1
|
Qian X. Sodium Thiophenolate Initiated Polymerization of Methacrylate with Sulfur (S 8): High-Refractive-Index and -Transparency Polymers for Lithography. ACS OMEGA 2025; 10:3953-3959. [PMID: 39926508 PMCID: PMC11800153 DOI: 10.1021/acsomega.4c09788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
A simple and effective strategy for introducing sulfur into a polymethacrylate matrix at room temperature has been developed, allowing for the polymerization of a variety of methacrylate derivatives with sulfur. The resulting S-containing polymers exhibited a high refractive index of up to 1.72 while retaining over 90% transmittance in the visible region. Additionally, when mixed with 3% photo acid generator (PAG) as photoresist, the formulation demonstrated excellent patterning capabilities. Furthermore, the scalable preparation of high-refractive-index polymers (HRIPs) indicates significant potential for fabrication.
Collapse
Affiliation(s)
- Xiaofei Qian
- School
of Microelectronics, Fudan University, Shanghai 200433, P. R. China
- Fudan
Zhangjiang Institute, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Yue TJ, Xiao Y, Ren BH, Lu XB, Ren WM. Chain Shuttling Enantioselective Polymerization: An Effective Strategy for Synthesizing Stereoblock Polythioethers. J Am Chem Soc 2025; 147:3607-3614. [PMID: 39825845 DOI: 10.1021/jacs.4c15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Herein, we propose to synthesize stereoblock polythioethers through the chain shuttling enantioselective ring-opening polymerization (ROP) of thiiranes. The use of diastereoisomeric dinuclear Cr complexes with optimized steric hindrance allowed the production of polythioethers with both a head-to-tail content and isotacticity of >99%. In particular, the introduction of dithiols enabled the synthesis of stereoblock polythioethers via a chain shuttling process, thus producing sulfhydryl-telechelic polythioethers with tunable thermal properties. Experimental results and density functional theory calculations indicate that the configuration of the chiral axle of the dinuclear Cr complex determines the enantioselectivity of the asymmetric ROP of thiiranes.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yu Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
3
|
Trinquet V, Evans ML, Hargreaves CJ, De Breuck PP, Rignanese GM. Optical materials discovery and design with federated databases and machine learning. Faraday Discuss 2025; 256:459-482. [PMID: 39297188 DOI: 10.1039/d4fd00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Combinatorial and guided screening of materials space with density-functional theory and related approaches has provided a wealth of hypothetical inorganic materials, which are increasingly tabulated in open databases. The OPTIMADE API is a standardised format for representing crystal structures, their measured and computed properties, and the methods for querying and filtering them from remote resources. Currently, the OPTIMADE federation spans over 20 data providers, rendering over 30 million structures accessible in this way, many of which are novel and have only recently been suggested by machine learning-based approaches. In this work, we outline our approach to non-exhaustively screen this dynamic trove of structures for the next-generation of optical materials. By applying MODNet, a neural network-based model for property prediction, within a combined active learning and high-throughput computation framework, we isolate particular structures and chemistries that should be most fruitful for further theoretical calculations and for experimental study as high-refractive-index materials. By making explicit use of automated calculations, federated dataset curation and machine learning, and by releasing these publicly, the workflows presented here can be periodically re-assessed as new databases implement OPTIMADE, and new hypothetical materials are suggested.
Collapse
Affiliation(s)
- Victor Trinquet
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium.
| | - Matthew L Evans
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium.
- Matgenix SRL, 185 Rue Armand Bury, 6534 Gozée, Belgium
| | - Cameron J Hargreaves
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium.
| | - Pierre-Paul De Breuck
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium.
| | - Gian-Marco Rignanese
- UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
4
|
Watanabe S, Yano T, An Z, Oyaizu K. Aromatic Poly(dithioacetal)s: Spanning Degradability, Thermostability, and High Refractive Index Towards Eco-friendly Optics. CHEMSUSCHEM 2025; 18:e202401609. [PMID: 39340202 DOI: 10.1002/cssc.202401609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
In the quest for eco-friendly optics, high refractive index polymers (HRIPs) with degradability have been one of the desirable optical materials for realizing eco-friendly and efficient lighting technologies. However, it has been challenging for HRIPs to simultaneously realize thermostability, high refractive index (RI), visible transparency, and efficient degradability, all of which are essential for their practical use. In this context, we herein focus on aromatic poly(dithioacetal)s, composed of visible-transparent yet degradable dithioacetal moieties and rigid phenylene sulfide spacers, exhibiting moderately high Tg (> 60 °C), high RI (> 1.7), and colorless film features. In addition, poly(dithioacetal)s can balance (1) high stability under the operating conditions even upon heating and (2) quantitative degradability that can selectively yield cyclic low-molecular-weight products that can be further repolymerized upon further addition of an acid catalyst. These results provide a key concept for high refractive index polymers that allow on-demand degradability and recyclability without compromising their high potential thermal and optical properties.
Collapse
Affiliation(s)
- Seigo Watanabe
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Tomoya Yano
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Zexin An
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kenichi Oyaizu
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
5
|
Song JH, Hong SM, Park SK, Kwon HK, Hwang SH, Oh JM, Koo SM, Lee G, Park C. Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film. Polymers (Basel) 2024; 17:76. [PMID: 39795478 PMCID: PMC11723285 DOI: 10.3390/polym17010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach. UV-curable resins are obtained by incorporating the synthesized monomer as the thiol component. The effects of thiol content on the UV-curing behavior, refractive index, shrinkage, adhesion to the polyethylene terephthalate (PET) foil, and viscoelastic recovery are examined. The thermal properties are assessed using differential scanning calorimetry and thermogravimetric analysis. Field-emission scanning electron microscopy confirms the successful replication of the prism film. In edge-lit light-emitting diode (LED) backlight units, the prism film showed increased luminance with higher thiol monomer content in the UV-curable resin while maintaining stable color coordinates. This novel highly refractive index monomer can be utilized in luminance-enhancing prism films, thereby contributing to future innovations in the display film industry.
Collapse
Affiliation(s)
- Jin Han Song
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (J.H.S.); (H.K.K.)
- R&D Center, SHIN-A T&C, 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 0851, Republic of Korea; (S.-M.H.); (S.K.P.)
| | - Seung-Mo Hong
- R&D Center, SHIN-A T&C, 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 0851, Republic of Korea; (S.-M.H.); (S.K.P.)
| | - Seok Kyu Park
- R&D Center, SHIN-A T&C, 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 0851, Republic of Korea; (S.-M.H.); (S.K.P.)
| | - Hyeok Ki Kwon
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (J.H.S.); (H.K.K.)
| | - Seok-Ho Hwang
- School of Polymer System Engineering, Dankook University, 152 Jukjun-ro, Suji-gu, Yongin 16890, Republic of Korea;
| | - Jong-Min Oh
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (J.-M.O.); (S.-M.K.)
| | - Sang-Mo Koo
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (J.-M.O.); (S.-M.K.)
| | - Giwon Lee
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (J.H.S.); (H.K.K.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (J.H.S.); (H.K.K.)
| |
Collapse
|
6
|
Dou Z, Zhang H, Li J, Sun J, Fang Q. Biobased Sulfur- and Phosphate-Containing High-Refractive-Index Polymers: Substituent Effects on Optical Properties of Polymers. Biomacromolecules 2024; 25:8038-8045. [PMID: 39503846 DOI: 10.1021/acs.biomac.4c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices (nD) of 1.63-1.70 and Abbe numbers (vD) of 12.8-38.5. An investigation of the relationship of the vD values with the substituents on the benzene rings of the monomers indicates that methoxy and vinyl groups can collectively increase the vD values. In comparison with allyl groups, vinyl groups endow the polymers with both higher nD and vD. Moreover, these polymers also display high transmittance, high thermostability, and low haze values in the visible-light region, suggesting that these biobased functional monomers are satisfactory precursors used in the fabrication of optical devices.
Collapse
Affiliation(s)
- Zongao Dou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hemin Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Jiajun Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Jing Sun
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Qiang Fang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Albu RM, Stoica I, Nica SL, Soroceanu M, Barzic AI. Tailoring Optical Performance of Polyvinyl Alcohol/Crystal Violet Band-Pass Filters via Solvent Features. Polymers (Basel) 2024; 16:3288. [PMID: 39684032 DOI: 10.3390/polym16233288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Optical filters are essential components for a variety of applicative fields, such as communications, chemical analysis and optical signal processing. This article describes the preparation and characterization of a new optical filter made of polyvinyl alcohol and incremental amounts of crystal violet. By using distinct solvents (H2O, dimethyl sulfoxide (DMSO) and H2O2) to obtain the dyed polymer films, new insights were gained into the pathway that underlies the possibility of tailoring the material's optical performance. The effect of the dye content on the sample's main properties was inspected via UV-VIS spectroscopy analysis combined with colorimetry, refractometry and atomic force microscopy experiments. The results revealed that the colorimetric parameters are affected by the dye amount and are dramatically changed when the solvent used for film preparation is different. The rise in the refractive index upon polymer dyeing was due to the synergistic effect of the larger polarizability of the dye and the occurrence of hydrogen bonds among the system components. Spectral data evidenced that samples prepared in H2O and DMSO preserve the absorption characteristics of the added dye, whereas H2O2 acts as an oxidizing agent and enhances transparency. Also, for the first two solvents, multiple absorption edges were noted as a result of dye incorporation, which was responsible for the occurrence of new exciton-like states, hence the band gap reduction. The films processed in H2O were able to block radiations in the 506-633 nm range while allowing other wavelengths to pass with a transmittance above 90%. The samples attained in DMSO presented similar properties, with the difference that the domain of light attenuation was shifted towards higher wavelengths. Atomic force microscopy showed the dye's effect on the level of surface roughness uniformity and morphology isotropy. The dyed polymer foils in non-oxidizing agents have suitable features for use as band-pass filters.
Collapse
Affiliation(s)
- Raluca Marinica Albu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Stoica
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Simona Luminita Nica
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marius Soroceanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Andreea Irina Barzic
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
8
|
Cho Y, Kim Y, Seo J, Bielawski CW. Ring-Opening Metathesis Polymerization of Thianorbornenes. ACS Macro Lett 2024; 13:1509-1514. [PMID: 39453731 DOI: 10.1021/acsmacrolett.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
A series of exo-7-thiabicyclo[2.2.1]hept-5-ene-2,3-dicarboximides were synthesized and polymerized using Schrock's catalyst, 2,6-diisopropylphenylimidoneophylidene molybdenum(VI) bis(hexafluoro-tert-butoxide). The ring-opening metathesis polymerization (ROMP) reactions were found to proceed in a controlled manner, enabling chain extensions and tuning of polymer molecular weight. The polymers were characterized using size exclusion chromatography (SEC) as well as spectroscopic (NMR, FT-IR), thermal (TGA, DSC), and optical techniques. The physical, chemical, and optical properties of the polymers were found to be affected by the embedded sulfur atoms and the pendant substituents. Copolymers with norbornene were also synthesized and characterized. Treatment of a poly(thianorbornene) with potassium hydroxide led to ring-opening hydrolysis and afforded a derivative that was soluble in aqueous media.
Collapse
Affiliation(s)
- Youngsang Cho
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeram Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwon Seo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Chen C, Zhang L, Zhou F, He X, Zhang Z, Zou C, Xiao J, Gao Y, Wei H, Yu M, Yang H. Heteroatom-Terminated Acrylate-Based Polymer-Dispersed Liquid Crystal Composite Films with High Contrast Ratio and Low Driving Voltage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62627-62638. [PMID: 39487782 DOI: 10.1021/acsami.4c12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
A series of polymer-dispersed liquid crystal (PDLC) films were prepared by using acrylate monomers containing heteroatom-terminated groups. The microscopic morphology and electro-optical properties reveal that these monomers effectively reduce the switching voltage and improve the contrast ratio at the same time. The saturation voltage of the best sample was reduced by 47%, and the contrast ratio was improved by 74%. In addition, the introduction of various heteroatoms endows the PDLC films with a variety of functionalities. Sulfur atoms effectively increase the refractive index of the polymer matrix (np). By adjustment of the match between np and the ordinary refractive index of the LC, films with large contrast ratio and diminutive switching voltage were manufactured for display applications. Besides, chlorine atoms can help reduce the surface anchoring energy of the polymer matrix to LCs and reduce the impedance. Meanwhile, the abundant C-H, C-O, C═O, and C-Cl groups endow the films with solar modulation functions.
Collapse
Affiliation(s)
- Chao Chen
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Luoning Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Foxin Zhou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xian He
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zuowei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Cheng Zou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jiumei Xiao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanzi Gao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Huiyun Wei
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Meina Yu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Huai Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Cai W, Wang J, Wang W, Li S, Rahman MZ, Tawiah B, Ming Y, Zhou X, Xing W, Hu Y, Zhu J, Fei B. Colored Radiative Cooling and Flame-Retardant Polyurethane-Based Coatings: Selective Absorption/Reflection in Solar Waveband. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402349. [PMID: 39114871 DOI: 10.1002/smll.202402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Indexed: 11/21/2024]
Abstract
The aesthetic demand has become an imperative challenge to advance the practical and commercial application of daytime radiative cooling technology toward mitigating climate change. Meanwhile, the application of radiative cooling materials usually focuses on the building surface, related tightly to fire safety. Herein, the absorption and reflection spectra of organic and inorganic colorants are first compared in solar waveband, finding that iron oxides have higher reflectivity in NIR region. Second, three kinds of iron oxides-based colorants are selected to combine porous structure and silicon-modified ammonium polyphosphate (Si-APP) to engineer colored polyurethane-based (PU) coating, thus enhancing the reflectivity and flame retardancy. Together with reflectivity of more than 90% in near-infrared waveband and infrared emissivity of ≈91%, average temperature drops of ≈5.7, ≈7.9, and ≈3.8 °C are achieved in porous PU/Fe2O3/Si-APP, porous PU/Fe2O3·H2O/Si-APP, and porous PU/Fe3O4·H2O/Si-APP, compared with dense control samples. The catalysis effect of iron oxides in the cross-linking reaction of pyrolysis products and dehydration mechanism of Si-APP enable PU coating to produce an intumescent and protective char residue. Consequently, PU composite coatings demonstrate desirable fire safety. The ingenious choice of colorants effectively minimizes the solar heating effect and trades off the daytime radiative cooling and aesthetic appearance requirement.
Collapse
Affiliation(s)
- Wei Cai
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junling Wang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sicheng Li
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, 266071, P. R. China
| | - Mohammad Ziaur Rahman
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Benjamin Tawiah
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xia Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
11
|
Li M, Jing X, Xia J, Tian Q, Zhang Q, Wang B, Qin A, Zhong Tang B. Water-Involved Carbon-Nitrogen Triple-Bond Monomer Based Polymerization toward Processable Functional Polyamides under Ambient Conditions. Angew Chem Int Ed Engl 2024; 63:e202410846. [PMID: 39106196 DOI: 10.1002/anie.202410846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Polyamide plays a pivotal role in engineering thermoplastics. Constrained by the harsh conditions and arduous procedures for its industrial synthesis, developing facile synthesis of polyamides is still challengeable and holds profound significance. Herein, we successfully utilized water as one of the monomers to synthesize functional polyamides under ambient conditions. A powerful multicomponent polymerization of water, isocyanides, and chlorooximes was established in phosphate-buffered saline. Soluble and thermally stable polyamides with high weight-average molecular weights (up to 53 900) were obtained in excellent yields (up to 95 %). The polymerization exhibits unique polymerization-induced emission characteristics, successfully converting non-emissive monomers into unconventional emissive polymers. Notably, the resultant polyamides could undergo effective post-modification via the hydroxyl-yne click reaction. By incorporating various functional groups into the polyamide, its emission color could be fine-tuned from blue to green and to red. Remarkably, the refractive index (n) of the polyamide at 589 nm could be increased from 1.6173 to 1.7227 and the Δn could be unprecedentedly as high as 0.1054 for non-heavy atom-containing polymers after post-modification, and its micron-thick films exhibited excellent transparency in the visible region. Thus, this work not only establishes a powerful polymerization toward novel polyamides but also opens up an avenue for their versatile functionalization.
Collapse
Affiliation(s)
- Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Xiaoyi Jing
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Jiehui Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Qi Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Qiang Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, 510640, Guangzhou, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, (CUHK-Shenzhen), 518172, Shenzhen, Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Jayaprakash Saiji S, Tang Y, Wu ST, Stand L, Tratsiak Y, Dong Y. Metal halide perovskite polymer composites for indirect X-ray detection. NANOSCALE 2024; 16:17654-17682. [PMID: 39248411 DOI: 10.1039/d4nr02716g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Metal halide perovskites (MHPs) have emerged as a promising class of materials for radiation detection due to their high atomic numbers and thus high radiation absorption, tunable and efficient luminescent properties and simple solution processability. Traditional MHP scintillators, however, suffer from environmental degradation, spurring interest in perovskite-polymer composites. This paper reviews recent developments in these composites tailored for scintillator applications. It discusses various synthesis methods, including solution-based and mechanochemical techniques, that enable the formation of composites with enhanced performance metrics such as light yield, detection limit, and environmental stability. The review also covers the remaining challenges and opportunities in fabrication techniques and performance metric evaluations of this class of materials. By offering a comprehensive overview of current research and future perspectives, this paper underscores the potential of perovskite-polymer composites to revolutionize the field of radiation detection.
Collapse
Affiliation(s)
- Shruti Jayaprakash Saiji
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Yiteng Tang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Luis Stand
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yauhen Tratsiak
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yajie Dong
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| |
Collapse
|
13
|
Dou Z, Sun J, Fang Q. A Facile One-Step Conversion of Biobased Magnolol (Honokiol) toward High Refractive Materials. Biomacromolecules 2024; 25:6155-6163. [PMID: 39110195 DOI: 10.1021/acs.biomac.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A series of polymers with both high refractive index and high Abbe number have been successfully synthesized through the photoclick thiol-ene reaction between the monomers derived from biobased magnolol (or honokiol) and commercial mercaptans and thiophenols. The polymer films not only exhibit a high refractive index and a high Abbe number but also display a transmittance of up to 90% in a range of wavelengths from 550 to 2000 nm and nearly 0% in the UV region. Moreover, these polymers also display low haze values in the visible-light region as well as exhibit good thermostability. These data indicate that they have potential applications for the fabrication of optical lenses and anti-UV coatings. In particular, this series of polymers are readily used for industrialization due to its excellent optical properties but low expense, simplicity, and efficiency of synthesis.
Collapse
Affiliation(s)
- Zongao Dou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Jing Sun
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Qiang Fang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Woodhouse AW, Kocaarslan A, Garden JA, Mutlu H. Unlocking the Potential of Polythioesters. Macromol Rapid Commun 2024; 45:e2400260. [PMID: 38824417 DOI: 10.1002/marc.202400260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
As the demand for sustainable polymers increases, most research efforts have focused on polyesters, which can be bioderived and biodegradable. Yet analogous polythioesters, where one of the oxygen atoms has been replaced by a sulfur atom, remain a relatively untapped source of potential. The incorporation of sulfur allows the polymer to exhibit a wide range of favorable properties, such as thermal resistance, degradability, and high refractive index. Polythioester synthesis represents a frontier in research, holding the promise of paving the way for eco-friendly alternatives to conventional polyesters. Moreover, polythioester research can also open avenues to the development of sustainable and recyclable materials. In the last 25 years, many methods to synthesize polythioesters have been developed. However, to date no industrial synthesis of polythioesters has been developed due to challenges of costs, yields, and the toxicity of the by-products. This review will summarize the recent advances in polythioester synthesis, covering step-growth polymerization, ring-opening polymerization (ROP), and biosynthesis. Crucially, the benefits and challenges of the processes will be highlighted, paying particular attention to their sustainability, with the aim of encouraging further exploration and research into the fast-growing field of polythioesters.
Collapse
Affiliation(s)
- Adam W Woodhouse
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/Université de Haute Alsace, 15 Rue Jean Starcky, Mulhouse, Cedex, 68057, France
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Azra Kocaarslan
- Institute of Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasee 15, 76131, Karlsruhe, Germany
| | - Jennifer A Garden
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/Université de Haute Alsace, 15 Rue Jean Starcky, Mulhouse, Cedex, 68057, France
| |
Collapse
|
15
|
Keyser SP, Trujillo-Lemon M, Sias AN, Fairbanks BD, McLeod RR, Bowman CN. High Refractive Index, Low Birefringence Holographic Materials via the Homopolymerization of 1,2-Dithiolanes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45577-45588. [PMID: 39136733 DOI: 10.1021/acsami.4c09324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
High refractive index, low birefringence photopolymers were created via the radical-mediated, ring opening homopolymerization of 1,2-dithiolane functionalized monomers and were subsequently evaluated as holographic recording media. This investigation systematically characterized the reaction kinetics, thermodynamics, and volume shrinkage of the 1,2-dithiolane homopolymerization as well as the optical transparency, refractive index, birefringence, and holographic performance of multifunctional 1,2-dithiolane functionalized monomers and their resultant polymers. Real-time kinetic and thermodynamic analyses of a monofunctional 1,2-dithiolane monomer, lipoic acid methyl ester (LipOMe), indicated rapid monomer conversion, exceeding 90% in 60 s, with an overall enthalpy of reaction of 18 ± 1 kJ/mol. The ring-opening polymerization resulted in low shrinkage (10.6 ± 0.3 cm3/mol dithiolane) and a significant bulk refractive index increase (0.030 ± 0.003). The resulting photopolymers exhibited high optical transparency, minimal haze, and negligible birefringence, suggesting the potential of 1,2-homopolymers as optical materials. To further explore the specific capabilities for use as high-performance holographic recording applications, several multifunctional monomers were synthesized with the ethanedithiol lipoic acid monomer (EDT-Lip2) selected for experimentation. Holographic diffraction gratings written using this monomer achieved a peak-to-mean refractive index modulation of 0.008 with minimal haze and birefringence.
Collapse
Affiliation(s)
- Sean P Keyser
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marianela Trujillo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Andrew N Sias
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert R McLeod
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Mata MDL, Sanz de León A, Valencia-Liñán LM, Molina SI. Plasmonic Characterization of 3D Printable Metal-Polymer Nanocomposites. ACS MATERIALS AU 2024; 4:424-435. [PMID: 39006399 PMCID: PMC11240405 DOI: 10.1021/acsmaterialsau.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Plasmonic polymer nanocomposites (i.e., polymer matrices containing plasmonic nanostructures) are appealing candidates for the development of manifold technological devices relying on light-matter interactions, provided that they have inherent properties and processing capabilities. The smart development of plasmonic nanocomposites requires in-depth optical analyses proving the material performance, along with correlative studies guiding the synthesis of tailored materials. Importantly, plasmon resonances emerging from metal nanoparticles affect the macroscopic optical response of the nanocomposite, leading to far- and near-field perturbations useful to address the optical activity of the material. We analyze the plasmonic behavior of two nanocomposites suitable for 3D printing, based on acrylic resin matrices loaded with Au or Ag nanoparticles. We compare experimental and computed UV-vis macroscopic spectra (far-field) with single-particle electron energy loss spectroscopy (EELS) analyses (near-field). We extended the calculations of Au and Ag plasmon-related resonances over different environments and nanoparticle sizes. Discrepancies between UV-vis and EELS are dependent on the interplay between the metal considered, the surrounding media, and the size of the nanoparticles. The study allows comparing in detail the plasmonic performance of Au- and Ag-polymer nanocomposites, whose plasmonic response is better addressed, accounting for their intended applications (i.e., whether they rely on far- or near-field interactions).
Collapse
Affiliation(s)
- María de la Mata
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Albeto Sanz de León
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Luisa M. Valencia-Liñán
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Sergio I. Molina
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| |
Collapse
|
17
|
Tawfilas M, Bartolini Torres G, Lorenzi R, Saibene M, Mauri M, Simonutti R. Transparent and High-Refractive-Index Titanium Dioxide/Thermoplastic Polyurethane Nanocomposites. ACS OMEGA 2024; 9:29339-29349. [PMID: 39005776 PMCID: PMC11238196 DOI: 10.1021/acsomega.4c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Transparent nanocomposite films made of surface-modified titanium dioxide nanoparticles and thermoplastic polyurethane are prepared via film casting approach showing enhanced refractive indexes and mechanical properties. Two different sets of composites were prepared up to 37.5 wt % of inorganic nanoparticles with a diameter <15 nm, one set using particles capped only with oleic acid and a second one with a bimodal system layer made of oleic acid and mPEO-5000 as coating agents. All of the composites show significantly enhanced refractive index and mechanical properties than the neat polymeric matrix. The transparency of nanocomposite films shows the excellent dispersion of the inorganic nanoparticles in the polymeric matrix avoiding aggregation and precipitation phenomena. Our study provides a facile and feasible route to produce transparent nanocomposite films with tunable mechanical properties and high refractive indices for various applications.
Collapse
Affiliation(s)
- Massimo Tawfilas
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Gianluca Bartolini Torres
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Melissa Saibene
- Piattaforma
di Microscopia, University of Milano-Bicocca, 20126 Milano, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
18
|
Jeon Y, Ahn CS, Char K, Lim J. Size Control and Antioxidant Properties of Sulfur-Rich Polymer Colloids from Interfacial Polymerization. Macromol Rapid Commun 2024; 45:e2300747. [PMID: 38652855 DOI: 10.1002/marc.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Indexed: 04/25/2024]
Abstract
High sulfur content polymeric materials, known for their intriguing properties such as high refractive indices and high electrochemical capacities, have garnered significant interest in recent years for their applications in optics, antifouling surfaces, triboelectrics, and electrochemistry. Despite the high interest, most high sulfur-content polymers reported to date are either bulk materials or thin films, and there is a general lack of research into sulfur-rich polymer colloids. Water-dispersed, sulfur-rich particles are anticipated to broaden the range of applications for sulfur-containing materials. In this study, the preparation and size control parameters are presented of an aqueous dispersion of sulfur-rich polymers with the sulfur content of dispersed particles exceeding 75 wt%. Employing polymeric stabilizers with varying hydrophilic-lipophilic balance (HLB), along with changing the rank of inorganic polysulfides, allow for the control of particle size in the range of 360 nm - 1.8 µm. The sulfur-rich colloid demonstrates antioxidant properties in water, demonstrating the potential for the use of sulfur-rich polymeric materials readily removable, heterogeneous radical scavengers.
Collapse
Affiliation(s)
- Yujin Jeon
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
- Current address: Korea Testing Laboratory (KTL), 87 Digital-ro 26-gil, Guro-gu, Seoul, 08389, Republic of Korea
| | - Chi Sup Ahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Jeewoo Lim
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
19
|
Fan D, Wang D, Zhang J, Fu X, Yan X, Wang D, Qin A, Han T, Tang BZ. Cobalt-Catalyzed Cascade C-H Activation/Annulation Polymerizations toward Diversified and Multifunctional Sulfur-Containing Fused Heterocyclic Polymers. J Am Chem Soc 2024; 146:17270-17284. [PMID: 38863213 DOI: 10.1021/jacs.4c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Transition-metal-catalyzed C-H activation has greatly benefited the synthesis and development of functional polymer materials, and the construction of multifunctional fused (hetero)cyclic polymers via novel C-H activation-based polyannulations has emerged as a charming but challenging area in recent years. Herein, we report the first cobalt(III)-catalyzed cascade C-H activation/annulation polymerization (CAAP) approach that can efficiently transform readily available aryl thioamides and internal diynes into multifunctional sulfur-containing fused heterocyclic (SFH) polymers. Within merely 3 h, a series of SFH polymers bearing complex and multisubstituted S,N-doped polycyclic units are facilely and efficiently produced with high molecular weights (absolute Mn up to 220400) in excellent yields (up to 99%), which are hard to achieve by traditional methods. The intermediate-terminated SFH polymer can be used as a reactive macromonomer to controllably extend or modify polymer main chains. The structural diversity can be further enriched through facile S-oxidation and N-methylation reactions of the SFH polymers. Benefiting from the unique structures, the obtained polymers exhibit excellent solution processability, high thermal and morphological stability, efficient and readily tunable aggregate-state fluorescence, stimuli-responsive properties, and high and UV-modulatable refractive indices of up to 1.8464 at 632.8 nm. These properties allow the SFH polymers to be potentially applied in diverse fields, including metal ion detection, photodynamic killing of cancer cells, fluorescent photopatterning, and gradient-index optical materials.
Collapse
Affiliation(s)
- Dongyang Fan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
20
|
Zhang J, Zhang Y, Cui L, Jian Z. High-Refractive-Index Cross-Linked Cyclic Olefin Polymers with Excellent Transparency via Thiol-Ene Click Reaction. ACS Macro Lett 2024; 13:781-787. [PMID: 38833211 DOI: 10.1021/acsmacrolett.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
High-refractive-index polymers are important optical materials in optoelectronics. Conventional cyclic olefin polymers (COPs), possessing many excellent optical properties, are a class of highly promising optical materials; however, one of the greatest obstacles is their low refractive index of n = 1.52-1.54. Here, one efficient strategy of first incorporating high molar refraction groups, including carbazolyl and indolyl moieties, into unsaturated COPs via ring-opening metathesis polymerization (ROMP) and then introducing another high molar refraction sulfur atom by a subsequent thiol-ene click reaction is presented. The obtained cross-linked COPs bearing both an aromatic group and sulfur possess significantly higher refractive indices (n = 1.611-1.684 at 589 nm) and highly optical transparency (approximately 95%) in the range of vis-NIR. This provides a way toward potential applications of new-generation optical materials.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Alshammari AH. Structural, Optical, and Thermal Properties of PVA/SrTiO 3/CNT Polymer Nanocomposites. Polymers (Basel) 2024; 16:1392. [PMID: 38794585 PMCID: PMC11124778 DOI: 10.3390/polym16101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Successful preparation of PVA/SrTiO3/CNT polymer nanocomposite films was accomplished via the solution casting method. The structural, optical, and thermal properties of the films were tested by XRD, SEM, FTIR, TGA, and UV-visible spectroscopy. Inclusion of the SrTiO3/CNT nanofillers with a maximum of 1 wt% drastically improved the optical and thermal properties of PVA films. SrTiO3 has a cubic crystal structure, and its average crystal size was found to be 28.75 nm. SEM images showed uniform distribution in the sample with 0.3 wt% of SrTiO3/CNTs in the PVA film, while some agglomerations appeared in the samples of higher SrTiO3/CNT content, i.e., at 0.7 and 1.0 wt%, in the PVA polymer films. The inclusion of SrTiO3/CNTs improved the thermal stability of PVA polymer films. The direct and indirect optical band gaps of the PVA films decreased when increasing the mass of the SrTiO3/CNTs, while the single-oscillator energy (E0) and dispersion energy (Ed) increased. The films' refractive indices were gradually increased upon increasing the nanofillers' weight. In addition, improvements in the optical susceptibility and nonlinear refractive indices' values were also obtained. These films are qualified for optoelectronic applications due to their distinct optical and thermal properties.
Collapse
Affiliation(s)
- Alhulw H Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
22
|
Kang H, Oh D, Jeon N, Kim J, Kim H, Badloe T, Rho J. Tailoring high-refractive-index nanocomposites for manufacturing of ultraviolet metasurfaces. MICROSYSTEMS & NANOENGINEERING 2024; 10:53. [PMID: 38654843 PMCID: PMC11035676 DOI: 10.1038/s41378-024-00681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
Nanoimprint lithography (NIL) has been utilized to address the manufacturing challenges of high cost and low throughput for optical metasurfaces. To overcome the limitations inherent in conventional imprint resins characterized by a low refractive index (n), high-n nanocomposites have been introduced to directly serve as meta-atoms. However, comprehensive research on these nanocomposites is notably lacking. In this study, we focus on the composition of high-n zirconium dioxide (ZrO2) nanoparticle (NP) concentration and solvents used to produce ultraviolet (UV) metaholograms and quantify the transfer fidelity by the measured conversion efficiency. The utilization of 80 wt% ZrO2 NPs in MIBK, MEK, and acetone results in conversion efficiencies of 62.3%, 51.4%, and 61.5%, respectively, at a wavelength of 325 nm. The analysis of the solvent composition and NP concentration can further enhance the manufacturing capabilities of high-n nanocomposites in NIL, enabling potential practical use of optical metasurfaces.
Collapse
Affiliation(s)
- Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dongkyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Trevon Badloe
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, Republic of Korea
| |
Collapse
|
23
|
Kim M, Kim N, Shin J. Realization of all two-dimensional Bravais lattices with metasurface-based interference lithography. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1467-1474. [PMID: 39679238 PMCID: PMC11636505 DOI: 10.1515/nanoph-2023-0786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2024]
Abstract
Proximity-field nanopatterning (PnP) have been used recently as a rapid, cost-effective, and large-scale fabrication method utilizing volumetric interference patterns generated by conformal phase masks. Despite the effectiveness of PnP processes, their design diversity has not been thoroughly explored. Here, we demonstrate that the possibility of generating any two-dimensional lattice with diverse motifs. By controlling the amplitude, phase, and polarization of each diffraction beam, we can implement all two-dimensional Bravais lattices in three-dimensional space. The results may provide diverse applications that require three-dimensional nanostructures from optical materials and structural materials to energy storage or conversion materials.
Collapse
|
24
|
Hong SM, Kim OY, Hwang SH. Chemistry of Polythiols and Their Industrial Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1343. [PMID: 38541497 PMCID: PMC10972302 DOI: 10.3390/ma17061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/12/2024]
Abstract
Thiols can react with readily available organic substrates under benign conditions, making them suitable for use in chemical, biological, physical, and materials and engineering research areas. In particular, the highly efficient thiol-based click reaction includes the reaction of radicals with electron-rich enes, Michael addition with electron-poor enes, carbonyl addition with isocyanate SN2 ring opening with epoxies, and SN2 nucleophilic substitution with halogens. This mini review provides insights into emerging venues for their industrial applications, especially for the applications of thiol-ene, thiol-isocyanate, and thiol-epoxy reactions, highlighting a brief chemistry of thiols as well as various approaches to polythiol synthesis.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Department of Polymer Science & Engineering, Dankook University, Yongin 16890, Republic of Korea; (S.-M.H.); (O.Y.K.)
- Advanced Materials Division, Shin-A T&C Co., Ltd., Seoul 08501, Republic of Korea
| | - Oh Young Kim
- Department of Polymer Science & Engineering, Dankook University, Yongin 16890, Republic of Korea; (S.-M.H.); (O.Y.K.)
| | - Seok-Ho Hwang
- Department of Polymer Science & Engineering, Dankook University, Yongin 16890, Republic of Korea; (S.-M.H.); (O.Y.K.)
| |
Collapse
|
25
|
Zhu Y, Tao Y. Stereoselective Ring-opening Polymerization of S-Carboxyanhydrides Using Salen Aluminum Catalysts: A Route to High-Isotactic Functionalized Polythioesters. Angew Chem Int Ed Engl 2024; 63:e202317305. [PMID: 38179725 DOI: 10.1002/anie.202317305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Polythioesters are important sustainable polymers with broad applications. The ring-opening polymerization (ROP) of S-Carboxyanhydrides (SCAs) can afford polythioesters with functional groups that are typically difficult to prepare by ROP of thiolactones. Typical methods involving organocatalysts, like dimethylaminopyridine (DMAP) and triethylamine (Et3 N), have been plagued by uncontrolled polymerization, including epimerization for most SCAs resulting in the loss of isotacticity. Here, we report the use of salen aluminum catalysts for the selective ROP of various SCAs without epimerization, affording functionalized polythioester with high molecular weight up to 37.6 kDa and the highest Pm value up to 0.99. Notably, the ROP of TlaSCA (SCA prepared from thiolactic acid) generates the first example of a isotactic crystalline poly(thiolactic acid), which exhibited a distinct Tm value of 152.6 °C. Effective ligand tailoring governs the binding affinity between the sulfide chain-end and the metal center, thereby maintaining the activity of organometallic catalysts and reducing the occurrence of epimerization reactions.
Collapse
Affiliation(s)
- Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
26
|
Mazumder K, Voit B, Banerjee S. Recent Progress in Sulfur-Containing High Refractive Index Polymers for Optical Applications. ACS OMEGA 2024; 9:6253-6279. [PMID: 38371831 PMCID: PMC10870412 DOI: 10.1021/acsomega.3c08571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
The development in the field of high refractive index materials is a crucial factor for the advancement of optical devices with advanced features such as image sensors, optical data storage, antireflective coatings, light-emitting diodes, and nanoimprinting. Sulfur plays an important role in high refractive index applications owing to its high molar refraction compared to carbon. Sulfur exists in multiple oxidation states and can exhibit various stable functional groups. Over the last few decades, sulfur-containing polymers have attracted much attention owing to their wide array of applications governed by the functional group of sulfur present in the polymer repeat unit. The interplay of refractive index and various other polymer properties contributes to successfully implementing a specific polymer material in optical applications. The focus on developing optoelectronic devices induced an ever-increasing need to integrate different functional materials to achieve the devices' full potential. Several devices that see the potential use of sulfur in high refractive index materials are reviewed in the study. Like sulfur, selenium also exhibits high molar refraction and unique chemical properties, making it an essential field of study. This review covers the research and development in the field of sulfur and selenium in different forms of functionality, focusing on the chemistry of bonding and the optical properties of the polymers containing the heteroatoms mentioned above. The strategy and rationale behind incorporating heteroatoms in a polymer matrix to produce high-refractive-index materials are also described in the present review.
Collapse
Affiliation(s)
- Kajari Mazumder
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
27
|
Xu X, Xie YM, Shi H, Wang Y, Zhu X, Li BX, Liu S, Chen B, Zhao Q. Light Management of Metal Halide Scintillators for High-Resolution X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303738. [PMID: 38009773 DOI: 10.1002/adma.202303738] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Indexed: 11/29/2023]
Abstract
The ever-growing need to inspect matter with hyperfine structures requires a revolution in current scintillation detectors, and the innovation of scintillators is revived with luminescent metal halides entering the scene. Notably, for any scintillator, two fundamental issues arise: Which kind of material is suitable and in what form should the material exist? The answer to the former question involves the sequence of certain atoms into specific crystal structures that facilitate the conversion of X-ray into light, whereas the answer to the latter involves assembling these crystallites into particular material forms that can guide light propagation toward its corresponding pixel detector. Despite their equal importance, efforts are overwhelmingly devoted to improving the X-ray-to-light conversion, while the material-form-associated light propagation, which determines the optical signal collected for X-ray imaging, is largely overlooked. This perspective critically correlates the reported spatial resolution with the light-propagation behavior in each form of metal halides, combing the designing rules for their future development.
Collapse
Affiliation(s)
- Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Huaiyao Shi
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yongquan Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bing-Xiang Li
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Peng J, Tian T, Xu S, Hu R, Tang BZ. Base-Assisted Polymerizations of Elemental Sulfur and Alkynones for Temperature-Controlled Synthesis of Polythiophenes or Poly(1,4-dithiin)s. J Am Chem Soc 2023; 145:28204-28215. [PMID: 38099712 DOI: 10.1021/jacs.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
With the increasing demand for functional polythiophenes in extensive applications such as organic solar cells, electronic skins, thermoelectric materials, and field effect transistors, efficient and economic synthetic approaches for polythiophenes are urgently required. In this work, KOH-assisted polymerizations of elemental sulfur and alkynones were developed to directly afford polythiophenes with various backbones, regioselective structures, and high molecular weights (Mns up to 20700 g/mol) in high yields (up to 97%) at 80 °C in 30 min. When the same polymerization was conducted at room temperature, stable and unique poly(1,4-dithiin)s (Mns up to 21800 g/mol) could be rapidly obtained in high yields (up to 87%) in 10 min. The temperature-controlled KOH-assisted polymerizations of sulfur and alkynones possessed high efficiency, mild conditions, and simple operation, which had provided an economic, efficient, and convenient approach for the direct conversion from elemental sulfur to functional polythiophenes and poly(1,4-dithiin)s with the in situ constructed aromatic or nonaromatic heterocycles embedded in the polymer backbones, demonstrating great synthetic simplicity, high efficiency, good selectivity, and robustness. It is anticipated to accelerate the development of semiconducting polymer materials and their applications.
Collapse
Affiliation(s)
- Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
29
|
Abstract
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
30
|
Zhou Y, Zhu Z, Zhang K, Yang B. Molecular Structure and Properties of Sulfur-Containing High Refractive Index Polymer Optical Materials. Macromol Rapid Commun 2023; 44:e2300411. [PMID: 37632834 DOI: 10.1002/marc.202300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Indexed: 08/28/2023]
Abstract
High refractive index polymers (HRIPs) are widely used in lenses, waveguide, antireflective layer and encapsulators, especially the advanced fields of augmented/virtual reality (AR / VR) holographic technology and photoresist for chip manufacturing. In order to meet the needs of different applications, the development of HRIPs focuses not only on the increase in refractive index but also on the balance of other properties. Sulfur-containing high refractive index polymers have received extensive attention from researchers due to their excellent properties. In recent years, not only ultrahigh refractive index sulfur-containing polymers have been continuously developed, but also low dispersion, low birefringence, high transparency, good mechanical properties, and machinability have been studied. The design of HRIPs is generally based on formulas and existing experience. In fact, molecular structure and properties are closely related. Mastering the structure-property relationship helps researchers to develop high refractive index polymer materials with balanced properties. This review briefly introduces the preparation methods of sulfur-containing high refractive index polymers, and summarizes the structure-property relationship between the sulfur-containing molecular structure and optical properties, mechanical properties, thermal properties, etc. Finally, the important role of synergistic effect in the synthesis of HRIPs and the prospect of future research on HRIPs are proposed.
Collapse
Affiliation(s)
- Yutong Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
31
|
Li X, Jia C, Wang C, Ma L, Liu L. A novel theoretical method to determine the effective optical properties of high refractive index nanocomposites. Phys Chem Chem Phys 2023; 25:25689-25700. [PMID: 37721446 DOI: 10.1039/d3cp02360e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The continuous development of advanced optical devices towards high performance, miniaturization and integration has led to an increasing demand for high refractive index optical materials. Nanocomposites - made from high refractive index inorganic nanoparticles and good processability polymers - combine the advantages of both materials to create a synergistic effect. However, the diversity and complexity of the composites make laboratory preparation less efficient. Therefore, to prepare composites that meet the refractive index requirements, it is essential to predict the effective optical properties at different wavelengths. This study proposes a finite element parametric retrieval (FEPR) method to calculate the effective complex refractive index of nanocomposites (meff). The effects of the ratio of film thickness to particle diameter, particle arrangement, particle volume fraction (fv) and particle diameter (d) on meff are considered. The results demonstrate that changing the spatial arrangement, volume fraction and diameter of the particles can cause changes in the scattering effect of particles or the interaction between the electromagnetic waves and the particles, resulting in changes in the meff. Compared with effective medium theory (EMT), the FEPR method can be used to characterise the meff values in complex cases through finite element parametric modelling. The FEPR method is an efficient and accurate method for predicting the effective optical properties of nanocomposites, and can also be applied to the design and development of materials to discover the factors influencing the properties and variation patterns from large amounts of data, and to obtain predictive models that can guide the design of new materials.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Chengwei Jia
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Chengchao Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Lanxin Ma
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Linhua Liu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
32
|
Xie Y, Chen L, Li H, Yi Y. Polymer and Hybrid Optical Devices Manipulated by the Thermo-Optic Effect. Polymers (Basel) 2023; 15:3721. [PMID: 37765574 PMCID: PMC10537378 DOI: 10.3390/polym15183721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The thermo-optic effect is a crucial driving mechanism for optical devices. The application of the thermo-optic effect in integrated photonics has received extensive investigation, with continuous progress in the performance and fabrication processes of thermo-optic devices. Due to the high thermo-optic coefficient, polymers have become an excellent candidate for the preparation of high-performance thermo-optic devices. Firstly, this review briefly introduces the principle of the thermo-optic effect and the materials commonly used. In the third section, a brief introduction to the waveguide structure of thermo-optic devices is provided. In addition, three kinds of thermo-optic devices based on polymers, including an optical switch, a variable optical attenuator, and a temperature sensor, are reviewed. In the fourth section, the typical fabrication processes for waveguide devices based on polymers are introduced. Finally, thermo-optic devices play important roles in various applications. Nevertheless, the large-scale integrated applications of polymer-based thermo-optic devices are still worth investigating. Therefore, we propose a future direction for the development of polymers.
Collapse
Affiliation(s)
- Yuqi Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China;
| | - Liguo Chen
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China; (L.C.)
| | - Haojia Li
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China; (L.C.)
| | - Yunji Yi
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China; (L.C.)
| |
Collapse
|
33
|
Xia Y, Sun Y, Liu Z, Zhang C, Zhang X. Modular Alcohol Click Chemistry Enables Facile Synthesis of Recyclable Polymers with Tunable Structure. Angew Chem Int Ed Engl 2023; 62:e202306731. [PMID: 37490022 DOI: 10.1002/anie.202306731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
The facile synthesis of chemically recyclable polymers derived from sustainable feedstocks presents enormous challenges. Here, we develop a novel, modular, and efficient click reaction for connecting primary, secondary, or tertiary alcohols with activated alkenes via a bridge molecule of carbonyl sulfide (COS). The click reaction is successfully applied to synthesize a series of recyclable polymers by the step polyaddition of diols, diacrylates, and COS. Diols and diacrylates are common chemicals and can be produced from biorenewable sources, and COS is released as the industrial waste. In addition to sustainable monomers, the approach is atom-economical, wide in scope, metal-free, and performed under mild conditions, affording unprecedented polymers with nearly quantitative yields. The produced polymers also possess predesigned and widely tunable structure owing to the versatility of our method and the broad variety of monomers. The in-chain thiocarbonate and ester polar groups can play as breakpoints, allowing these polymers to be easily recycled. Overall, the polymers have broad prospects for green materials given their facile synthesis, readily available feedstocks, desirable performance, and chemical recyclability.
Collapse
Affiliation(s)
- Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziheng Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
34
|
Zhang J, Bai T, Liu W, Li M, Zang Q, Ye C, Sun JZ, Shi Y, Ling J, Qin A, Tang BZ. All-organic polymeric materials with high refractive index and excellent transparency. Nat Commun 2023; 14:3524. [PMID: 37316490 DOI: 10.1038/s41467-023-39125-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
High refractive index polymers (HRIPs) have drawn attention for their optoelectronic applications and HRIPs with excellent transparency and facile preparation are highly demanded. Herein, sulfur-containing all organic HRIPs with refractive indices up to 1.8433 at 589 nm and excellent optical transparency even in one hundred micrometre scale in the visual and RI region as well as high weight-average molecular weights (up to 44500) are prepared by our developed organobase catalyzed polymerization of bromoalkynes and dithiophenols in yields up to 92%. Notably, the fabricated optical transmission waveguides using the resultant HRIP with the highest refractive index display a reduced propagation loss compared with that generated by the commercial material of SU-8. In addition, the tetraphenylethylene containing polymer not only exhibits a reduced propagation loss, but also is used to examine the uniformity and continuity of optical waveguides with naked eyes because of its aggregation-induced emission feature.
Collapse
Affiliation(s)
- Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecules Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weixi Liu
- College of Optical Science and Engineering and International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Qiguang Zang
- MOE Key Laboratory of Macromolecules Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Canbin Ye
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaocheng Shi
- College of Optical Science and Engineering and International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecules Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecules Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
35
|
Hsiao FT, Chien HJ, Chou YH, Peng SJ, Chung MH, Huang TH, Lo LW, Shen CN, Chang HP, Lee CY, Chen CC, Jeng YM, Tien YW, Tang SC. Transparent tissue in solid state for solvent-free and antifade 3D imaging. Nat Commun 2023; 14:3395. [PMID: 37296117 PMCID: PMC10256715 DOI: 10.1038/s41467-023-39082-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Optical clearing with high-refractive-index (high-n) reagents is essential for 3D tissue imaging. However, the current liquid-based clearing condition and dye environment suffer from solvent evaporation and photobleaching, causing difficulties in maintaining the tissue optical and fluorescent features. Here, using the Gladstone-Dale equation [(n-1)/density=constant] as a design concept, we develop a solid (solvent-free) high-n acrylamide-based copolymer to embed mouse and human tissues for clearing and imaging. In the solid state, the fluorescent dye-labeled tissue matrices are filled and packed with the high-n copolymer, minimizing scattering in in-depth imaging and dye fading. This transparent, liquid-free condition provides a friendly tissue and cellular environment to facilitate high/super-resolution 3D imaging, preservation, transfer, and sharing among laboratories to investigate the morphologies of interest in experimental and clinical conditions.
Collapse
Affiliation(s)
- Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Tzu-Hui Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Pi Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
36
|
Lee M, Oh Y, Yu J, Jang SG, Yeo H, Park JJ, You NH. Long-wave infrared transparent sulfur polymers enabled by symmetric thiol cross-linker. Nat Commun 2023; 14:2866. [PMID: 37208341 DOI: 10.1038/s41467-023-38398-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Infrared (IR) transmissive polymeric materials for optical elements require a balance between their optical properties, including refractive index (n) and IR transparency, and thermal properties such as glass transition temperature (Tg). Achieving both a high refractive index (n) and IR transparency in polymer materials is a very difficult challenge. In particular, there are significant complexities and considerations to obtaining organic materials that transmit in the long-wave infrared (LWIR) region, because of high optical losses due to the IR absorption of the organic molecules. Our differentiated strategy to extend the frontiers of LWIR transparency is to reduce the IR absorption of the organic moieties. The proposed approach synthesized a sulfur copolymer via the inverse vulcanization of 1,3,5-benzenetrithiol (BTT), which has a relatively simple IR absorption because of its symmetric structure, and elemental sulfur, which is mostly IR inactive. This strategy resulted in approximately 1 mm thick windows with an ultrahigh refractive index (nav > 1.9) and high mid-wave infrared (MWIR) and LWIR transmission, without any significant decline in thermal properties. Furthermore, we demonstrated that our IR transmissive material was sufficiently competitive with widely used optical inorganic and polymeric materials.
Collapse
Affiliation(s)
- Miyeon Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yuna Oh
- Institute of Advanced Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
| | - Jaesang Yu
- Institute of Advanced Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea
| | - Hyeonuk Yeo
- Department of Chemistry Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Jin Park
- Department of Polymer Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nam-Ho You
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, 55324, Republic of Korea.
| |
Collapse
|
37
|
Hu X, Xu N, Cheng X, Tan L, Tam HY, Min R, Qu H, Caucheteur C. Recovery of a highly reflective Bragg grating in DPDS-doped polymer optical fiber by thermal annealing. OPTICS LETTERS 2023; 48:2547-2550. [PMID: 37186704 DOI: 10.1364/ol.487779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report fiber Bragg grating manufacturing in poly(methyl methacrylate) (PMMA)-based polymer optical fibers (POFs) with a diphenyl disulfide (DPDS)-doped core by means of a 266 nm pulsed laser and the phase mask technique. Gratings were inscribed with different pulse energies ranging from 2.2 mJ to 2.7 mJ. For the latter, the grating reflectivity reached 91% upon 18-pulse illumination. Though the as-fabricated gratings decayed, they were recovered by post-annealing at 80°C for 1 day, after which they showed an even higher reflectivity of up to 98%. This methodology for the fabrication of highly reflective gratings could be applied for the production of high-quality tilted fiber Bragg gratings (TFBGs) in POFs for biochemical applications.
Collapse
|
38
|
Fusco S, Oscurato SL, Salvatore M, Reda F, Moujdi S, De Oliveira M, Ambrosio A, Centore R, Borbone F. Efficient High-Refractive-Index Azobenzene Dendrimers Based on a Hierarchical Supramolecular Approach. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3722-3730. [PMID: 37181674 PMCID: PMC10173454 DOI: 10.1021/acs.chemmater.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Real-time manipulation of light in a diffractive optical element made with an azomaterial, through the light-induced reconfiguration of its surface based on mass transport, is an ambitious goal that may enable new applications and technologies. The speed and the control over photopatterning/reconfiguration of such devices are critically dependent on the photoresponsiveness of the material to the structuring light pattern and on the required extent of mass transport. In this regard, the higher the refractive index (RI) of the optical medium, the lower the total thickness and inscription time can be. In this work, we explore a flexible design of photopatternable azomaterials based on hierarchically ordered supramolecular interactions, used to construct dendrimer-like structures by mixing specially designed sulfur-rich, high-refractive-index photoactive and photopassive components in solution. We demonstrate that thioglycolic-type carboxylic acid groups can be selectively used as part of a supramolecular synthon based on hydrogen bonding or readily converted to carboxylate and participate in a Zn(II)-carboxylate interaction to modify the structure of the material and fine-tune the quality and efficiency of photoinduced mass transport. Compared with a conventional azopolymer, we demonstrate that it is possible to fabricate high-quality, thinner flat diffractive optical elements to reach the desired diffraction efficiency by increasing the RI of the material, achieved by maximizing the content of high molar refraction groups in the chemical structure of the monomers.
Collapse
Affiliation(s)
- Sandra Fusco
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy
| | - Stefano Luigi Oscurato
- Department
of Physics E. Pancini, University of Napoli
Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy
| | - Marcella Salvatore
- Centro
Servizi Metrologici e tecnologici Avanzati (CeSMA), University of Napoli Federico II, Complesso Universitario di Monte
Sant’Angelo, Via
Cintia, 80126 Napoli, Italy
| | - Francesco Reda
- Department
of Physics E. Pancini, University of Napoli
Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy
| | - Sara Moujdi
- CNST@POLIMI
- Fondazione Istituto Italiano di Tecnologia, Via Pascoli 70, 20133 Milano, Italy
| | - Michael De Oliveira
- CNST@POLIMI
- Fondazione Istituto Italiano di Tecnologia, Via Pascoli 70, 20133 Milano, Italy
| | - Antonio Ambrosio
- CNST@POLIMI
- Fondazione Istituto Italiano di Tecnologia, Via Pascoli 70, 20133 Milano, Italy
| | - Roberto Centore
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy
| | - Fabio Borbone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy
- CNST@POLIMI
- Fondazione Istituto Italiano di Tecnologia, Via Pascoli 70, 20133 Milano, Italy
| |
Collapse
|
39
|
Karaca N, Yıldırım H. Preparation of the polymerizable novel high refractive index hybrid carbazole-based polysiloxane oligomers by a sol–gel condensation reaction. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
40
|
Pan J, Zhang W, Zhu J, Tan J, Huang Y, Mo K, Tong Y, Xie Z, Ke Y, Zheng H, Ouyang H, Shi X, Gao L. Arrested Phase Separation Enables High-Performance Keratoprostheses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207750. [PMID: 36680510 DOI: 10.1002/adma.202207750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Corneal transplantation is impeded by donor shortages, immune rejection, and ethical reservations. Pre-made cornea prostheses (keratoprostheses) offer a proven option to alleviate these issues. Ideal keratoprostheses must possess optical clarity and mechanical robustness, but also high permeability, processability, and recyclability. Here, it is shown that rationally controlling the extent of arrested phase separation can lead to optimized multiscale structure that reconciles permeability and transparency, a previously conflicting goal by common pore-forming strategies. The process is simply accomplished by hydrothermally treating a dense and transparent hydrophobic association hydrogel. The examination of multiscale structure evolution during hydrothermal treatment reveals that the phase separation with upper miscibility gap evolves to confer time-dependent pore growth due to slow dynamics of polymer-rich phase which is close to vitrification. Such a process can render a combination of multiple desired properties that equal or surpass those of the state-of-the-art keratoprostheses. In vivo tests confirm that the keratoprosthesis can effectively repair corneal perforation and restore a transparent cornea with treatment outcomes akin to that of allo-keratoplasty. The keratoprosthesis is easy to access and convenient to carry, and thus would be an effective temporary substitute for a corneal allograft in emergency conditions.
Collapse
Affiliation(s)
- Jiageng Pan
- School of Chemical Engineering and Light Industry, Gangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Yan Tong
- School of Materials, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Zhenhua Xie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Huade Zheng
- School of Materials Science and Engineering, South China University of Technology, Guanghzhou, 510640, P. R. China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guanghzhou, 510640, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Gangdong University of Technology, Guangzhou, 510006, P. R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, P. R. China
| |
Collapse
|
41
|
Zhao Y, Zhang Y, Cui L, Jian Z. Cyclic Olefin Terpolymers with High Refractive Index and High Optical Transparency. ACS Macro Lett 2023; 12:395-400. [PMID: 36877004 DOI: 10.1021/acsmacrolett.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Cyclic olefin copolymer (COC) is one of the most promising optical materials; however, the brittle COC suffers from issues including a low refractive index. In this contribution, by the introduction of high refractive index comonomers including phenoxy substituted α-olefin (C4OAr), p-tolylthio substituted α-olefin (C4SAr) and carbazolyl substituted α-olefins (C4NAr, C3NAr, and C2NAr), the zirconocene mediated terpolymerization of ethylene (E) and tetracyclododecene (TCD) produces the preferred E-TCD-CnNAr (n = 2, 3, and 4) cyclic olefin terpolymers (COT) with tunable compositions (TCD: 11.5- 35.8 mol %, CnNAr: 1.2-5.0 mol %), high molecular weights and high glass transition temperatures (up to 167 °C) in high catalytic activities. Compared to the E-TCD copolymer (COC) material, these COT materials show the comparable thermal decomposition temperature (Td,5% = 437 °C), slightly higher strain at break value (up to 7.4%) and higher tensile strength (up to 60.5 MPa). In particular, these noncrystalline optical COT materials have significantly higher refractive indices of 1.550-1.569 and are more transparent (transmittance: 93-95%), relative to the COC materials, indicative of an excellent optical material.
Collapse
Affiliation(s)
- Yihua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
42
|
Zhao J, Huang S, Cole JM. OpticalBERT and OpticalTable-SQA: Text- and Table-Based Language Models for the Optical-Materials Domain. J Chem Inf Model 2023; 63:1961-1981. [PMID: 36940385 PMCID: PMC10091421 DOI: 10.1021/acs.jcim.2c01259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Text mining in the optical-materials domain is becoming increasingly important as the number of scientific publications in this area grows rapidly. Language models such as Bidirectional Encoder Representations from Transformers (BERT) have opened up a new era and brought a significant boost to state-of-the-art natural-language-processing (NLP) tasks. In this paper, we present two "materials-aware" text-based language models for optical research, OpticalBERT and OpticalPureBERT, which are trained on a large corpus of scientific literature in the optical-materials domain. These two models outperform BERT and previous state-of-the-art models in a variety of text-mining tasks about optical materials. We also release the first "materials-aware" table-based language model, OpticalTable-SQA. This is a querying facility that solicits answers to questions about optical materials using tabular information that pertains to this scientific domain. The OpticalTable-SQA model was realized by fine-tuning the Tapas-SQA model using a manually annotated OpticalTableQA data set which was curated specifically for this work. While preserving its sequential question-answering performance on general tables, the OpticalTable-SQA model significantly outperforms Tapas-SQA on optical-materials-related tables. All models and data sets are available to the optical-materials-science community.
Collapse
Affiliation(s)
- Jiuyang Zhao
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Shu Huang
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Jacqueline M Cole
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| |
Collapse
|
43
|
Huo N, Tenhaeff WE. High Refractive Index Polymer Thin Films by Charge-Transfer Complexation. Macromolecules 2023; 56:2113-2122. [PMID: 36938507 PMCID: PMC10019454 DOI: 10.1021/acs.macromol.2c02532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/19/2023] [Indexed: 03/06/2023]
Abstract
High refractive index polymers are essential in next-generation flexible optical and optoelectronic devices. This paper describes a simple synthetic method to prepare polymeric optical coatings possessing high refractive indexes. Poly(4-vinylpyridine) (P4VP) thin films prepared using initiated chemical vapor deposition are exposed to highly polarizable halogen molecules to form stable charge-transfer complexes: P4VP-IX (X = I, Br, and Cl). Fourier transform infrared spectroscopy was used to confirm the formation of charge-transfer complexes. Characterized by spectroscopic ellipsometry, the maximum refractive index of 2.08 at 587.6 nm is obtained for P4VP-I2. For P4VP-IBr and P4VP-ICl, the maximum refractive indexes are 1.849 and 1.774, respectively. By controlling the concentration of charge-transfer complexes, either through the halogen incorporation step or polymer composition through copolymerization with ethylene glycol dimethacrylate, the refractive indexes of the polymer thin films can be precisely controlled. The feasibility of P4VP-IX materials as optical coatings is also explored. The refractive index and thickness uniformity of a P4VP-I2 film over a 10 mm diameter circular area were characterized, showing standard deviations of 0.0769 and 1.91%, respectively.
Collapse
|
44
|
Cherumukkil S, Agrawal S, Jasra RV. Sulfur Polymer as Emerging Advanced Materials: Synthesis and Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Sandeep Cherumukkil
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Santosh Agrawal
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Raksh Vir Jasra
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| |
Collapse
|
45
|
Gu J, Wang X, Xu C, Feng X, Zhang S. Polythiourethane composite film with high transparency, high refractive index and low dispersion containing ZnS nanoparticle via thiol-ene click chemistry. Macromol Res 2023. [DOI: 10.1007/s13233-023-00144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
46
|
Yue TJ, Wang LY, Ren WM, Lu XB. Regioselective Copolymerization of Epoxides and Phthalic Thioanhydride to Produce Isotacticity-Rich Semiaromatic Polythioesters. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
47
|
Ando S. Characteristic changes in the structures and properties of polyimides induced by very high pressures up to 8 GPa. Polym J 2023. [DOI: 10.1038/s41428-023-00759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
AbstractVarious in situ measurement techniques have been applied to investigate changes in the three-dimensional structures and the properties of fully aromatic polymers (mainly aromatic polyimides: PIs) generated at very high pressures up to 8 GPa. In particular, significant changes occurred in the ordered structures, aggregation states, electronic structures, and intermolecular interactions in the repeating units of the PI molecular chains and were observed by applying pressure with a high-pressure optical cell (up to 0.4 GPa, ca. 4000 atm) or a diamond anvil cell (DAC, up to 8.0 GPa, ca. 80,000 atm). In addition, the structural changes in the PI molecular chain repeating units and interchain distances induced by the ultrahigh pressures were observed with wide-angle X-ray diffraction, and they were compared and contrasted with optical absorption, fluorescent and phosphorescent emission spectra, infrared absorption spectra, and refractive indexes observed under the same conditions. These findings obtained at very high pressures provide molecular design guidelines for new PI materials with novel optical, electronic, and thermal functionalities that are not easy to achieve under ambient conditions.
Collapse
|
48
|
Han JH, Lim YC, Kim RM, Lv J, Cho NH, Kim H, Namgung SD, Im SW, Nam KT. Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing. ACS NANO 2023; 17:2306-2317. [PMID: 36648062 DOI: 10.1021/acsnano.2c08867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quantitative analysis of chiral molecules in various solvents is essential. However, there are still many challenges to enhancing the sensitivity in precisely determining both concentration and chirality. Here, we built an algorithmic methodology to predict and optimally design the chiroptical response of chiral plasmonic sensors for a specific target chiral analyte with the aid of deep learning. Based upon the analytic and intuitive understanding of the Born-Kuhn type plasmonic nanodimer, we designed and trained the neural networks that can successfully predict the chiroptical properties and further inversely design the plasmonic structure to achieve the intended circular dichroism. The developed algorithm could identify the optimum structure exhibiting the maximum sensitivity for the given specific analytes. Surprisingly, we discovered that sensitivity strongly depends on the various conditions of analytes and can be finely tuned with the structural parameters of plasmonic nanodimers. We envision that this study can provide a general platform to develop ultrasensitive chiral plasmonic sensors whose structure and sensitivity have been evolved algorithmically for adoption in specific applications.
Collapse
Affiliation(s)
- Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Jiawei Lv
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
49
|
Mazumder K, Komber H, Bittrich E, Voit B, Banerjee S. Synthesis and characterization of poly(1,2,3‐triazole)s with inherent high sulfur content for optical applications. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Kajari Mazumder
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
| | - Hartmut Komber
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
| | - Eva Bittrich
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institute of Macromolecular Chemistry Dresden Germany
- Chair Organic Chemistry of Polymers Technische Universität Dresden Dresden Germany
| | - Susanta Banerjee
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
50
|
Legrand S, Kabir R, Kärkkäinen A. New Phenanthrenyl‐Substituted Hybrid Organic‐Inorganic Polysiloxanes for Optoelectronic Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Rakib Kabir
- Optitune Oy Tutkijankuja 5 90590 Oulu Finland
| | | |
Collapse
|