1
|
Cho J, Oh J, Bang J, Koh JH, Jeong HY, Chung S, Son JG. Roll-to-plate 0.1-second shear-rolling process at elevated temperature for highly aligned nanopatterns. Nat Commun 2023; 14:8412. [PMID: 38110407 PMCID: PMC10728125 DOI: 10.1038/s41467-023-43766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023] Open
Abstract
The shear-rolling process is a promising directed self-assembly method that can produce high-quality sub-10 nm block copolymer line-space patterns cost-effectively and straightforwardly over a large area. This study presents a high temperature (280 °C) and rapid (~0.1 s) shear-rolling process that can achieve a high degree of orientation in a single process while effectively preventing film delamination, that can be applied to large-area continuous processes. By minimizing adhesion, normal forces, and ultimate shear strain of the polydimethylsiloxane pad, shearing was successfully performed without peeling up to 280 °C at which the chain mobility significantly increases. This method can be utilized for various high-χ block copolymers and surface neutralization processes. It enables the creation of block copolymer patterns with a half-pitch as small as 8 nm in a unidirectional way. Moreover, the 0.1-second rapid shear-rolling was successfully performed on long, 3-inch width polyimide flexible films to validate its potential for the roll-to-roll process.
Collapse
Affiliation(s)
- Junghyun Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinwoo Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hoon Yeub Jeong
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Yun HS, Kim DH, Kwon HG, Choi HK. Centrifugal Force-Induced Alignment in the Self-Assembly of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyun Su Yun
- Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Dong Hwan Kim
- Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Hong Gu Kwon
- Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Hong Kyoon Choi
- Center for Advanced Materials and Parts of Powder, Kongju National University, Cheonan 31080, Republic of Korea
| |
Collapse
|
3
|
Pula P, Leniart A, Majewski PW. Solvent-assisted self-assembly of block copolymer thin films. SOFT MATTER 2022; 18:4042-4066. [PMID: 35608282 DOI: 10.1039/d2sm00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.
Collapse
Affiliation(s)
- Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Arkadiusz Leniart
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| |
Collapse
|
4
|
|
5
|
Jin HM, Park K, Kwon K, Yang GG, Han YS, Kim HS, Kim SO, Jung HT. Wafer-Scale Unidirectional Alignment of Supramolecular Columns on Faceted Surfaces. ACS NANO 2021; 15:11762-11769. [PMID: 34251179 DOI: 10.1021/acsnano.1c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The long-range alignment of supramolecular structures must be engineered as a first step toward advanced nanopatterning processes aimed at miniaturizing features to dimensions below 5 nm. This study introduces a facile method of directing the orientation of supramolecular columns over wafer-scale areas using faceted surfaces. Supramolecular columns with features on the sub-5 nm scale were highly aligned in a direction orthogonal to that of the facet patterning on unidirectional and nanoscopic faceted surface patterns. This unidirectional alignment of supramolecular columns is also observed by varying the thickness of the supramolecular film or by altering the dimensions of the facet pattern. The ordering behavior of the supramolecular columns can be attributed to the triangular depth profile of the bottom facet pattern. Furthermore, this directed self-assembly principle allows for the continuous alignment of supramolecular structures across ultralarge distances on flexible patterned substrates.
Collapse
Affiliation(s)
- Hyeong Min Jin
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Kangho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kiok Kwon
- Green Chemistry and Materials Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Soo Han
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Hwa Soo Kim
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
7
|
Giammaria TJ, Gharbi A, Paquet A, Nealey P, Tiron R. Resist-Free Directed Self-Assembly Chemo-Epitaxy Approach for Line/Space Patterning. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10122443. [PMID: 33297348 PMCID: PMC7762273 DOI: 10.3390/nano10122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
This work reports a novel, simple, and resist-free chemo-epitaxy process permitting the directed self-assembly (DSA) of lamella polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) on a 300 mm wafer. 193i lithography is used to manufacture topographical guiding silicon oxide line/space patterns. The critical dimension (CD) of the silicon oxide line obtained can be easily trimmed by means of wet or dry etching: it allows a good control of the CD that permits finely tuning the guideline and the background dimensions. The chemical pattern that permits the DSA of the BCP is formed by a polystyrene (PS) guide and brush layers obtained with the grafting of the neutral layer polystyrene-random-polymethylmethacrylate (PS-r-PMMA). Moreover, data regarding the line edge roughness (LER) and line width roughness (LWR) are discussed with reference to the literature and to the stringent requirements of semiconductor technology.
Collapse
Affiliation(s)
| | - Ahmed Gharbi
- Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France; (A.G.); (A.P.); (R.T.)
| | - Anne Paquet
- Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France; (A.G.); (A.P.); (R.T.)
| | - Paul Nealey
- Institute for Molecular Engineering, University of Chicago, 5747 South Ellis Avenue, Chicago, IL 60637, USA;
| | - Raluca Tiron
- Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France; (A.G.); (A.P.); (R.T.)
| |
Collapse
|
8
|
Zhang H, Wang B, Wang G, Shen C, Chen J, Reiter G, Zhang B. Dewetting-Induced Alignment and Ordering of Cylindrical Mesophases in Thin Block Copolymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Heng Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Binghua Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gang Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Changyu Shen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Günter Reiter
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Bin Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Wang L, Tang Z, Li D, Lin J, Guan Z. Adsorption and ordering of amphiphilic rod-coil block copolymers on a substrate: conditions for well-aligned stripe nanopatterns. NANOSCALE 2020; 12:13119-13128. [PMID: 32584339 DOI: 10.1039/d0nr01244k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the ordering of self-assembled nanostructures is vital in block copolymer nanotechnology but still presents a challenge. Here we demonstrated that the adsorption and ordering of amphiphilic rod-coil block copolymers on a substrate can generate well-aligned stripe nanopatterns by dissipative particle dynamics simulations. The effects of the copolymer concentration and the surface affinity on the formation of stripe nanopatterns were examined. The simulation results revealed that the well-aligned stripe nanopatterns with controllable thickness and stripe width can be obtained in the systems with higher copolymer concentration and surface affinity. An immersion coating experiment was designed to verify the simulation results, and an agreement is shown. The present work provides a strategy for constructing well-aligned stripe nanopatterns in a controllable way.
Collapse
Affiliation(s)
- Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
10
|
Tang Z, Li D, Lin J, Zhang L, Cai C, Yao Y, Yang C, Tian X. Self-assembly of rod-coil block copolymers on a substrate into micrometer-scale ordered stripe nanopatterns. Polym Chem 2020. [DOI: 10.1039/d0py01404d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micrometer-scale ordered stripe nanopatterns are readily constructed through an adsorption-assembly of rod-coil block copolymers on the substrate.
Collapse
Affiliation(s)
- Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Da Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
11
|
Abate AA, Vu GT, Piqueras CM, del Barrio MC, Gómez LR, Catalini G, Schmid F, Vega DA. Order–Order Phase Transitions Induced by Supercritical Carbon Dioxide in Triblock Copolymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Giang Thi Vu
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | | | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | |
Collapse
|
12
|
Chen X, Delgadillo PR, Jiang Z, Craig GSW, Gronheid R, Nealey PF. Defect Annihilation in the Directed Self-Assembly of Block Copolymers in Films with Increasing Thickness. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuanxuan Chen
- Intel Corporation, 2501 NE Century Boulevard, Hillsboro, Oregon 97124, United States
- Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paulina R. Delgadillo
- Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
- Imec, Kapeldreef 75, Leuven B-3001, Belgium
| | - Zhang Jiang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Gordon S. W. Craig
- Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | | | - Paul F. Nealey
- Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
- Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
13
|
Morimitsu Y, Salatto D, Jiang N, Sen M, Nishitsuji S, Yavitt BM, Endoh MK, Subramanian A, Nam CY, Li R, Fukuto M, Zhang Y, Wiegart L, Fluerasu A, Tanaka K, Koga T. “Structurally Neutral” Densely Packed Homopolymer-Adsorbed Chains for Directed Self-Assembly of Block Copolymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuma Morimitsu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Daniel Salatto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Naisheng Jiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Mani Sen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Shotaro Nishitsuji
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Benjamin M. Yavitt
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Maya K. Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Ashwanth Subramanian
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Chang-Yong Nam
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yugang Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
14
|
Kim YC, Shin TJ, Hur SM, Kwon SJ, Kim SY. Shear-solvo defect annihilation of diblock copolymer thin films over a large area. SCIENCE ADVANCES 2019; 5:eaaw3974. [PMID: 31214653 PMCID: PMC6570509 DOI: 10.1126/sciadv.aaw3974] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/03/2019] [Indexed: 05/21/2023]
Abstract
Achieving defect-free block copolymer (BCP) nanopatterns with a long-ranged orientation over a large area remains a persistent challenge, impeding the successful and widespread application of BCP self-assembly. Here, we demonstrate a new experimental strategy for defect annihilation while conserving structural order and enhancing uniformity of nanopatterns. Sequential shear alignment and solvent vapor annealing generate perfectly aligned nanopatterns with a low defect density over centimeter-scale areas, outperforming previous single or sequential combinations of annealing. The enhanced order quality and pattern uniformity were characterized in unprecedented detail via scattering analysis and incorporating new mathematical indices using elaborate image processing algorithms. In addition, using an advanced sampling method combined with a coarse-grained molecular simulation, we found that domain swelling is the driving force for enhanced defect annihilation. The superior quality of large-scale nanopatterns was further confirmed with diffraction and optical properties after metallized patterns, suggesting strong potential for application in optoelectrical devices.
Collapse
Affiliation(s)
- Ye Chan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities and School of Natural Science, UNIST, Ulsan 44919, Republic of Korea
| | - Su-Mi Hur
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seok Joon Kwon
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, Republic of Korea
| | - So Youn Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Larin SV, Nazarychev VM, Dobrovskiy AY, Lyulin AV, Lyulin SV. Structural Ordering in SWCNT-Polyimide Nanocomposites and Its Influence on Their Mechanical Properties. Polymers (Basel) 2018; 10:E1245. [PMID: 30961170 PMCID: PMC6401868 DOI: 10.3390/polym10111245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/01/2022] Open
Abstract
Using fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered with different dianhydride fragments, namely 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced by SWCNTs were studied. The structural properties of the nanocomposites at temperature close to the bulk polymer melting point were studied. The mechanical properties were determined for the nanocomposites cooled down to the glassy state. It was found that the SWCNT nanofiller initiates' structural ordering not only in the crystallizable BPDA-P3 but also in the amorphous ODPA-P3 samples were in agreement with previously obtained experimental results. Two stages of the structural ordering were detected in the presence of SWCNTs, namely the orientation of the planar moieties followed by the elongation of whole polymer chains. The first type of local ordering was observed on the microsecond time scale and did not lead to the change of the mechanical properties of a polymer binder in considered nanocomposites. At the end of the second stage, both BPDA-P3 and ODPA-P3 PI chains extended completely along the SWCNT surface, which in turn led to enhanced mechanical characteristics in their glassy state.
Collapse
Affiliation(s)
- Sergey V Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
| | - Victor M Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
| | - Alexey Yu Dobrovskiy
- Faculty of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198504, Russia.
| | - Alexey V Lyulin
- Theory of Polymers and Soft Matter Group and Center for Computational Energy Research, Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Sergey V Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
- Faculty of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198504, Russia.
| |
Collapse
|
16
|
Ogieglo W, Stenbock-Fermor A, Juraschek TM, Bogdanova Y, Benes N, Tsarkova LA. Synergic Swelling of Interactive Network Support and Block Copolymer Films during Solvent Vapor Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9950-9960. [PMID: 30070855 DOI: 10.1021/acs.langmuir.8b02304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the effect of "interactive" polymer network (PN) supports on the solvent-vapor processing of thin polymer films. Densely cross-linked surface-attached network exhibits under experimental time scale a glassy swelling behavior with the conformational states and solvent-uptake clearly sensitive to the degree of solvent vapor saturation in the atmosphere. Pretreatment of the thermally cured PN films by complete immersion or by swelling in saturated chloroform vapors facilitates relaxation of the residual stresses and induces irreversible changes to the network structure as revealed by the swelling/deswelling tests. The presence of a polymer film on top of the PN support results in a mutual influence of the layers on the respective swelling kinetics, steady-state solvent uptake, and chain dynamics. Using UV-vis ellipsometry, we revealed a significantly faster swelling and higher solvent uptake of glassy PN layer below a polymer film as compared to a single PN layer on silicon substrate. Remarkably, the swelling of the network support continues to increase even when the overall swelling of the bilayer is in a steady-state regime. Block copolymer films on PN supports exhibit a faster ordering dynamics and exceptional stability toward dewetting as compared to similar films on silicon wafers. The mechanical stress produced by continuously swelling PN is suggested to account for the enhanced segmental dynamics even at low solvent concentration in the block copolymer film. Apart from novel insights into dynamics of solvent uptake by heterogeneous polymer films, these results might be useful in developing novel approaches toward fast-processing/annealing of functional polymer films and fibers.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- DWI-Leibniz-Institut für Interaktive Materialien , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Anja Stenbock-Fermor
- DWI-Leibniz-Institut für Interaktive Materialien , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Thomas M Juraschek
- DWI-Leibniz-Institut für Interaktive Materialien , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Yulia Bogdanova
- Chair of Colloid Chemistry, Faculty of Chemistry , Moscow State University , 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Nieck Benes
- Membrane Science and Technology Cluster/Films in Fluids Group, Faculty of Science and Technology , University of Twente , 7500 AE Enschede , The Netherlands
| | - Larisa A Tsarkova
- Chair of Colloid Chemistry, Faculty of Chemistry , Moscow State University , 1-3 Leninskiye Gory , 119991 Moscow , Russia
- Deutsches Textilforschungszentrum Nord-West gGmbH (DTNW) , Adlerstraße 1 , 47798 Krefeld , Germany
| |
Collapse
|
17
|
Self-assembly of liquid-crystalline block copolymers in thin films: control of microdomain orientation. Polym J 2018. [DOI: 10.1038/s41428-018-0065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Zhang C, Cavicchi KA, Li R, Yager KG, Fukuto M, Vogt BD. Thickness Limit for Alignment of Block Copolymer Films Using Solvent Vapor Annealing with Shear. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chao Zhang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Kevin A. Cavicchi
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | | | | | | | - Bryan D. Vogt
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Qiang Z, Akolawala SA, Wang M. Simultaneous In-Film Polymer Synthesis and Self-Assembly for Hierarchical Nanopatterns. ACS Macro Lett 2018; 7:566-571. [PMID: 35632932 DOI: 10.1021/acsmacrolett.8b00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A key requirement for practical applications of nanostructured block copolymer (BCP) self-assembly is the ability to generate complex geometries including different shapes and diverse sizes across one substrate surface. This has been difficult because spatial control over the underlying chemistry of the BCP has been limited. Here, we demonstrate a photocontrolled in-film polymerization process in the presence of monomer vapor for synthesizing homopolymers in self-assembled BCP films. The homopolymers blend with BCPs and alter the nanopatterns by changing the underlying polymer chemistry and composition. We apply this technique to a variety of BCPs including polystyrene-b-polyisoprene-b-polystyrene, polystyrene-b-poly(methyl methacrylate), and polystyrene-b-poly(4-vinylpyridine). The region of in-film polymerization can be modulated by the location of irradiation using photomasks for obtaining distinct morphologies on one substrate, providing a new platform for hierarchically manipulating nanopatterns within the self-assembled BCP thin film as well as opening up a new area for radical polymerizations of monomers within such geometrically confined, swollen films.
Collapse
Affiliation(s)
- Zhe Qiang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sahil A. Akolawala
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Controlled Preparation of Thermally Stable Fe-Poly(dimethylsiloxane) Composite by Magnetic Induction Heating. Polymers (Basel) 2018; 10:polym10050507. [PMID: 30966541 PMCID: PMC6415383 DOI: 10.3390/polym10050507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
The most challenging task in the preparation of poly(dimethylsiloxane) composites is to control the curing time as well as to enhance their thermal and swelling behavior. Curing rate can be modified and controlled by a range of iron powder contents to achieve a desired working time, where iron is used as self-heating particles. Iron under alternative current magnetic field (ACMF) is able to generate thermal energy, providing a benefit in accelerating the curing of composites. Three types of iron-Poly(dimethylsiloxane) (Fe-PDMS) composites were prepared under ACMF with iron content 5, 10, and 15 wt %. The curing process was investigated by FTIR, while the morphology and the thermal stability were examined by SEM, DMA, and TGA. The heating’s profile was studied as functions of iron content and induction time. It was found that the time required to complete curing was reduced and the curing temperature was controlled by varying the iron content and induction time. In addition, the thermal stability and the swelling behavior of the prepared composites were enhanced in comparison with the conventional PDMS and thus offer a promising route to obtain thermally stable composites.
Collapse
|
21
|
Zhang L, Liu L, Lin J. Well-ordered self-assembled nanostructures of block copolymer films via synergistic integration of chemoepitaxy and zone annealing. Phys Chem Chem Phys 2018; 20:498-508. [DOI: 10.1039/c7cp06261c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integrated chemical template/zone annealing method has the capability to rapidly fabricate well-aligned and well-oriented nanostructures over a macroscopic area.
Collapse
Affiliation(s)
- Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Lingling Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
22
|
Choi J, Gunkel I, Li Y, Sun Z, Liu F, Kim H, Carter KR, Russell TP. Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns. NANOSCALE 2017; 9:14888-14896. [PMID: 28949359 DOI: 10.1039/c7nr05394k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple and robust method has been developed for the generation of macroscopically ordered hexagonal arrays from the directed self-assembly (DSA) of cylinder-forming block copolymers (BCPs) based on minimal trench patterns with solvent vapor annealing. The use of minimal trench patterns allows us to probe the guided hexagonal arrays of cylindrical microdomains using grazing incidence small angle X-ray scattering (GISAXS), where the sample stage is rotated on the basis of the six-fold symmetry of a hexagonal system. It is found that the (10) planes of hexagonal arrays of cylindrical microdomains are oriented parallel to the underlying trench direction over macroscopic length scales (∼1 × 1 cm2). However, there are misorientations of the hexagonal arrays with short-range ordering. GISAXS patterns show that the hexagonal arrays on the minimal trench pattern are distorted, deviating from a perfect hexagonal lattice. This distortion has been attributed to the absence of topographic constraints in the unconfined direction on the 1-D minimal trench pattern. Also, the frustration of BCP microdomains, arising from the incommensurability between the trench pitch and natural period of the BCP at the base of the trench, influences the distortion of the hexagonal arrays.
Collapse
Affiliation(s)
- Jaewon Choi
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shelton CK, Jones RL, Epps TH. Kinetics of Domain Alignment in Block Polymer Thin Films during Solvent Vapor Annealing with Soft Shear: An in Situ Small-Angle Neutron Scattering Investigation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Ronald L. Jones
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
24
|
Chen L, Ji T, Mu L, Shi Y, Wang H, Zhu J. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:168-177. [PMID: 28284939 DOI: 10.1016/j.jenvman.2017.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 05/03/2023]
Abstract
Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m2/g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications.
Collapse
Affiliation(s)
- Long Chen
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA
| | - Tuo Ji
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA
| | - Liwen Mu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA; Division of Machine Elements, Luleå University of Technology, Luleå, 97187, Sweden
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, Luleå, 97187, Sweden
| | - Huaiyuan Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| | - Jiahua Zhu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
25
|
Kim YC, Kim DH, Joo SH, Kwon NK, Shin TJ, Register RA, Kwak SK, Kim SY. Log-Rolling Block Copolymer Cylinders. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | - Richard A. Register
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | | |
Collapse
|
26
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
27
|
Alharbe LG, Register RA, Hobbs JK. Orientation Control and Crystallization in a Soft Confined Phase Separated Block Copolymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lamiaa G. Alharbe
- Department
of Physics and Astronomy, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
| | - Richard A. Register
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Jamie K. Hobbs
- Department
of Physics and Astronomy, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
28
|
Morris MA, Gartner TE, Epps TH. Tuning Block Polymer Structure, Properties, and Processability for the Design of Efficient Nanostructured Materials Systems. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Melody A. Morris
- Department of Chemical and Biomolecular Engineering University of Delaware Newark DE 19716 USA
| | - Thomas E. Gartner
- Department of Chemical and Biomolecular Engineering University of Delaware Newark DE 19716 USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering University of Delaware Newark DE 19716 USA
- Department of Materials Science and Engineering University of Delaware Newark DE 19716 USA
| |
Collapse
|
29
|
Wan X, Gao T, Zhang L, Lin J. Ordering kinetics of lamella-forming block copolymers under the guidance of various external fields studied by dynamic self-consistent field theory. Phys Chem Chem Phys 2017; 19:6707-6720. [DOI: 10.1039/c6cp08726d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We theoretically engineer a new scheme, which integrates a permanent field for pattern registration and a dynamic external field for defect annihilation, to direct the self-assembly of block copolymers.
Collapse
Affiliation(s)
- Xiaomin Wan
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Tong Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
30
|
Some Algebraic Polynomials and Topological Indices of Generalized Prism and Toroidal Polyhex Networks. Symmetry (Basel) 2016. [DOI: 10.3390/sym9010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
|
32
|
Block copolymer thin films: Characterizing nanostructure evolution with in situ X-ray and neutron scattering. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Majewski PW, Yager KG. Rapid ordering of block copolymer thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:403002. [PMID: 27537062 DOI: 10.1088/0953-8984/28/40/403002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times-hours or days-required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.
Collapse
Affiliation(s)
- Pawel W Majewski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA. Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
34
|
Giammaria TJ, Ferrarese Lupi F, Seguini G, Perego M, Vita F, Francescangeli O, Wenning B, Ober CK, Sparnacci K, Antonioli D, Gianotti V, Laus M. Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9897-9908. [PMID: 27020526 DOI: 10.1021/acsami.6b02300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Block copolymer (BCP) self-assembly is expected to complement conventional optical lithography for the fabrication of next-generation microelectronic devices. In this regard, silicon-containing BCPs with a high Flory-Huggins interaction parameter (χ) are extremely appealing because they form high-resolution nanostructures with characteristic dimensions below 10 nm. However, due to their slow self-assembly kinetics and low thermal stability, these silicon-containing high-χ BCPs are usually processed by solvent vapor annealing or in solvent-rich ambient at a low annealing temperature, significantly increasing the complexity of the facilities and of the procedures. In this work, the self-assembly of cylinder-forming polystyrene-block-poly(dimethylsiloxane-random-vinylmethylsiloxane) (PS-b-P(DMS-r-VMS)) BCP on flat substrates is promoted by means of a simple thermal treatment at high temperatures. Homogeneous PS-b-P(DMS-r-VMS) thin films covering the entire sample surface are obtained without any evidence of dewetting phenomena. The BCP arranges in a single layer of cylindrical P(DMS-r-VMS) nanostructures parallel-oriented with respect to the substrate. By properly adjusting the surface functionalization, the heating rate, the annealing temperature, and the processing time, one can obtain correlation length values larger than 1 μm in a time scale fully compatible with the stringent requirements of the microelectronic industry.
Collapse
Affiliation(s)
- Tommaso Jacopo Giammaria
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Francesco Vita
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica and CNISM, Universitá Politecnica delle Marche , Via Brecce Bianche, 60131 Ancona, Italy
| | - Oriano Francescangeli
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica and CNISM, Universitá Politecnica delle Marche , Via Brecce Bianche, 60131 Ancona, Italy
| | - Brandon Wenning
- Department of Materials Science and Engineering, Cornell University , Bard Hall, Ithaca, New York 14853, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University , Bard Hall, Ithaca, New York 14853, United States
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
35
|
Cong Z, Zhang L, Wang L, Lin J. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing. J Chem Phys 2016; 144:114901. [DOI: 10.1063/1.4943864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhinan Cong
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Qu T, Zhao Y, Li Z, Wang P, Cao S, Xu Y, Li Y, Chen A. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers. NANOSCALE 2016; 8:3268-3273. [PMID: 26816139 DOI: 10.1039/c5nr09140c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.
Collapse
Affiliation(s)
- Ting Qu
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zheng X, Li Z, Zhao Y, Qu T, Cao S, Wang P, Li Y, Iyoda T, Chen A. Polydimethylsiloxane-assisted alignment transition from perpendicular to parallel of cylindrical microdomains in block copolymer films. RSC Adv 2016. [DOI: 10.1039/c6ra21165h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The orientation transition from perpendicular to parallel alignment of PEO cylindrical microdomains within PEO-b-PMA(Az) films has been demonstrated via introducing tiny polydimethylsiloxane (PDMS) into the block copolymers.
Collapse
Affiliation(s)
- Xiaoxiong Zheng
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| | - Zongbo Li
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| | - Yongbin Zhao
- National Institute of Clean and Low Carbon Energy
- Future Science and Technology City
- Beijing 102209
- P. R. China
| | - Ting Qu
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| | - Shubo Cao
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| | - Pingping Wang
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| | - Yayuan Li
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| | - Tomokazu Iyoda
- Division of Integrated Molecular Engineering
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Aihua Chen
- School of Materials Science and Engineering
- Beihang University
- Beijing
- P. R. China
| |
Collapse
|
38
|
Jackson EA, Lee Y, Radlauer MR, Hillmyer MA. Well-Ordered Nanoporous ABA Copolymer Thin Films via Solvent Vapor Annealing, Homopolymer Blending, and Selective Etching of ABAC Tetrablock Terpolymers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27331-27339. [PMID: 26642426 DOI: 10.1021/acsami.5b08856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Solvent vapor annealing treatments are used to control the orientation of nanostructures produced in thin films of a poly(styrene)-block-poly(isoprene)-block-poly(styrene)-block-poly((±)-lactide) (PS-PI-PS-PLA) and its blends with PLA homopolymer. The PS-PI-PS-PLA tetrablock terpolymer, previously determined to adopt a core(PLA)-shell(PS) cylindrical morphology in the bulk, gave perpendicular alignment of PLA cylinders over a limited range of thicknesses using a mixed solvent environment of tetrahydrofuran and acetone. On the other hand, perpendicular alignment was achieved regardless of film thickness by inclusion of 5 wt % homopolymer PLA in the PS-PI-PS-PLA tetrablock. Tapping mode atomic force microscopy (AFM) was used to visualize film surface morphologies. Subsequent reactive ion etching (RIE) and basic hydrolysis of PLA produced 15 nm pores in a PS-PI-PS triblock thin film matrix. Nanoporosity was confirmed by scanning electron microscopy (SEM) images and the vertical continuity of pores was confirmed by cross-sectional SEM analysis.
Collapse
Affiliation(s)
- Elizabeth A Jackson
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Youngmin Lee
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Madalyn R Radlauer
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
39
|
Liedel C, Lewin C, Tsarkova L, Böker A. Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6058-6064. [PMID: 26449286 DOI: 10.1002/smll.201502259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/02/2015] [Indexed: 06/05/2023]
Abstract
It is demonstrated that the orientation of striped patterns can be reversibly switched between two perpendicular in-plane orientations upon exposure to electric fields. The results on thin films of symmetric polystyrene-block-poly(2-vinyl pyridine) polymer in the intermediate segregation regime disclose two types of reorientation mechanisms from perpendicular to parallel relative to the electric field orientation. Domains orient via grain rotation and via formation of defects such as stretched undulations and temporal phase transitions. The contribution of additional fields to the structural evolution is also addressed to elucidate the generality of the observed phenomena. In particular solvent effects are considered. This study reveals the stabilization of the meta-stable in-plane oriented lamella due to sequential swelling and quenching of the film. Further, the reorientation behavior of lamella domains blended with selective nanoparticles is addressed, which affect the interfacial tensions of the blocks and hence introduce another internal field to the studied system. Switching the orientation of aligned block copolymer patterns between two orthogonal directions may open new applications of nanomaterials as switchable electric nanowires or optical gratings.
Collapse
Affiliation(s)
- Clemens Liedel
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14476, Potsdam, Germany
| | - Christian Lewin
- Institute of Physical Chemistry, RWTH Aachen University and DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Larisa Tsarkova
- Institute of Physical Chemistry, RWTH Aachen University and DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Alexander Böker
- Fraunhofer-Institut für Angewandte Polymerforschung (IAP), Lehrstuhl für Polymermaterialien und Polymertechnologien, Universität Potsdam, Geiselbergstrasse 69, 14476, Potsdam, Germany
| |
Collapse
|
40
|
Saito I, Miyazaki T, Yamamoto K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-ray Scattering Utilizing Low-Energy X-rays. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Itsuki Saito
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tsukasa Miyazaki
- Nitto Denko Corporation, 1-1-2, Shimohozumi,
Ibaraki, Osaka 567-8680, Japan
| | - Katsuhiro Yamamoto
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
41
|
Gunkel I, Gu X, Sun Z, Schaible E, Hexemer A, Russell TP. An
in situ
GISAXS study of selective solvent vapor annealing in thin block copolymer films: Symmetry breaking of in‐plane sphere order upon deswelling. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23933] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ilja Gunkel
- Polymer Science and Engineering DepartmentUniversity of Massachusetts at Amherst120 Governors DriveAmherst Massachusetts01003
- Lawrence Berkeley National LaboratoryAdvanced Light Source1 Cyclotron RoadBerkeley California94720
- Adolphe Merkle InstituteChemin Des Verdiers 4CH‐1700Fribourg Switzerland
| | - Xiaodan Gu
- Polymer Science and Engineering DepartmentUniversity of Massachusetts at Amherst120 Governors DriveAmherst Massachusetts01003
- Department of Chemical EngineeringStanford University443 via OrtegaStanford California94305
| | - Zhiwei Sun
- Polymer Science and Engineering DepartmentUniversity of Massachusetts at Amherst120 Governors DriveAmherst Massachusetts01003
| | - Eric Schaible
- Lawrence Berkeley National LaboratoryAdvanced Light Source1 Cyclotron RoadBerkeley California94720
| | - Alexander Hexemer
- Lawrence Berkeley National LaboratoryAdvanced Light Source1 Cyclotron RoadBerkeley California94720
| | - Thomas P. Russell
- Polymer Science and Engineering DepartmentUniversity of Massachusetts at Amherst120 Governors DriveAmherst Massachusetts01003
- Lawrence Berkeley National LaboratoryMaterials Science Division1 Cyclotron RoadBerkeley California94720
| |
Collapse
|
42
|
Majewski PW, Yager KG. Latent Alignment in Pathway-Dependent Ordering of Block Copolymer Thin Films. NANO LETTERS 2015; 15:5221-8. [PMID: 26161969 DOI: 10.1021/acs.nanolett.5b01463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Block copolymers spontaneously form well-defined nanoscale morphologies during thermal annealing. Yet, the structures one obtains can be influenced by nonequilibrium effects, including processing history or pathway-dependent assembly. Here, we explore various pathways for ordering of block copolymer thin films, using oven-annealing, as well as newly disclosed methods for rapid photothermal annealing and photothermal shearing. We report the discovery of an efficient pathway for ordering self-assembled films: ultrarapid shearing of as-cast films induces "latent alignment" in the disordered morphology. Subsequent thermal processing can then develop this directly into a uniaxially aligned morphology with low defect density. This deeper understanding of pathway-dependence may have broad implications in self-assembly.
Collapse
Affiliation(s)
- Pawel W Majewski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
43
|
Davis RL, Michal BT, Chaikin PM, Register RA. Progression of Alignment in Thin Films of Cylinder-Forming Block Copolymers upon Shearing. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Raleigh L. Davis
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Brian T. Michal
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul M. Chaikin
- Department
of Physics, New York University, New York, New York 10003, United States
| | - Richard A. Register
- Department
of Chemical and Biological Engineering and Princeton Institute for
the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
44
|
Murphy JN, Harris KD, Buriak JM. Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns. PLoS One 2015; 10:e0133088. [PMID: 26207990 PMCID: PMC4514826 DOI: 10.1371/journal.pone.0133088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/22/2015] [Indexed: 11/22/2022] Open
Abstract
Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects. Unfortunately, few tools are readily available to researchers, particularly those engaged in the synthesis and design of new polymeric systems with the potential for patterning, to measure defects in such line patterns. To this end, we present an image analysis tool, which we have developed and made available, to measure the characteristics of such patterns in an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship between the size of each polymer and measured characteristics including line period, line-width, defect density, line-edge roughness (LER), line-width roughness (LWR), and correlation length. Finally, we explore the line-edge roughness, line-width roughness, defect density, and correlation length as a function of the image area sampled to determine each in a more rigorous fashion.
Collapse
Affiliation(s)
- Jeffrey N. Murphy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| | - Kenneth D. Harris
- National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| | - Jillian M. Buriak
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Affiliation(s)
- Pawel W. Majewski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
46
|
Ye C, Takigawa T, Burtovvy OS, Langsdorf L, Jablonski D, Bell A, Vogt BD. Impact of Nanostructure on Mechanical Properties of Norbornene-based Block Copolymers under Simulated Operating Conditions for Biobutanol Membranes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11765-11774. [PMID: 25984992 DOI: 10.1021/acsami.5b02692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structure and mechanical properties of a novel block copolymer (BCP) system with T(g)'s for both segments exceeding 300 °C, poly(butylnorbornene)-block-poly(hydroxyhexafluoroisopropyl norbornene) (BuNB-b-HFANB), are investigated as a function of processing conditions used for solvent vapor annealing (SVA). Solvent selection impacts long-range order markedly, but unexpectedly vertical orientation of cylinders are preferred over a wide range of solubility parameters, as determined by atomic force microscopy and grazing incidence small-angle X-ray scattering. The mechanical properties (elastic modulus, fracture strength, and onset fracture strain) are dependent upon the long-range order induced during SVA and determined using the combination of surface wrinkling and cracking. The modulus and fracture strength of the films increase from 1.44 GPa and 12.1 MPa to 1.77 GPa and 17.5 MPa, respectively, whereas the onset fracture strain decreases from 1.6% to approximately 0.6% as the ordering is improved. The polarity difference in the segments of the BCP is attractive for membrane separations, especially butanol-water. For biobutanol recovery, the titers are typically <3 wt % butanol; exposure of the BCP membrane to aqueous 1 wt % butanol decreases the elastic modulus to approximately 0.90 GPa, irrespective of the morphology, despite the high T(g) of both segments and limited swelling (5.0 wt %). Correspondingly, the onset fracture strain of these swollen films is estimated to increase significantly to 6-7%. These results indicate that operating conditions impact the mechanical performance of BCP membranes more than their morphology despite the high T(g) of the neat copolymer. Wrinkling and cracking provide a facile route to test the mechanical properties of membranes under simulated operando conditions.
Collapse
Affiliation(s)
- Changhuai Ye
- †Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Tamami Takigawa
- ‡Promerus, LLC, 9921 Brecksville Road, Brecksville, Ohio 44107, United States
| | | | - Leah Langsdorf
- ‡Promerus, LLC, 9921 Brecksville Road, Brecksville, Ohio 44107, United States
| | - Dane Jablonski
- ‡Promerus, LLC, 9921 Brecksville Road, Brecksville, Ohio 44107, United States
| | - Andrew Bell
- ‡Promerus, LLC, 9921 Brecksville Road, Brecksville, Ohio 44107, United States
| | - Bryan D Vogt
- †Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
47
|
Luo M, Scott DM, Epps TH. Writing Highly Ordered Macroscopic Patterns in Cylindrical Block Polymer Thin Films via Raster Solvent Vapor Annealing and Soft Shear. ACS Macro Lett 2015; 4:516-520. [PMID: 35596286 DOI: 10.1021/acsmacrolett.5b00126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Block polymers (BPs) potentially can be used to template large arrays of nanopatterns for advanced nanotechnologies. However, the practical utilization of directed BP self-assembly typically requires guide patterns of relatively small size scales. In this work, the macroscopic alignment of block polymer cylinders on a template-free substrate is achieved through raster solvent vapor annealing combined with soft shear (RSVA-SS). Spatial control over nanoscale structures is realized by using a solvent vapor delivery nozzle, poly(dimethylsiloxane) shearing pad, and motorized stage. Complex patterns including dashes, crossed lines, and curves are demonstrated, along with the ability for large area alignment and scale-up for industry applications. The unique ability to directly write macroscopic patterns with microscopically aligned BP nanostructures will open new avenues of applied research in nanotechnology.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemical and Biomolecular
Engineering and ‡Department of Materials Science and
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Douglas M. Scott
- Department of Chemical and Biomolecular
Engineering and ‡Department of Materials Science and
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical and Biomolecular
Engineering and ‡Department of Materials Science and
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
48
|
Qiang Z, Wadley ML, Vogt BD, Cavicchi KA. Facile non-lithographic route to highly aligned silica nanopatterns using unidirectionally aligned polystyrene-block
-polydimethylsiloxane films. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhe Qiang
- Department of Polymer Engineering; University of Akron, 250 S Forge St.; Akron OH 44325 United States
| | - Maurice L. Wadley
- Department of Polymer Engineering; University of Akron, 250 S Forge St.; Akron OH 44325 United States
| | - Bryan D. Vogt
- Department of Polymer Engineering; University of Akron, 250 S Forge St.; Akron OH 44325 United States
| | - Kevin A. Cavicchi
- Department of Polymer Engineering; University of Akron, 250 S Forge St.; Akron OH 44325 United States
| |
Collapse
|
49
|
Jeong J, Ha JS, Lee SS, Son JG. Topcoat-Assisted Perpendicular and Straightly Parallel Coexisting Orientations of Block Copolymer Films. Macromol Rapid Commun 2015; 36:1261-6. [DOI: 10.1002/marc.201500088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/12/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Jiyoung Jeong
- Photo-Electronic Hybrids Research Center; Korea Institute of Science and Technology; 14 gil-5 Hwarangno Seongbuk-gu Seoul 136-791 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Jeong Sook Ha
- KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Sang-Soo Lee
- Photo-Electronic Hybrids Research Center; Korea Institute of Science and Technology; 14 gil-5 Hwarangno Seongbuk-gu Seoul 136-791 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Jeong Gon Son
- Photo-Electronic Hybrids Research Center; Korea Institute of Science and Technology; 14 gil-5 Hwarangno Seongbuk-gu Seoul 136-791 Republic of Korea
| |
Collapse
|
50
|
Abstract
Mesoporous carbon materials have been extensively studied because of their vast potential applications ranging from separation and adsorption, catalysis, and electrochemistry to energy storage.
Collapse
Affiliation(s)
- Wang Xin
- College of Water Science
- Beijing Normal University
- Beijing 100875
- China
- State Key Laboratory of Environmental Criteria and Risk Assessment
| | - Yonghui Song
- College of Water Science
- Beijing Normal University
- Beijing 100875
- China
- State Key Laboratory of Environmental Criteria and Risk Assessment
| |
Collapse
|