1
|
Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A. Cyclodextrin 'Chaperones' Enable Quasi-Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red-shifted Photoswitches in Water. Angew Chem Int Ed Engl 2024; 63:e202405582. [PMID: 38640085 DOI: 10.1002/anie.202405582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Precision-engineered light-triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π-conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host-guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene-end-functionalized star-shaped polyethylene glycols (sPEGs). We initially unravel details of the host-guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi-ideal model networks, and derive details on their association dynamics using in-depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo-mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.
Collapse
Affiliation(s)
- Daniel Hoenders
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Simon Ludwanowski
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Walther
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
2
|
Aomura K, Yasuda Y, Yamada T, Sakai T, Mayumi K. Quasi-elastic neutron scattering study on dynamics of polymer gels with controlled inhomogeneity under uniaxial deformation. SOFT MATTER 2022; 19:147-152. [PMID: 36477753 DOI: 10.1039/d2sm00784c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We study the segmental and monomer dynamics of polymer gels with controlled inhomogeneity under uniaxial deformation by means of quasi-elastic neutron scattering (QENS). In order to clarify the effect of the homogeneity of a network structure on the polymer dynamics in gels, we compare two types of polymer gels with controlled homogeneity: a homogeneous tetra-PEG gel (homo-gel) prepared from uniform tetra-arm pre-polymers and a heterogeneous tetra-PEG gel (hetero-gel) with a small amount of shorter tetra-PEG pre-polymer. The different inhomogeneity in the homo-gel and the hetero-gel has little effect on the average relaxation time of the chain dynamics in the undeformed state. The difference in the local dynamics in the gels is emphasized under uniaxial deformation: while the homo-gel shows a single relaxation mode, the hetero-gel exhibits a bimodal distribution of relaxation times with a slow dynamic mode ascribed to highly stretched short strands, which causes a more brittle macroscopic fracture compared with that in the case of the homo-gel.
Collapse
Affiliation(s)
- Kosuke Aomura
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-Shi, Chiba, 277-8581, Japan
| | - Yusuke Yasuda
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg., 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Koichi Mayumi
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-Shi, Chiba, 277-8581, Japan
| |
Collapse
|
3
|
Bunk C, Löser L, Fribiczer N, Komber H, Jakisch L, Scholz R, Voit B, Seiffert S, Saalwächter K, Lang M, Böhme F. Amphiphilic Model Networks Based on PEG and PCL Tetra-arm Star Polymers with Complementary Reactivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolin Bunk
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lucas Löser
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Lothar Jakisch
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Reinhard Scholz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kay Saalwächter
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Michael Lang
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
4
|
Hagmann K, Bunk C, Böhme F, von Klitzing R. Amphiphilic Polymer Conetwork Gel Films Based on Tetra-Poly(ethylene Glycol) and Tetra-Poly(ε-Caprolactone). Polymers (Basel) 2022; 14:2555. [PMID: 35808600 PMCID: PMC9269314 DOI: 10.3390/polym14132555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023] Open
Abstract
The preparation and investigation of gel films from a model amphiphilic polymer conetwork (ACN) grant a deeper control and understanding of the structure-property relationship in the bulk phase and at the interface of materials with promising applications. In order to allow the simultaneous transport of hydrophilic and hydrophobic substances, polymeric networks with finely distributed hydrophilic and hydrophobic components are very suitable. When designing new soft materials such as coatings, in addition to the structure in the bulk phase, the structure at the interface plays a critical role. In this study, two alternating tetra-arm star polymers poly(ε-caprolactone) (tetra-PCL-Ox) and amino-terminated poly(ethylene glycol) (tetra-PEG-NH2) form an amphiphilic polymer conetwork. The correlation between different synthesis strategies for gel films of this ACN model system and their resulting properties will be described. Through various spin coating techniques, control over film thickness and roughness is achievable and highlights differences to macroscopic gel samples. Atomic force microscopy (AFM) measurements reveal the effect of solvents of different polarities on the swelling ability and surface structure. This correlates with AFM investigations of the mechanical properties on ACN gel films, demonstrating a strong effect on the resulting elastic modulus E, depending on the presence or absence of a good solvent during synthesis. Furthermore, a higher E modulus is obtained in the presence of the selective solvent water, compared to the non-selective solvent toluene. This observation is explained through selective swelling of the tetra-arm star polymers displaying a different hydrophobicity.
Collapse
Affiliation(s)
- Kevin Hagmann
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 8, D-64289 Darmstadt, Germany;
| | - Carolin Bunk
- Leibniz-Institut für Polymerforschung, Dresden e.V, Hohe Str. 6, D-01069 Dresden, Germany; (C.B.); (F.B.)
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung, Dresden e.V, Hohe Str. 6, D-01069 Dresden, Germany; (C.B.); (F.B.)
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 8, D-64289 Darmstadt, Germany;
| |
Collapse
|
5
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
6
|
Hiroi T, Samitsu S, Kano H, Ishioka K. Calibration for a count rate-dependent time correlation function and a random noise reduction in pulsed dynamic light scattering. ANAL SCI 2022; 38:607-611. [PMID: 35286629 PMCID: PMC8971174 DOI: 10.1007/s44211-022-00071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
A pulsed dynamic light scattering (DLS) system, which would be potentially applied to nonlinear DLS with molecular selectivity, was developed by combining a sub-nanosecond pulsed laser with a software-based detection system. The distortion of the time correlation function due to the clipping effect in the photon counting module, and the resulting underestimation of the particle size, were successfully calibrated based on a theoretical simulation. The effective removal of random noises was also demonstrated via time gating synchronized to the laser pulses.
Collapse
|
7
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
8
|
Lattuada E, Caprara D, Piazza R, Sciortino F. Spatially uniform dynamics in equilibrium colloidal gels. SCIENCE ADVANCES 2021; 7:eabk2360. [PMID: 34860553 PMCID: PMC8641940 DOI: 10.1126/sciadv.abk2360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gels of DNA nanostars, besides providing a compatible scaffold for biomedical applications, are ideal model systems for testing the physics of equilibrium colloidal gels. Here, using dynamic light scattering and photon correlation imaging (a recent technique that, by blending light scattering and imaging, provides space-resolved quantification of the dynamics), we follow the process of gel formation over 10 orders of magnitude in time in a model system of tetravalent DNA nanostars in solution, a realization of limited-valence colloids. Such a system, depending on the nanostar concentration, can form either equilibrium or phase separation gels. In stark contrast to the heterogeneity of concentration and dynamics displayed by the phase separation gel, the equilibrium gel shows absence of aging and a remarkable spatially uniform dynamics.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Corresponding author.
| |
Collapse
|
9
|
Timaeva OI, Kuz'micheva GM, Pashkin II, Czakkel O, Prevost S. Structure and dynamics of titania - poly(N-vinyl caprolactam) composite hydrogels. SOFT MATTER 2020; 16:219-228. [PMID: 31774424 DOI: 10.1039/c9sm01619h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The morphologies and dynamics of poly(N-vinyl caprolactam) (PVCL) based hydrogels with titania nanoparticles in different states (native, air-dried to a constant weight and swollen in H2O or D2O) are studied by a combination of complementary techniques: wide angle X-ray scattering, small angle neutron scattering, neutron spin echo spectroscopy, differential scanning calorimetry. The results suggest the presence of different structural types of water leading to different properties of the hydrogels. We propose a hierarchical structure of hydrogels spanning from the molecular to the microscopic scale consistent with both the static structure (polymer mesh size, association of the nodes of crosslinks and microchains of PVCL) and the dynamics (rate of relaxation of polymer chains, hydrodynamic polymer-polymer correlation length). The presence of nanoscale titania does not change the molecular structure and nanostructure due to its aggregation into meso-domains, but does affect the microstructure, changing the response rate to a temperature jump from 20 to 50 °C. Titania nanoparticles do not change the equilibrium swelling degree of hydrogels.
Collapse
Affiliation(s)
- O I Timaeva
- Federal State Budget Educational Institution of Higher Education "MIREA - Russian Technological University", pr. Vernadskogo 86, Moscow, 119571, Russia.
| | - G M Kuz'micheva
- Federal State Budget Educational Institution of Higher Education "MIREA - Russian Technological University", pr. Vernadskogo 86, Moscow, 119571, Russia.
| | - I I Pashkin
- Federal State Budget Educational Institution of Higher Education "MIREA - Russian Technological University", pr. Vernadskogo 86, Moscow, 119571, Russia.
| | - O Czakkel
- Institut Laue-Langevin, CS 20156, F-38042 Grenoble Cedex 9, France
| | - S Prevost
- Institut Laue-Langevin, CS 20156, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
10
|
Fujiyabu T, Yoshikawa Y, Kim J, Sakumichi N, Chung UI, Sakai T. Shear Modulus Dependence of the Diffusion Coefficient of a Polymer Network. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takeshi Fujiyabu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Yoshikawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junhyuk Kim
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoyuki Sakumichi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Liu W, Gong X, Zhu Y, Wang J, Ngai T, Wu C. Probing Sol–Gel Matrices and Dynamics of Star PEG Hydrogels Near Overlap Concentration. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | | | |
Collapse
|
12
|
Witte J, Kyrey T, Lutzki J, Dahl AM, Houston J, Radulescu A, Pipich V, Stingaciu L, Kühnhammer M, Witt MU, von Klitzing R, Holderer O, Wellert S. A comparison of the network structure and inner dynamics of homogeneously and heterogeneously crosslinked PNIPAM microgels with high crosslinker content. SOFT MATTER 2019; 15:1053-1064. [PMID: 30663759 DOI: 10.1039/c8sm02141d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Poly(N-isopropylacrylamide) microgel particles were prepared via a "classical" surfactant-free precipitation polymerization and a continuous monomer feeding approach. It is anticipated that this yields microgel particles with different internal structures, namely a dense core with a fluffy shell for the classical approach and a more even crosslink distribution in the case of the continuous monomer feeding approach. A thorough structural investigation of the resulting microgels with dynamic light scattering, atomic force microscopy and small angle neutron scattering was conducted and related to neutron spin echo spectroscopy data. In this way a link between structural and dynamic features of the internal polymer network was made.
Collapse
Affiliation(s)
- Judith Witte
- Institute of Chemistry, TU Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
In this article we introduce the concept of ideal reversible polymer networks, which have well-controlled polymer network structures similar to ideal covalent polymer networks but exhibit viscoelastic behaviors due to the presence of reversible crosslinks. We first present a theory to describe the mechanical properties of ideal reversible polymer networks. Because short polymer chains of equal length are used to construct the network, there are no chain entanglements and the chains' Rouse relaxation time is much shorter than the reversible crosslinks' characteristic time. Therefore, the ideal reversible polymer network behaves as a single Maxwell element of a spring and a dashpot in series, with the instantaneous shear modulus and relaxation time determined by the concentration of elastically-active chains and the dynamics of reversible crosslinks, respectively. The theory provides general methods to (i) independently control the instantaneous shear modulus and relaxation time of the networks, and to (ii) quantitatively measure kinetic parameters of the reversible crosslinks, including reaction rates and activation energies, from macroscopic viscoelastic measurements. To validate the proposed theory and methods, we synthesized and characterized the mechanical properties of a hydrogel composed of 4-arm polyethylene glycol (PEG) polymers end-functionalized with reversible crosslinks. All the experiments conducted by varying pH, temperature and polymer concentration were consistent with the predictions of our proposed theory and methods for ideal reversible polymer networks.
Collapse
|
15
|
Zhang E, Zhao Y, Yang W, Chen H, Liu W, Dai X, Qiu X, Ji X. Viscoelastic behaviour and relaxation modes of one polyamic acid organogel studied by rheometers and dynamic light scattering. SOFT MATTER 2017; 14:73-82. [PMID: 29231227 DOI: 10.1039/c7sm02185b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel polyamic acid (PAA from BAPMPO-BPDA) organogel was synthesized and characterized via dynamic light scattering (DLS), a classical rheometer, and diffusion wave spectroscopy (DWS). In situ monitoring was performed using a classical rheometer to observe the formation of the PAA organogel. The rheological curves confirm the formation of the PAA gel network and the origin of hydrogen bonding from the -NH- group (donor) and P[double bond, length as m-dash]O group (acceptor). The autocorrelation functions of PAA under different conditions (pure gel, gel with NaNO3, gel with formamide) are measured via DLS, and different characteristic times are obtained via the CONTIN method. Three different relaxation modes of the PAA gel, i.e., fast, intermediate and slow modes, are observed. The fast and intermediate modes show a diffusive behaviour (τ ∼ q-2), whereas the slow mode did not. When enough formamide is added into the PAA gel, the fast mode disappears; addition of enough salt (NaNO3) leads to disappearance of the slow mode. The relationship between characteristic time and diffusion vector demonstrates that the different decorrelation modes consisted of two homodyne and two heterodyne components. Two single-exponential functions and two stretched exponential functions were used, and the different decorrelation modes of the PAA gel are expressed with a non-linear function, which fits the autocorrelation function very well. And the different decorrelation modes are also discussed. DWS results in the high-frequency region not only demonstrate the formation of a PAA gel network but also indicate that the semiflexible chains of PAA are due to electrostatic interaction. The DWS results at different time scales are analyzed by applying the de Gennes' reptation model.
Collapse
Affiliation(s)
- Ensong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Watanabe N, Li X, Shibayama M. Probe Diffusion during Sol–Gel Transition of a Radical Polymerization System Using Isorefractive Dynamic Light Scattering. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nobuyuki Watanabe
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Xiang Li
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Mitsuhiro Shibayama
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
17
|
|
18
|
Prabhu VM, Venkataraman S, Yang YY, Hedrick JL. Equilibrium Self-Assembly, Structure, and Dynamics of Clusters of Star-Like Micelles. ACS Macro Lett 2015; 4:1128-1133. [PMID: 35614817 DOI: 10.1021/acsmacrolett.5b00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hierarchical structure and dynamics of clusters of self-assembled star-like micelles formed by oligocarbonate-fluorene end-functionalized poly(ethylene glycol) triblock copolymers were characterized by small-angle neutron scattering and static and dynamic light scattering at concentrations below the gel point. These micelles persist in equilibrium with concentration-dependent sized hierarchical clusters. When probed at length scales within the clusters by dynamic light scattering, the clusters exhibit Zimm dynamics, reminiscent of dilute mesoscale chains. The ability to form chain-like clusters is attributed to the π-π stacking of the fluorene groups that drives the formation of micelles. This enables a design variable to control the rheology of injectable gels. Further, predictions of the solvent (D2O) viscosity show deviations consistent with polymers in organic solvents, stressing a need for refinement of molecular theories of polymer dynamics.
Collapse
Affiliation(s)
- Vivek M. Prabhu
- Material
Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Shrinivas Venkataraman
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way,
The Nanos, Singapore 138669, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way,
The Nanos, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
19
|
Shibayama M, Nishi K, Hiroi T. Gelation Kinetics and Polymer Network Dynamics of Homogeneous Tetra-PEG Gels. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/masy.201400164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mitsuhiro Shibayama
- Institute for Solid State Physics; the University of Tokyo; Kashiwa Chiba 277-8581 Japan
| | - Kengo Nishi
- Institute for Solid State Physics; the University of Tokyo; Kashiwa Chiba 277-8581 Japan
| | - Takashi Hiroi
- Institute for Solid State Physics; the University of Tokyo; Kashiwa Chiba 277-8581 Japan
| |
Collapse
|
20
|
Kamerlin N, Ekholm T, Carlsson T, Elvingson C. Construction of a closed polymer network for computer simulations. J Chem Phys 2014; 141:154113. [DOI: 10.1063/1.4897447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Affiliation(s)
- Fany Di Lorenzo
- Helmholtz-Zentrum Berlin; F-ISFM Soft Matter and Functional Materials; Hahn-Meitner-Platz 1 D-14109 Berlin Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustr. 3 D-14195 Berlin Germany
- Helmholtz Virtual Institute; “Multifunctional Biomaterials for Medicine”; Kantstr. 55 D-14513 Teltow Germany
| | - Sebastian Seiffert
- Helmholtz-Zentrum Berlin; F-ISFM Soft Matter and Functional Materials; Hahn-Meitner-Platz 1 D-14109 Berlin Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustr. 3 D-14195 Berlin Germany
- Helmholtz Virtual Institute; “Multifunctional Biomaterials for Medicine”; Kantstr. 55 D-14513 Teltow Germany
| |
Collapse
|