chemical functionalities and its exceptional mechanical, electronic, and thermal properties. GO composites can be tuned chemically to be biomimetic, and mechanically to be stiff yet strong. These unique properties make GO-based materials promising candidates as a scaffold for bone regeneration. However, questions still exist as to the compatibility and long-term toxicity of nanocarbon materials. Unlike other nanocarbons, GO is meta-stable, water dispersible, and autodegrades in water on the timescale of months to humic acid-like materials, the degradation products of all organic matter. Thus, GO offers better prospects for biological compatibility over other nanocarbons. Recently, many publications have demonstrated enhanced osteogenic performance of GO-containing composites. Ongoing work toward surface modification or coating strategies could be useful to minimize the inflammatory response and improve compatibility of GO as a component of medical devices. Furthermore, biomimetic modifications could offer mechanical and chemical environments that encourage osteogenesis. So long as care is given to assure their safety, GO-based materials may be poised to become the next generation scaffold for bone regeneration. WIREs Nanomed Nanobiotechnol 2017, 9:e1437. doi: 10.1002/wnan.1437 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Brian D Holt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zoe M Wright
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Peterson GI, Dobrynin AV, Becker ML. α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications. ACS Macro Lett 2016; 5:1176-1179. [PMID: 35658180 DOI: 10.1021/acsmacrolett.6b00648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermal shape memory behavior of a series of α-amino acid-based poly(ester urea)s has been explored. We demonstrate that these materials exhibit excellent shape memory performance in dual- and triple-shape thermomechanical testing. Significant activation of chain mobility above the Tg as well as a hydrogen bonding network provide the basis for shape transformations and recovery. Additionally, we tuned the shape memory properties of these materials with polymer blending, enabling the demonstration of quadruple-shape memory cycles.
Collapse
Affiliation(s)
- Gregory I. Peterson
- The University of Akron, Department of
Polymer Science, Akron, Ohio 44325-3909, United States
| | - Andrey V. Dobrynin
- The University of Akron, Department of
Polymer Science, Akron, Ohio 44325-3909, United States
| | - Matthew L. Becker
- The University of Akron, Department of
Polymer Science, Akron, Ohio 44325-3909, United States
| |
Collapse
|
38
|
Childers EP, Peterson GI, Ellenberger AB, Domino K, Seifert GV, Becker ML. Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on l-Valine-Based Poly(ester urea). Biomacromolecules 2016; 17:3396-3403. [DOI: 10.1021/acs.biomac.6b01195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Erin P. Childers
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gregory I. Peterson
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Alex B. Ellenberger
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Karen Domino
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gabrielle V. Seifert
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
39
|
Wade MB, Rodenberg E, Patel U, Shah B, Becker ML. Influence of Sterilization Technologies on Electrospun Poly(ester urea)s for Soft Tissue Repair. Biomacromolecules 2016; 17:3363-3374. [PMID: 27610629 DOI: 10.1021/acs.biomac.6b01158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mary Beth Wade
- Integrated
Biosciences Program, The University of Akron, Akron, Ohio 44325, United States
| | - Eric Rodenberg
- Cook Biotech, Inc., West Lafayette, Indiana 47906, United States
| | - Umesh Patel
- Cook Biotech, Inc., West Lafayette, Indiana 47906, United States
| | - Bhavin Shah
- Cook Biotech, Inc., West Lafayette, Indiana 47906, United States
| | - Matthew L. Becker
- The
Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
40
|
Gao Y, Yi T, Shinoka T, Lee YU, Reneker DH, Breuer CK, Becker ML. Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers. Adv Healthc Mater 2016; 5:2427-36. [PMID: 27390286 PMCID: PMC5951289 DOI: 10.1002/adhm.201600400] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/30/2016] [Indexed: 12/13/2022]
Abstract
An off-the-shelf, small diameter tissue engineered vascular graft (TEVG) would be transformative to surgeons in multiple subspecialties. Herein, the results of a small diameter (ID ≈ 1 mm) vascular graft constructed from resorbable, amino acid-based poly(ester urea) (PEU) are reported. Electrospun PEU grafts of two different wall thicknesses (type A: 250 μm; type B: 350 μm) are implanted as abdominal infra-renal aortic grafts in a severe combined immune deficient/beige mouse model and evaluated for vessel remodeling over one year. Significantly, the small diameter TEVG does not rupture or lead to acute thrombogenic events during the intervals tested. The pilot TEVG in vivo shows long-term patency and extensive tissue remodeling with type A grafts. Extensive tissue remodeling in type A grafts leads to the development of well-circumscribed neovessels with an endothelial inner lining, a neointima containing smooth muscle cells. However, due to slow degradation of the PEU scaffold materials in vivo, the grafts remain after one year. The type B grafts, which have 350 μm thick walls, experience occlusion over the one year interval due to intimal hyperplasia. This study affords significant findings that will guide the design of future generations of small diameter vascular grafts.
Collapse
Affiliation(s)
- Yaohua Gao
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Tai Yi
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Toshiharu Shinoka
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yong Ung Lee
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Darrell H Reneker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | | | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
41
|
Bhagat V, O’Brien E, Zhou J, Becker ML. Caddisfly Inspired Phosphorylated Poly(ester urea)-Based Degradable Bone Adhesives. Biomacromolecules 2016; 17:3016-24. [DOI: 10.1021/acs.biomac.6b00875] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vrushali Bhagat
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Emily O’Brien
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jinjun Zhou
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
42
|
Feng J, He F, Yang Z, Yao J. Differential study of the biological degradation of polyamide-imides based on the amino acids. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:78-83. [DOI: 10.1016/j.msec.2015.10.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/09/2015] [Accepted: 10/29/2015] [Indexed: 11/24/2022]
|
44
|
Dasgupta Q, Chatterjee K, Madras G. Physical insights into salicylic acid release from poly(anhydrides). Phys Chem Chem Phys 2016; 18:2112-9. [PMID: 26689269 DOI: 10.1039/c5cp06858d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.
Collapse
Affiliation(s)
- Queeny Dasgupta
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.
| | | | | |
Collapse
|
45
|
Dasgupta Q, Madras G, Chatterjee K. Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity. Acta Biomater 2016; 30:168-176. [PMID: 26596566 DOI: 10.1016/j.actbio.2015.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/26/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
Abstract
Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. STATEMENT OF SIGNIFICANCE In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature.
Collapse
Affiliation(s)
- Queeny Dasgupta
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
46
|
Gao Y, Childers EP, Becker ML. l-Leucine-Based Poly(ester urea)s for Vascular Tissue Engineering. ACS Biomater Sci Eng 2015; 1:795-804. [DOI: 10.1021/acsbiomaterials.5b00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaohua Gao
- Department of Polymer Science and ‡Department of
Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Erin P. Childers
- Department of Polymer Science and ‡Department of
Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science and ‡Department of
Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
47
|
Yu J, Lin F, Becker ML. Branched Amino Acid Based Poly(ester urea)s with Tunable Thermal and Water Uptake Properties. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiayi Yu
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Fei Lin
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department
of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
48
|
Policastro GM, Lin F, Smith Callahan LA, Esterle A, Graham M, Sloan Stakleff K, Becker ML. OGP Functionalized Phenylalanine-Based Poly(ester urea) for Enhancing Osteoinductive Potential of Human Mesenchymal Stem Cells. Biomacromolecules 2015; 16:1358-71. [DOI: 10.1021/acs.biomac.5b00153] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - Andrew Esterle
- Calhoun
Research Laboratory, Akron General Medical Center, Akron, Ohio 44307, United States
| | | | | | | |
Collapse
|
49
|
Li S, Yu J, Wade MB, Policastro GM, Becker ML. Radiopaque, Iodine Functionalized, Phenylalanine-Based Poly(ester urea)s. Biomacromolecules 2015; 16:615-24. [DOI: 10.1021/bm501669u] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shan Li
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiayi Yu
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mary Beth Wade
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gina M. Policastro
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Departments of †Polymer Science and ‡Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
50
|
Planellas M, Pérez-Madrigal MM, del Valle LJ, Kobauri S, Katsarava R, Alemán C, Puiggalí J. Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds. Polym Chem 2015. [DOI: 10.1039/c4py01243g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electroactive scaffolds with up to 90 wt% of polythiophene are prepared by electrospinning using a poly(ester urea) carrier.
Collapse
Affiliation(s)
- Marc Planellas
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Maria M. Pérez-Madrigal
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
- Center for Research in Nano-Engineering
| | - Luís J. del Valle
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Sophio Kobauri
- Institute of Chemistry and Molecular Engineering
- Agricultural University of Georgia
- Tblisi 0159
- Georgia
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering
- Agricultural University of Georgia
- Tblisi 0159
- Georgia
| | - Carlos Alemán
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
- Center for Research in Nano-Engineering
| | - Jordi Puiggalí
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
- Center for Research in Nano-Engineering
| |
Collapse
|