1
|
Jiang NC, Zhou Z, Niu J. Quantitative, Regiospecific, and Stereoselective Radical Ring-Opening Polymerization of Monosaccharide Cyclic Ketene Acetals. J Am Chem Soc 2024; 146:5056-5062. [PMID: 38345300 DOI: 10.1021/jacs.3c14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, the addition of maleimide was found to improve the incorporation efficiency of monosaccharide CKA in the copolymerization with vinyl monomers and produced unique degradable terpolymers with carbohydrate motifs in the polymer backbone.
Collapse
Affiliation(s)
- Na-Chuan Jiang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Balaji A, Bell CA, Houston ZH, Bridle KR, Genz B, Fletcher NL, Ramm GA, Thurecht KJ. Exploring the impact of severity in hepatic fibrosis disease on the intrahepatic distribution of novel biodegradable nanoparticles targeted towards different disease biomarkers. Biomaterials 2023; 302:122318. [PMID: 37708659 DOI: 10.1016/j.biomaterials.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting. Here, we have systematically studied the impact of targeting strategy, the degree of macrophage infiltration during fibrosis, and the severity of fibrosis, on the liver uptake and intrahepatic distribution of nanocarriers. When tested in mice with advanced liver fibrosis, we demonstrated that the targeting ligand density plays a significant role in determining the uptake and retention of the nanoparticles in the fibrotic liver whilst the type of targeting ligand modulates the trafficking of these nanoparticles into the cell population of interest - activated hepatic stellate cells (aHSCs). Engineering the targeting strategy indeed reduced the uptake of nanoparticles in typical mononuclear phagocyte (MPS) cell populations, but not the infiltrated macrophages. Meanwhile, additional functionalization may be required to enhance the efficacy of DDS in end-stage fibrosis/cirrhosis compared to early stages.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Kim R Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland 4120, Australia
| | - Berit Genz
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Tong L, Zhou M, Chen Y, Lu K, Zhang Z, Mu Y, He Z. A New Self-Healing Degradable Copolymer Based on Polylactide and Poly(p-dioxanone). Molecules 2023; 28:molecules28104021. [PMID: 37241762 DOI: 10.3390/molecules28104021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, the copolymerization of poly (p-dioxanone) (PPDO) and polylactide (PLA) was carried out via a Diels-Alder reaction to obtain a new biodegradable copolymer with self-healing abilities. By altering the molecular weights of PPDO and PLA precursors, a series of copolymers (DA2300, DA3200, DA4700 and DA5500) with various chain segment lengths were created. After verifying the structure and molecular weight by 1H NMR, FT-IR and GPC, the crystallization behavior, self-healing properties and degradation properties of the copolymers were evaluated by DSC, POM, XRD, rheological measurements and enzymatic degradation. The results show that copolymerization based on the DA reaction effectively avoids the phase separation of PPDO and PLA. Among the products, DA4700 showed a better crystallization performance than PLA, and the half-crystallization time was 2.8 min. Compared to PPDO, the heat resistance of the DA copolymers was improved and the Tm increased from 93 °C to 103 °C. Significantly, the rheological data also confirmed that the copolymer was self-healing and showed obvious self-repairing properties after simple tempering. In addition, an enzyme degradation experiment showed that the DA copolymer can be degraded by a certain amount, with the degradation rate lying between those of PPDO and PLA.
Collapse
Affiliation(s)
- Laifa Tong
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Mi Zhou
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yulong Chen
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Kai Lu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zhaohua Zhang
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yuesong Mu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zejian He
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| |
Collapse
|
4
|
Uchiyama M, Murakami Y, Satoh K, Kamigaito M. Synthesis and Degradation of Vinyl Polymers with Evenly Distributed Thioacetal Bonds in Main Chains: Cationic DT Copolymerization of Vinyl Ethers and Cyclic Thioacetals. Angew Chem Int Ed Engl 2023; 62:e202215021. [PMID: 36369911 PMCID: PMC10107285 DOI: 10.1002/anie.202215021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/15/2022]
Abstract
We report a novel method to synthesize degradable poly(vinyl ether)s with cleavable thioacetal bonds periodically arranged in the main chains using controlled cationic copolymerization of vinyl ethers with a 7-membered cyclic thioacetal (7-CTA) via degenerative chain transfer (DT) to the internal thioacetal bonds. The thioacetal bonds, which are introduced into the main chain by cationic ring-opening copolymerization of 7-CTA with vinyl ethers, serve as in-chain dormant species to allow homogeneous propagation of vinyl ethers for all internal segments to afford copolymers with controlled overall and segmental molecular weights. The obtained polymers can be degraded into low- and controlled-molecular-weight polymers with narrow molecular weight distributions via hydrolysis. Various vinyl ethers with hydrophobic, hydrophilic, and functional pendants are available. Finally, one-pot synthesis of multiblock copolymers and their degradation into diblock copolymers are also achieved.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yukihiro Murakami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
5
|
Wang W, Rondon B, Wang Z, Wang J, Niu J. Macrocyclic Allylic Sulfone as a Universal Comonomer in Organocatalyzed Photocontrolled Radical Copolymerization with Vinyl Monomers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts02467, United States
| | - Brayan Rondon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts02467, United States
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts02467, United States
| |
Collapse
|
6
|
Bellotti V, Parkatzidis K, Wang HS, De Alwis Watuthanthrige N, Orfano M, Monguzzi A, Truong NP, Simonutti R, Anastasaki A. Light-accelerated depolymerization catalyzed by Eosin Y. Polym Chem 2023; 14:253-258. [PMID: 36760607 PMCID: PMC9843692 DOI: 10.1039/d2py01383e] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.
Collapse
Affiliation(s)
- Valentina Bellotti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | | | - Matteo Orfano
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Angelo Monguzzi
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Roberto Simonutti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| |
Collapse
|
7
|
Lages M, Pesenti T, Zhu C, Le D, Mougin J, Guillaneuf Y, Nicolas J. Degradable polyisoprene by radical ring-opening polymerization and application to polymer prodrug nanoparticles. Chem Sci 2023; 14:3311-3325. [PMID: 36970097 PMCID: PMC10034157 DOI: 10.1039/d2sc05316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Radical ring-opening copolymerization of isoprene and dibenzo[c,e]oxepane-5-thione via free-radical and controlled radical polymerizations led to degradable polyisoprene under basic, oxidative and physiological conditions with application to prodrug nanoparticles.
Collapse
Affiliation(s)
- Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Dao Le
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
8
|
Abstract
ConspectusMarine organisms such as barnacle larvae and spores of algae adhere to underwater surfaces leading to marine biofouling. This phenomenon has numerous adverse impacts on marine industries and maritime activities. Due to the diversity of fouling organisms and the complexity of the marine environment, it is a huge challenge to combat marine biofouling, which limits the development and utilization of marine resources. Since the International Marine Organization banned the use of tributyltin self-polishing copolymer (SPC) coatings in 2008, the development of an environmentally friendly and efficient anti-biofouling polymer has been the most important task in this field. Tin-free SPC is a well-established and widely used polymer binder for anti-biofouling coating today. Being a nondegradable vinyl polymer, SPC exhibits poor anti-biofouling performance in static conditions. Even more, such nondegradable polymers were considered to be a source of microplastics by the International Union for the Conservation of Nature in 2019. Recently, numerous degradable polymers, which can form dynamic surface through main chain scission, have been developed for preventing marine biofouling in static conditions. Nevertheless, the regulation of their degradation and mechanical properties is limited, and they are also difficult to functionalize. A new polymer combining the advantages of vinyl polymers and degradable polymers is needed. However, such a combination is a challenge since the former are synthesized via free radical polymerization whereas the latter are synthesized via ring-opening polymerization.In this Account, we review our recent progress toward degradable vinyl polymers for marine anti-biofouling in terms of polymerization methods and structures and properties of polymers. First, we introduce the strategies for preparing degradable vinyl polymers with an emphasis on hybrid copolymerization. Then, we present the synthesis and performance of degradable and hydrolyzable polyacrylates, degradable polyurethanes with hydrolyzable side groups, and surface-fragmenting hyperbranched polymers. Polymers with degradable main chains and hydrolyzable side groups combine the advantages of SPC and degradable polymers, so they are degradable and functional. They are becoming new-generation polymers with great potential for preparing high-efficiency, long-lasting, environmentally friendly and broad-spectrum coatings to inhibit marine biofouling. They can also find applications in wastewater treatment, biomedical materials, and other fields.
Collapse
Affiliation(s)
- Jiansen Pan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqing Ai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Zefeng Zhou
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Xuanting Tang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Stephanie Moran
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jing Jin
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Jia Niu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
10
|
Ahmed SE, Fletcher NL, Prior AR, Huda P, Bell CA, Thurecht KJ. Development of targeted micelles and polymersomes prepared from degradable RAFT-based diblock copolymers and their potential role as nanocarriers for chemotherapeutics. Polym Chem 2022. [DOI: 10.1039/d2py00257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern polymerisation techniques allow synthesis of functional block copolymers that can self-assemble into degradable nanoparticles (NPs) of different sizes and conformations.
Collapse
Affiliation(s)
- Salma E. Ahmed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas L. Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amber R. Prior
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Craig A. Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules 2021; 27:42. [PMID: 35011281 PMCID: PMC8746853 DOI: 10.3390/molecules27010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitri Matioszek
- SNF SA, ZAC de Milieux, 42160 Andrézieux-Bouthéon, France; (O.B.); (C.C.); (J.K.); (F.B.); (C.F.); (C.B.); (J.M.); (F.V.); (C.D.)
| |
Collapse
|
12
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. Angew Chem Int Ed Engl 2021; 61:e202113302. [PMID: 34890493 DOI: 10.1002/anie.202113302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of macrocyclic allylic sulfones and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity comonomer reactivity ratios over the entire range of the feed compositions. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide (SO2), which was successfully overcome by reducing the solubility of SO2. This study provides a powerful approach to degradable vinyl random copolymers with comparable material properties to non-degradable vinyl polymers.
Collapse
Affiliation(s)
- Wenqi Wang
- Boston College, Chemistry, UNITED STATES
| | | | - Devavrat Sathe
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | | | | | - Jing Jin
- Boston College, Chemistry, UNITED STATES
| | | | - Junpeng Wang
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | - Jia Niu
- Boston College, Department of Chemistry, 2609 Beacon St., Merkert Chemistry Center 214B, 02467, Chestnut Hill, UNITED STATES
| |
Collapse
|
13
|
A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 2021; 5:859-869. [PMID: 37117386 DOI: 10.1038/s41570-021-00328-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.
Collapse
|
14
|
Wenzel F, Hamzehlou S, Pardo L, Aguirre M, Leiza JR. Kinetics of Radical Ring Opening Polymerization of the Cyclic Ketene Acetal 2-Methylene-1,3-dioxepane with Vinyl Monomers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabian Wenzel
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Shaghayegh Hamzehlou
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Leticia Pardo
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Miren Aguirre
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Jose R. Leiza
- POLYMAT and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia, Spain
| |
Collapse
|
15
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Zeng TY, Xia L, Zhang Z, Hong CY, You YZ. Dithiocarbamate-mediated controlled copolymerization of ethylene with cyclic ketene acetals towards polyethylene-based degradable copolymers. Polym Chem 2021. [DOI: 10.1039/d0py00200c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this article, degradable polyethylene (PE)-based copolymers containing ester units in the backbone were prepared through the hybrid copolymerization of ethylene and cyclic ketene acetals (CKAs) mediated by dithiocarbamate successfully.
Collapse
Affiliation(s)
- Tian-You Zeng
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Lei Xia
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Ze Zhang
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Chun-Yan Hong
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Science
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|
17
|
Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020; 9:1812-1835. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radical ring-opening polymerization (rROP) allows facile incorporation of labile groups (e.g., ester) into the main chain of vinyl polymers to obtain (bio)degradable materials. rROP has focused a lot of attention especially since the advent of reversible deactivation radical polymerization (RDRP) techniques and is still incredibly moving forward, as attested by the numerous achievements in terms of monomer synthesis, macromolecular engineering, and potential biomedical applications of the resulting degradable polymers. In the present Viewpoint, we will cover the latest progress made in rROP in the last ∼5 years, such as its recent directions, its remaining limitations, and the ongoing challenges. More specifically, this will be achieved through the three different classes of monomers that recently caught most of the attention: cyclic ketene acetals (CKA), thionolactones, and macrocyclic monomers.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
18
|
Kertsomboon T, Agarwal S, Chirachanchai S. UCST‐Type Copolymer through the Combination of Water‐Soluble Polyacrylamide and Polycaprolactone‐Like Polyester. Macromol Rapid Commun 2020; 41:e2000243. [DOI: 10.1002/marc.202000243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/08/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Thanit Kertsomboon
- Bioresources Advanced Materials (B2A) The Petroleum and Petrochemical College Chulalongkorn University Bangkok 10330 Thailand
| | - Seema Agarwal
- Macromolecular Chemistry II and Center for Colloids and Interfaces University of Bayreuth Bayreuth 95440 Germany
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A) The Petroleum and Petrochemical College Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
19
|
|
20
|
Joubert F, Pasparakis G. Well‐defined backbone degradable polymer–drug conjugates synthesized by reversible
addition‐fragmentation chain‐transfer
polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fanny Joubert
- School of PharmacyUniversity College London London United Kingdom
| | - George Pasparakis
- School of PharmacyUniversity College London London United Kingdom
- Department of Chemical EngineeringUniversity of Patras Caratheodory 1, Patras Greece
| |
Collapse
|
21
|
Zeng T, You W, Chen G, Nie X, Zhang Z, Xia L, Hong C, Chen C, You Y. Degradable PE-Based Copolymer with Controlled Ester Structure Incorporation by Cobalt-Mediated Radical Copolymerization under Mild Condition. iScience 2020; 23:100904. [PMID: 32106055 PMCID: PMC7044514 DOI: 10.1016/j.isci.2020.100904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
Polyethylene (PE) is one of the most widely used materials in the world, but it is virtually undegradable and quickly accumulates in nature, which may contaminate the environment. We utilized the cobalt-mediated radical copolymerization (CMRP) of ethylene and cyclic ketene acetals (CKAs) to effectively incorporate ester groups into PE backbone as cleavable structures to make PE-based copolymer degradable under mild conditions. The content of ethylene and ester units in the produced copolymer could be finely regulated by CKA concentration or ethylene pressure. Also, the copolymerization of ethylene and CKA with other functional vinyl monomers can produce functional and degradable PE-based copolymer. All the formed PE-based copolymers could degrade in the presence of trimethylamine (Et3N).
Collapse
Affiliation(s)
- Tianyou Zeng
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei You
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Guang Chen
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Nie
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ze Zhang
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lei Xia
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunyan Hong
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Changle Chen
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yezi You
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Science, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
22
|
Spick MP, Bingham NM, Li Y, de Jesus J, Costa C, Bailey MJ, Roth PJ. Fully Degradable Thioester-Functional Homo- and Alternating Copolymers Prepared through Thiocarbonyl Addition–Ring-Opening RAFT Radical Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02497] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Abstract
This review discusses the history of reversible-deactivation radical ring-opening polymerization of cyclic ketene acetals, focusing on the preparation of degradable complex polymeric architectures.
Collapse
Affiliation(s)
- Alexander W. Jackson
- Agency for Science
- Technology and Engineering (A*Star)
- Institute of Chemical and Engineering Sciences (ICES)
- Functional Molecules and Polymers (FMP) Division
- Jurong Island
| |
Collapse
|
24
|
Main-chain degradable, pH-responsive and covalently cross-linked nanoparticles via a one-step RAFT-based radical ring-opening terpolymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Guégain E, Zhu C, Giovanardi E, Nicolas J. Radical Ring-Opening Copolymerization-Induced Self-Assembly (rROPISA). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00161] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elise Guégain
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Chen Zhu
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Erika Giovanardi
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| |
Collapse
|
26
|
Xu P, Huang X, Pan X, Li N, Zhu J, Zhu X. Hyperbranched Polycaprolactone through RAFT Polymerization of 2-Methylene-1,3-dioxepane. Polymers (Basel) 2019; 11:polym11020318. [PMID: 30960302 PMCID: PMC6419385 DOI: 10.3390/polym11020318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Hyperbranched polycaprolactone with controlled structure was synthesized by reversible addition-fragmentation chain transfer radical ring-opening polymerization along with self-condensed vinyl polymerization (SCVP) of 2-methylene-1,3-dioxepane (MDO). Vinyl 2-[(ethoxycarbonothioyl) sulfanyl] propanoate (ECTVP) was used as polymerizable chain transfer agent. Living polymerization behavior was proved via pseudo linear kinetics, the molecular weight of polymers increasing with conversion and successful chain extension. The structure of polymers was characterized by ¹H NMR spectroscopy, tripe detection gel permeation chromatography, and differential scanning calorimetry. The polymer composition was shown to be able to tune to vary the amount of ester repeat units in the polymer backbone, and hence determine the degree of branching. As expected, the degree of crystallinity was lower and the rate of degradation was faster in cases of increasing the number of branches.
Collapse
Affiliation(s)
- Ping Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaofei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Jiangsu Litian Technology Co. Ltd., Rudong County, Jiangsu 226407, China.
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Na Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Global Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China.
| |
Collapse
|
27
|
Tran J, Pesenti T, Cressonnier J, Lefay C, Gigmes D, Guillaneuf Y, Nicolas J. Degradable Copolymer Nanoparticles from Radical Ring-Opening Copolymerization between Cyclic Ketene Acetals and Vinyl Ethers. Biomacromolecules 2019; 20:305-317. [PMID: 30540444 DOI: 10.1021/acs.biomac.8b01500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Methylene-1,3-dioxepane (MDO) and different vinyl ether (VE) monomers were successfully copolymerized by free-radical radical ring-opening copolymerization (rROP) to yield P(MDO- co-VE) copolymers with Mn = 7 000-13 000 g·mol-1 and high molar fractions of MDO ( FMDO = 0.7-0.9). By using VE derivatives of different aqueous solubilities or by grafting PEG chains onto the copolymers by "click" chemistry via azide-containing VE units, hydrophobic, amphiphilic and water-soluble copolymers were obtained. The different copolymers were then formulated into nanoparticles by nanoprecipitation using Pluronics for hydrophobic copolymers, without surfactant for amphiphilic copolymers, or blended with PMDO for water-soluble copolymers. Most of the copolymers led to nanoparticles with average diameters in the 130-250 nm with narrow particle size distributions and satisfying colloidal stability for a period of at least 1-2 weeks and up to 6 months. The copolymers were successfully degraded under accelerated, hydrolytic or enzymatic conditions. Hydrophobic copolymers led to degradation kinetics in PBS similar to that of PCL and complete degradation (-95% in Mn decrease) was observed in the presence of enzymes (lipases). Preliminary cytotoxicity assays were performed on endothelial cells (HUVEC) and macrophages (J774.A1) and revealed high cell viabilities at 0.1 mg·mL-1.
Collapse
Affiliation(s)
- Johanna Tran
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Théo Pesenti
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Jonathan Cressonnier
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Catherine Lefay
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Didier Gigmes
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Yohann Guillaneuf
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| |
Collapse
|
28
|
Folini J, Huang CH, Anderson JC, Meier WP, Gaitzsch J. Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py01103j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the first amine-bearing cyclic ketene acetals (CKAs) for radical ring-opening polymerisation (RROP). The resulting polyesters and their corresponding nanoparticles were biodegradable and showed the desired pH sensitive behaviour.
Collapse
Affiliation(s)
- Jenny Folini
- Departement Chemie
- Universität Basel
- 4058 Basel
- Switzerland
| | - Chao-Hung Huang
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | | | | | - Jens Gaitzsch
- Departement Chemie
- Universität Basel
- 4058 Basel
- Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V
| |
Collapse
|
29
|
Bingham NM, Roth PJ. Degradable vinyl copolymers through thiocarbonyl addition-ring-opening (TARO) polymerization. Chem Commun (Camb) 2018; 55:55-58. [PMID: 30484445 DOI: 10.1039/c8cc08287a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The radical copolymerization of the thionolactone dibenzo[c,e]oxepane-5-thione with acrylates, acrylonitrile, and N,N-dimethylacrylamide afforded copolymers containing a controllable amount of backbone thioesters which could be selectively cleaved. The process is compatible with RAFT polymerization and promising for the development of advanced degradable polymers.
Collapse
Affiliation(s)
- Nathaniel M Bingham
- Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | - Peter J Roth
- Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
30
|
Guégain E, Tran J, Deguettes Q, Nicolas J. Degradable polymer prodrugs with adjustable activity from drug-initiated radical ring-opening copolymerization. Chem Sci 2018; 9:8291-8306. [PMID: 30542578 PMCID: PMC6240899 DOI: 10.1039/c8sc02256a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Degradable polymer prodrugs based on gemcitabine (Gem) as an anticancer drug were synthesized by 'drug-initiated' nitroxide-mediated radical ring-opening copolymerization (NMrROP) of methacrylic esters and 2-methylene-4-phenyl-1,3-dioxolane (MPDL). Different structural parameters were varied to determine the best biological performances: the nature of the monomer [i.e., oligo(ethylene glycol) methacrylate (OEGMA) or methyl methacrylate (MMA)], the nature of the Gem-polymer linker (i.e., amide or amide and diglycolate) and the MPDL content in the copolymer. Depending on the nature of the methacrylate monomer, two small libraries of water-soluble copolymer prodrugs and nanoparticles were obtained (M n ∼10 000 g mol-1, Đ = 1.1-1.5), which exhibited tunable hydrolytic degradation under accelerated conditions governed by the MPDL content. Drug-release profiles in human serum and in vitro anticancer activity on different cell lines enabled preliminary structure-activity relationships to be established. The cytotoxicity was independently governed by: (i) the MPDL content - the lower the MPDL content, the greater the cytotoxicity; (ii) the nature of the linker - the presence of a labile diglycolate linker enabled a greater Gem release compared to a simple amide bond and (iii) the hydrophilicity of the methacrylate monomer-OEGMA enabled a greater anticancer activity to be obtained compared to MMA-based polymer prodrugs. Remarkably, the optimal structural parameters enabled reaching the cytotoxic activity of the parent (free) drug.
Collapse
Affiliation(s)
- Elise Guégain
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| | - Johanna Tran
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| | - Quentin Deguettes
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| | - Julien Nicolas
- Institut Galien Paris-Sud , CNRS UMR 8612 , Univ Paris-Sud , Faculté de Pharmacie , 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry , France . ; Tel: +33 1 46 83 58 53 ; www.twitter.com/julnicolas
| |
Collapse
|
31
|
Revisiting monomer synthesis and radical ring opening polymerization of dimethylated MDO towards biodegradable nanoparticles for enzymes. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Guégain E, Michel JP, Boissenot T, Nicolas J. Tunable Degradation of Copolymers Prepared by Nitroxide-Mediated Radical Ring-Opening Polymerization and Point-by-Point Comparison with Traditional Polyesters. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02655] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Elise Guégain
- Institut Galien Paris-Sud,
UMR CNRS 8612, Faculté de Pharmacie, Univ Paris-Sud, 5 rue
Jean-Baptiste Clément, Cedex
F-92296 Châtenay-Malabry, France
| | - Jean-Philippe Michel
- Institut Galien Paris-Sud,
UMR CNRS 8612, Faculté de Pharmacie, Univ Paris-Sud, 5 rue
Jean-Baptiste Clément, Cedex
F-92296 Châtenay-Malabry, France
| | - Tanguy Boissenot
- Institut Galien Paris-Sud,
UMR CNRS 8612, Faculté de Pharmacie, Univ Paris-Sud, 5 rue
Jean-Baptiste Clément, Cedex
F-92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien Paris-Sud,
UMR CNRS 8612, Faculté de Pharmacie, Univ Paris-Sud, 5 rue
Jean-Baptiste Clément, Cedex
F-92296 Châtenay-Malabry, France
| |
Collapse
|
33
|
Computational Package for Copolymerization Reactivity Ratio Estimation: Improved Access to the Error-in-Variables-Model. Processes (Basel) 2018. [DOI: 10.3390/pr6010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Wais U, Chennamaneni LR, Thoniyot P, Zhang H, Jackson AW. Main-chain degradable star polymers comprised of pH-responsive hyperbranched cores and thermoresponsive polyethylene glycol-based coronas. Polym Chem 2018. [DOI: 10.1039/c8py01113c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dual stimuliresponsive main-chain degradable star hyperbranched polymers have been synthesized via cyclic ketene acetal radical ring-opening and RAFT-based methacrylate copolymerization.
Collapse
Affiliation(s)
- Ulrike Wais
- Institute of Chemical and Engineering Sciences
- Jurong Island
- Singapore
- Department of Chemistry
- University of Liverpool
| | | | - Praveen Thoniyot
- Institute of Chemical and Engineering Sciences
- Jurong Island
- Singapore
| | - Haifei Zhang
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | | |
Collapse
|
35
|
Hedir G, Stubbs C, Aston P, Dove AP, Gibson MI. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. ACS Macro Lett 2017; 6:1404-1408. [PMID: 29399386 PMCID: PMC5792090 DOI: 10.1021/acsmacrolett.7b00905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Poly(vinyl alcohol) (PVA) is the most active synthetic mimic of antifreeze proteins and has extremely high ice recrystallization inhibition (IRI) activity. Addition of PVA to cellular cryopreservation solutions increases the number of recovered viable cells due to its potent IRI, but it is intrinsically nondegradable in vivo. Here we report the synthesis, characterization, and IRI activity of PVA containing degradable ester linkages. Vinyl chloroacetate (VClAc) was copolymerized with 2-methylene-1,3-dioxepane (MDO) which undergoes radical ring-opening polymerization to install main-chain ester units. The use of the chloroacetate monomer enabled selective deacetylation with retention of esters within the polymer backbone. Quantitative IRI assays revealed that the MDO content had to be finely tuned to retain IRI activity, with higher loadings (24 mol %) resulting in complete loss of IRI activity. These degradable materials will help translate PVA, which is nontoxic and biocompatible, into a range of biomedical applications.
Collapse
Affiliation(s)
- Guillaume Hedir
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Institute
of Advanced Study, University of Warwick
Science Park, Coventry CV4 8UW, U.K.
| | | | - Phillip Aston
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
36
|
Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Tardy A, Honoré JC, Tran J, Siri D, Delplace V, Bataille I, Letourneur D, Perrier J, Nicoletti C, Maresca M, Lefay C, Gigmes D, Nicolas J, Guillaneuf Y. Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew Chem Int Ed Engl 2017; 56:16515-16520. [PMID: 29105983 DOI: 10.1002/anie.201707043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Indexed: 11/08/2022]
Abstract
Free-radical copolymerization of cyclic ketene acetals (CKAs) and vinyl ethers (VEs) was investigated as an efficient yet simple approach for the preparation of functional aliphatic polyesters. The copolymerization of CKA and VE was first predicted to be quasi-ideal by DFT calculations. The theoretical prediction was experimentally confirmed by the copolymerization of 2-methylene-1,3-dioxepane (MDO) and butyl vinyl ether (BVE), leading to rMDO =0.73 and rBVE =1.61. We then illustrated the versatility of this approach by preparing different functional polyesters: 1) copolymers functionalized by fluorescent probes; 2) amphiphilic copolymers grafted with poly(ethylene glycol) (PEG) side chains able to self-assemble into PEGylated nanoparticles; 3) antibacterial films active against Gram-positive and Gram-negative bacteria (including a multiresistant strain); and 4) cross-linked bioelastomers with suitable properties for tissue engineering applications.
Collapse
Affiliation(s)
- Antoine Tardy
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Jean-Claude Honoré
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Johanna Tran
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Didier Siri
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Vianney Delplace
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Isabelle Bataille
- Laboratoire de recherche vasculaire translationnelle, INSERM 1148, University Paris 13 &, University Paris Diderot, Paris, France
| | - Didier Letourneur
- Laboratoire de recherche vasculaire translationnelle, INSERM 1148, University Paris 13 &, University Paris Diderot, Paris, France
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Catherine Lefay
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Yohann Guillaneuf
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| |
Collapse
|
38
|
Hill MR, Guégain E, Tran J, Figg CA, Turner AC, Nicolas J, Sumerlin BS. Radical Ring-Opening Copolymerization of Cyclic Ketene Acetals and Maleimides Affords Homogeneous Incorporation of Degradable Units. ACS Macro Lett 2017; 6:1071-1077. [PMID: 35650945 DOI: 10.1021/acsmacrolett.7b00572] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Radical copolymerization of donor-acceptor (D-A) monomer pairs has served as a versatile platform for the development of alternating copolymers. However, due to the use of conventional radical polymerization, the resulting copolymers have generally been limited to nondegradable vinyl polymers. By combining radical D-A copolymerization with radical ring-opening polymerization (rROP), we have synthesized an alternating copolymer with a high incorporation of degradable backbone units. Copolymerization of N-ethyl maleimide (NEtMI) with the cyclic ketene acetal (CKA) 2-methylene-4-phenyl-1,3-dioxolane (MPDL) was demonstrated to proceed in an alternating fashion, and controlled polymerization was achieved using reversible addition-fragmentation chain transfer (RAFT) polymerization. Spontaneous copolymerization, in the absence of an exogenous initiating source, occurred when the mixture of monomers was heated, presumably due to the large electron disparity between the comonomers. Chain-extension with styrene afforded well-defined P(MPDL-alt-NEtMI)-b-polystyrene copolymers, and degradation of the homopolymers and block copolymers showed complete breakdown of the alternating copolymer.
Collapse
Affiliation(s)
- Megan R. Hill
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Elise Guégain
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Johanna Tran
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - C. Adrian Figg
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew C. Turner
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Julien Nicolas
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Brent S. Sumerlin
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
Hedir GG, Arno MC, Langlais M, Husband JT, O'Reilly RK, Dove AP. Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angew Chem Int Ed Engl 2017; 56:9178-9182. [DOI: 10.1002/anie.201703763] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Guillaume G. Hedir
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
- Institute of Advanced Study; Millburn House; Millburn House Hill Road; The University of Warwick; Science Park Coventry CV4 8UW UK
| | - Maria C. Arno
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Marvin Langlais
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Jonathan T. Husband
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Rachel K. O'Reilly
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew P. Dove
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
40
|
Hedir GG, Arno MC, Langlais M, Husband JT, O'Reilly RK, Dove AP. Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume G. Hedir
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
- Institute of Advanced Study; Millburn House; Millburn House Hill Road; The University of Warwick; Science Park Coventry CV4 8UW UK
| | - Maria C. Arno
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Marvin Langlais
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Jonathan T. Husband
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Rachel K. O'Reilly
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew P. Dove
- Department of Chemistry; The University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
41
|
Schneiderman DK, Hillmyer MA. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00293] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deborah K. Schneiderman
- Department of Chemistry and
Center for Sustainable Polymers, University of Minnesota, 207 Pleasant
St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry and
Center for Sustainable Polymers, University of Minnesota, 207 Pleasant
St. SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
42
|
Affiliation(s)
- Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| |
Collapse
|
43
|
Tardy A, Nicolas J, Gigmes D, Lefay C, Guillaneuf Y. Radical Ring-Opening Polymerization: Scope, Limitations, and Application to (Bio)Degradable Materials. Chem Rev 2017; 117:1319-1406. [DOI: 10.1021/acs.chemrev.6b00319] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Antoine Tardy
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire
UMR 7273, campus Saint Jérôme,
Avenue Escadrille Normandie-Niemen, Case 542, 13397 Marseille Cedex 20, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté
de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire
UMR 7273, campus Saint Jérôme,
Avenue Escadrille Normandie-Niemen, Case 542, 13397 Marseille Cedex 20, France
| | - Catherine Lefay
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire
UMR 7273, campus Saint Jérôme,
Avenue Escadrille Normandie-Niemen, Case 542, 13397 Marseille Cedex 20, France
| | - Yohann Guillaneuf
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire
UMR 7273, campus Saint Jérôme,
Avenue Escadrille Normandie-Niemen, Case 542, 13397 Marseille Cedex 20, France
| |
Collapse
|
44
|
Brannigan RP, Dove AP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater Sci 2016; 5:9-21. [PMID: 27840864 DOI: 10.1039/c6bm00584e] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyester-based polymers represent excellent candidates in synthetic biodegradable and bioabsorbable materials for medical applications owing to their tailorable properties. The use of synthetic polyesters as biomaterials offers a unique control of morphology, mechanical properties and degradation profile through monomer selection, polymer composition (i.e. copolymer vs. homopolymer, stereocomplexation etc.) and molecular weight. Within this review, the synthetic routes, degradation modes and application of aliphatic polyester- and polycarbonate-based biomaterials are discussed.
Collapse
Affiliation(s)
| | - Andrew P Dove
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
45
|
d'Arcy R, Burke J, Tirelli N. Branched polyesters: Preparative strategies and applications. Adv Drug Deliv Rev 2016; 107:60-81. [PMID: 27189232 DOI: 10.1016/j.addr.2016.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
In the last 20years, the availability of precision chemical tools (e.g. controlled/living polymerizations, 'click' reactions) has determined a step change in the complexity of both the macromolecular architecture and the chemical functionality of biodegradable polyesters. A major part in this evolution has been played by the possibilities that controlled macromolecular branching offers in terms of tailored physical/biological performance. This review paper aims to provide an updated overview of preparative techniques that derive hyperbranched, dendritic, comb, grafted polyesters through polycondensation or ring-opening polymerization mechanisms.
Collapse
|
46
|
Gao Y, Böhmer VI, Zhou D, Zhao T, Wang W, Paulusse JM. Main-chain degradable single-chain cyclized polymers as gene delivery vectors. J Control Release 2016; 244:375-383. [PMID: 27476610 DOI: 10.1016/j.jconrel.2016.07.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/15/2022]
|
47
|
Carter MCD, Jennings J, Appadoo V, Lynn DM. Synthesis and Characterization of Backbone Degradable Azlactone-Functionalized Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew C. D. Carter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James Jennings
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
48
|
Ratcliffe LPD, Couchon C, Armes SP, Paulusse JMJ. Inducing an Order-Order Morphological Transition via Chemical Degradation of Amphiphilic Diblock Copolymer Nano-Objects. Biomacromolecules 2016; 17:2277-83. [PMID: 27228898 PMCID: PMC4908504 DOI: 10.1021/acs.biomac.6b00540] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
disulfide-based cyclic monomer, 3-methylidene-1,9-dioxa-5,12,13-trithiacyclopentadecane-2,8-dione
(MTC), is statistically copolymerized with 2-hydroxypropyl methacrylate
to form a range of diblock copolymer nano-objects via reversible addition–fragmentation
chain transfer (RAFT) polymerization. Poly(glycerol monomethacrylate)
(PGMA) is employed as the hydrophilic stabilizer block in this aqueous
polymerization-induced self-assembly (PISA) formulation, which affords
pure spheres, worms or vesicles depending on the target degree of
polymerization for the core-forming block. When relatively low levels
(<1 mol %) of MTC are incorporated, high monomer conversions (>99%)
are achieved and high blocking efficiencies are observed, as judged
by 1H NMR spectroscopy and gel permeation chromatography
(GPC), respectively. However, the side reactions that are known to
occur when cyclic allylic sulfides such as MTC are statistically copolymerized
with methacrylic comonomers lead to relatively broad molecular weight
distributions. Nevertheless, the worm-like nanoparticles obtained
via PISA can be successfully transformed into spherical nanoparticles
by addition of excess tris(2-carboxyethyl)phosphine (TCEP) at pH 8–9.
Surprisingly, DLS and TEM studies indicate that the time scale needed
for this order–order transition is significantly longer than
that required for cleavage of the disulfide bonds located in the worm
cores indicated by GPC analysis. This reductive degradation pathway
may enable the use of these chemically degradable nanoparticles in
biomedical applications, such as drug delivery systems and responsive
biomaterials.
Collapse
Affiliation(s)
- Liam P D Ratcliffe
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill , Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Claudie Couchon
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill , Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Steven P Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill , Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Jos M J Paulusse
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
49
|
Hu S, Zhao J, Zhang G. Noncopolymerization Approach to Copolymers via Concurrent Transesterification and Ring-Opening Reactions. ACS Macro Lett 2016; 5:40-44. [PMID: 35668601 DOI: 10.1021/acsmacrolett.5b00839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inter- and intrachain transesterification, normally regarded as a detrimental side reaction for the synthesis of polyesters, is utilized herein to formulate a novel strategy for the modification of polyesters. Addition of an organic superbase into the mixture of hydroxyl-terminated poly(ε-caprolactone) and an epoxide, for example, propylene oxide or 1,2-butylene oxide, triggers concurrent nucleophilic ring-opening of the epoxide and transesterification reaction. The synergetic effect enables convenient and efficient transformation of the polyester into poly(ester-ether) random copolymers and thus advances the preparation of functional degradable polymeric materials taking advantage of the variety of commercial and laboratory-made polyesters and epoxides.
Collapse
Affiliation(s)
- Shuangyan Hu
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
50
|
Ekkelenkamp AE, Jansman MM, Roelofs K, Engbersen JF, Paulusse JM. Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomater 2016; 30:126-134. [PMID: 26518103 DOI: 10.1016/j.actbio.2015.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/14/2023]
Abstract
Narrowly dispersed zwitterionic poly(amido amine) (PAA) nanogels with a diameter of approximately 100nm were prepared by a high-yielding and surfactant-free, inverse nanoprecipitation of PAA polymers. The resulting, negatively charged, nanogels (PAA-NG1) were functionalized with N,N-dimethylethylenediamine via EDC/NHS coupling chemistry. This resulted in nanogels with a positive surface charge (PAA-NG2). Both types of nanogels were fluorescently labelled via isothiocyanate coupling. PAA-NG1 displays high colloidal stability both in PBS and Fetal Bovine Serum solution. Moreover, both nanogels exhibit a distinct zwitterionic swelling profile in response to pH changes. Cellular uptake of FITC-labelled nanogels with RAW 264.7, PC-3 and COS-7 cells was evaluated by fluorescence microscopy. These studies showed that nanogel surface charge greatly influences nanogel-cell interactions. The PAA polymer and PAA-NG1 showed minimal cell toxicity as was evaluated by MTT assays. The findings reported here demonstrate that PAA nanogels possess interesting properties for future studies in both drug delivery and imaging. STATEMENT OF SIGNIFICANCE The use of polymeric nanoparticles in biomedical applications such as drug delivery and imaging, shows great potential for medical applications. However, these nanoparticles are often not stable in biological environments. Zwitterionic polymers have shown excellent biocompatibility, but these materials are not easily degradable in biological environments. With the aim of developing a nanoparticle for drug delivery and imaging we synthesized a biomimetic and readily biodegradable zwitterionic polymer, which was incorporated into nanogels. These nanogels showed excellent stability in the presence of serum and minimal cytotoxicity, which was tested in three cell lines. Because of their negative surface charge and excellent serum stability, these nanogels are therefore promising carriers for drug delivery and molecular imaging.
Collapse
|