1
|
Martinengo B, Diamanti E, Uliassi E, Bolognesi ML. Medicinal Chemistry: A Key Driver in Achieving the Global Sustainable Development Goals. J Med Chem 2025; 68:6916-6931. [PMID: 40112026 PMCID: PMC11998007 DOI: 10.1021/acs.jmedchem.4c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
In 2015, the United Nations officially launched the Sustainable Development Goals (SDGs) as "the blueprint to achieve a better and more sustainable future for all. They address the global challenges we face, including those related to poverty, inequality, climate change, environmental degradation, peace and justice. The 17 Goals are all interconnected, in order to leave no one behind, it is important that we achieve them all by 2030". Here, we have embedded medicinal chemistry as a key player to achieve SDGs. We firmly believe that medicinal chemistry can and must contribute to a sustainable future and a better world with an improved quality of life for all. We have taken a critical look at each of the SDGs, dividing them into Priority and Foundational, and analyzed how medicinal chemistry has an impact on each of them. Although much has been done, we are determined to make progress in this area.
Collapse
Affiliation(s)
- Bianca Martinengo
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
2
|
Barrett MP. Transforming the chemotherapy of human African trypanosomiasis. Clin Microbiol Rev 2025; 38:e0015323. [PMID: 39772631 PMCID: PMC11905362 DOI: 10.1128/cmr.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
SUMMARYPrior to 2019, when the orally available drug fexinidazole began its clinical use, the treatment of human African trypanosomiasis (HAT) was complex and unsatisfactory for many reasons. Two sub-species of the Trypanosoma brucei parasite are responsible for HAT, namely the rhodesiense form found in East and Southern Africa and the gambiense form found in Central and West Africa. Diseases caused by both forms manifest in two stages: stage 1 before and stage 2 after central nervous system involvement. Prior to 2019, different drugs were required for each of the two parasite sub-species at each stage. Gambiense disease required pentamidine or nifurtimox-eflornithine combination therapy, while for rhodesiense disease, suramin or melarsoprol was given for stages 1 and 2, respectively. These drugs all suffered complications including protracted administration regimens involving multiple injections with drug-induced adverse effects common. Today, a single drug, fexinidazole, can be given orally in most cases for both diseases at either stage. Another compound, acoziborole, effective in both stages 1 and 2 gambiense disease with a single dosing is anticipated to become available within a few years. Moreover, the recent engagement of multilateral organizations in seeking other compounds that could be used in HAT therapy has also been successful, and a rich vein of new trypanocides has been discovered. Here, the clinical use, modes of action, and resistance risks for drugs used against HAT are discussed.
Collapse
Affiliation(s)
- Michael P Barrett
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Zhang P, Duan CB, Xu HL, Zhao XY, Huang DC, Jin B, Sha Q, Miu S, Bian Q, Guo DL, Deng F, Gao J, Sukhbaatar O, Sun Q, Zhang MZ, Zhang WH, Gu YC. Dual-Target Inhibitors─Discovery of Novel Diphenyl-(Thio)ether-Containing Benzoxaborole Derivatives as Potential Antifungal and Herbicidal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4497-4506. [PMID: 39935368 DOI: 10.1021/acs.jafc.4c06951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
LeuRS and PPO are important targets in the development of green pesticides; novel diphenyl-(thio)ether-containing benzoxaborole derivatives were designed and synthesized as novel dual-target enzyme inhibitors; their antifungal activities against six kinds of common plant pathogens in vitro and their herbicidal activities against purslane and barnyard grass were studied. Most of the target compounds showed excellent antifungal activity against six kinds of plant pathogenic fungi in vitro, and this is highlighted by compounds 6c and 6h, both displayed 100.0% inhibition effects against three kinds of the tested plant pathogenic fungi under the concentrations of 50.0 μg/mL, and the EC50 value of compound 6r against Rhizoctonia solani was 0.763 μg/mL, significantly lower than that of boscalid (1.20 μg/mL). In addition, compound 6c was also used in negative control experiments, and the results revealed that compound 6c had no significant effect on the growth of noninfected plants. Meanwhile, most of the compounds also demonstrated promising herbicidal activity, as compounds 6b, 6h, 6m, and 7e showed effective control on purslane and barnyard grass. Beyond that, compound 6s demonstrated certain safety against rape. Enzymatic inhibition experiments further confirmed that compound 7e exhibited remarkable inhibitory activity against NtPPO. Moreover, the molecular docking results between 6c and 7g and tLeuRS and NtPPO further revealed the mechanisms of action for their biological activities. In summary, compounds 6b, 6c, 6h, 7e, and 7g showed excellent antifungal and herbicidal activities and can be further studied as new antifungal and herbicidal agents in the next step.
Collapse
Affiliation(s)
- Pei Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Bao Duan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui-Lin Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ying Zhao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dai-Chuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiji Miu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Le Guo
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Otgonpurev Sukhbaatar
- Department of Chemistry, School of Applied Sciences, Mongolian University of Life Sciences, Zaisan, 17024 Ulaanbaatar, Mongolia
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, Bracknell RG42 6EY, U.K
| |
Collapse
|
4
|
Zoltner M, Horn D, Field MC. Pass the boron: benzoxaboroles as antiparasite drugs. Trends Parasitol 2024; 40:820-828. [PMID: 39107181 DOI: 10.1016/j.pt.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024]
Abstract
The development of new drug modalities has been facilitated recently by the introduction of boron as a component of organic compounds, and specifically within a benzoxaborale scaffold. This has enabled exploration of new chemical space and the development of effective compounds targeting a broad range of morbidities, including infections by protozoa, fungi, worms, and bacteria. Most notable is the recent demonstration of a single oral dose cure using acoziborole against African trypanosomiasis. Common and species-/structure-specific interactions between benzoxaboroles and parasite species have emerged and provide vital insights into the mechanisms of cidality, as well as potential challenges in terms of resistance and/or side effects. Here, we discuss the literature specific to benzoxaborole studies in parasitic protists and consider unanswered questions concerning this important new drug class.
Collapse
Affiliation(s)
- Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, BIOCEV, Vestec, Czech Republic
| | - David Horn
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mark C Field
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Faculty of Sciences, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
6
|
Tao Y, Budhipramono A, Huang J, Fang M, Xie S, Kim J, Khivansara V, Dominski Z, Tong L, De Brabander JK, Nijhawan D. Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3. Cell Chem Biol 2024; 31:139-149.e14. [PMID: 37967558 PMCID: PMC10841686 DOI: 10.1016/j.chembiol.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
A novel class of benzoxaboroles was reported to induce cancer cell death but the mechanism was unknown. Using a forward genetics platform, we discovered mutations in cleavage and polyadenylation specific factor 3 (CPSF3) that reduce benzoxaborole binding and confer resistance. CPSF3 is the endonuclease responsible for pre-mRNA 3'-end processing, which is also important for RNA polymerase II transcription termination. Benzoxaboroles inhibit this endonuclease activity of CPSF3 in vitro and also curb transcriptional termination in cells, which results in the downregulation of numerous constitutively expressed genes. Furthermore, we used X-ray crystallography to demonstrate that benzoxaboroles bind to the active site of CPSF3 in a manner distinct from the other known inhibitors of CPSF3. The benzoxaborole compound impeded the growth of cancer cell lines derived from different lineages. Our results suggest benzoxaboroles may represent a promising lead as CPSF3 inhibitors for clinical development.
Collapse
Affiliation(s)
- Ye Tao
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Albert Budhipramono
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ji Huang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Min Fang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanhai Xie
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal Khivansara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics and Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
8
|
Fairlamb AH, Wyllie S. The critical role of mode of action studies in kinetoplastid drug discovery. FRONTIERS IN DRUG DISCOVERY 2023; 3:fddsv.2023.1185679. [PMID: 37600222 PMCID: PMC7614965 DOI: 10.3389/fddsv.2023.1185679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Understanding the target and mode of action of compounds identified by phenotypic screening can greatly facilitate the process of drug discovery and development. Here, we outline the tools currently available for target identification against the neglected tropical diseases, human African trypanosomiasis, visceral leishmaniasis and Chagas' disease. We provide examples how these tools can be used to identify and triage undesirable mechanisms, to identify potential toxic liabilities in patients and to manage a balanced portfolio of target-based campaigns. We review the primary targets of drugs that are currently in clinical development that were initially identified via phenotypic screening, and whose modes of action affect protein turnover, RNA trans-splicing or signalling in these protozoan parasites.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Huang DC, He Z, Guo D, Deng F, Bian Q, Zhang H, Ali AS, Zhang MZ, Zhang WH, Gu YC. Discovery of Novel Benzoxaborole-Containing Streptochlorin Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6226-6235. [PMID: 37053087 DOI: 10.1021/acs.jafc.2c08053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Streptochlorin is a kind of indole alkaloid derived from marine microorganisms. It is a promising lead compound due to its potent bioactivity in preventing many phytopathogens, as shown in our previous study. To explore the potential applications of this natural product, a series of novel benzoxaborole-containing streptochlorin derivatives were designed and synthesized through a one-step and catalyst-free reaction in water at room temperature. All target compounds were first screened for their antifungal profiles in vitro against six common phytopathogenic fungi. The results of bioassay revealed that most of the designed compounds exhibited more significant antifungal activities against Botrytis cinrea, Gibberella zeae, Rhizoctorzia solani, Colletotrichum lagenarium, and alternaria leaf spot under the concentration of 50 μg/mL, and this is highlighted by compounds 4i and 5f, which demonstrated impressive antifungal effects against G. zeae and R. solani, with their corresponding EC50 values 0.2983 and 0.2657 μg/mL, which are obviously better than positive control flutriafol and boscalid (5.2606 and 1.2048 μg/mL, respectively). Scanning electron microscopy on the hyphae morphology showed that compound 5b might cause mycelial abnormalities of G. zeae. 3D-QSAR studies of CoMFA and CoMSIA were carried out on 29 target compounds with antifungal activity against B. cinrea. The analysis results indicated that introducing appropriate electronegative groups at the 5-position of benzoxaborole and the 4,5-positions of the indole ring could effectively improve the anti-B. cinrea activity. Moreover, compound 5b showed good antifungal activities in vivo against Phytophthora capsici. Molecular docking was further explored to ascertain the practical value of the active compound as a potential inhibitor of LeuRS. The abovementioned results indicate that the designed benzoxaborole-containing streptochlorin derivatives could be further studied as template molecules of novel antifungal agents.
Collapse
Affiliation(s)
- Dai-Chuan Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuo He
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dale Guo
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdallah S Ali
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| |
Collapse
|
10
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit Vectors 2023; 16:82. [PMID: 36859332 PMCID: PMC9979492 DOI: 10.1186/s13071-022-05581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.
Collapse
Affiliation(s)
- Kenneth M. Pfarr
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K. Krome
- grid.10388.320000 0001 2240 3300Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- grid.451012.30000 0004 0621 531XCompetence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O. Opoku
- grid.449729.50000 0004 7707 5975Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
11
|
Boulangé A, Lejon V, Berthier D, Thévenon S, Gimonneau G, Desquesnes M, Abah S, Agboho P, Chilongo K, Gebre T, Fall AG, Kaba D, Magez S, Masiga D, Matovu E, Moukhtar A, Neves L, Olet PA, Pagabeleguem S, Shereni W, Sorli B, Taioe MO, Tejedor Junco MT, Yagi R, Solano P, Cecchi G. The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. OPEN RESEARCH EUROPE 2022; 2:67. [PMID: 37645305 PMCID: PMC10445831 DOI: 10.12688/openreseurope.14759.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/23/2023]
Abstract
Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.
Collapse
Affiliation(s)
- Alain Boulangé
- CIRAD, UMR INTERTRYP, Bouaké, 01 BP 1500, Cote d'Ivoire
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Veerle Lejon
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - David Berthier
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Sophie Thévenon
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Geoffrey Gimonneau
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Dakar-Hann, BP 2057, Senegal
| | - Marc Desquesnes
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Toulouse, F-31076, France
| | - Samuel Abah
- Mission Spéciale D'Eradication des Glossines (MSEG), Ministère de l'Elevage, des Pêches et des Industries Animales, Ngaoundéré, BP 263, Cameroon
| | - Prudenciène Agboho
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
| | - Kalinga Chilongo
- Tsetse and Trypanosomosis Control Unit (TTCU), Ministry of Fisheries and Livestock, P.O Box 50197, Lusaka, 10101, Zambia
| | - Tsegaye Gebre
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), P.O Box 19917, Addis Ababa, Ethiopia
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, BP 2057, Senegal
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique, Bouaké, 01 BP 1500, Cote d'Ivoire
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, B-1050, Belgium
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, 00100, Kenya
| | | | - Aldjibert Moukhtar
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Route de Farcha, BP 433, Chad
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, 00200, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Pamela A. Olet
- Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC), Nairobi, 00800, Kenya
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso – Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose (IBD-CETT), Ministère des ressources animales et halieutiques, Bobo-Dioulasso, 01 BP 1087, Burkina Faso
| | - William Shereni
- Division of Tsetse Control Services (TCD), Ministry of Lands, Agriculture, Fisheries, Water and Rural Development, P.O Box CY52, Harare, Zimbabwe
| | - Brice Sorli
- Institut d'Electronique et des Systèmes (IES), Université de Montpellier, Montpellier, F-34090, France
| | - Moeti O. Taioe
- Onderstepoort Veterinary Research, Agricultural Research Council (ARC), Pretoria, 0110, South Africa
| | | | - Rehab Yagi
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation, Khartoum, 12217, Sudan
| | - Philippe Solano
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, 00153, Italy
| |
Collapse
|
12
|
Boulangé A, Lejon V, Berthier D, Thévenon S, Gimonneau G, Desquesnes M, Abah S, Agboho P, Chilongo K, Gebre T, Fall AG, Kaba D, Magez S, Masiga D, Matovu E, Moukhtar A, Neves L, Olet PA, Pagabeleguem S, Shereni W, Sorli B, Taioe MO, Tejedor Junco MT, Yagi R, Solano P, Cecchi G. The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. OPEN RESEARCH EUROPE 2022; 2:67. [PMID: 37645305 PMCID: PMC10445831 DOI: 10.12688/openreseurope.14759.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 08/31/2023]
Abstract
Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.
Collapse
Affiliation(s)
- Alain Boulangé
- CIRAD, UMR INTERTRYP, Bouaké, 01 BP 1500, Cote d'Ivoire
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Veerle Lejon
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - David Berthier
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Sophie Thévenon
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Geoffrey Gimonneau
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Dakar-Hann, BP 2057, Senegal
| | - Marc Desquesnes
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Toulouse, F-31076, France
| | - Samuel Abah
- Mission Spéciale D'Eradication des Glossines (MSEG), Ministère de l'Elevage, des Pêches et des Industries Animales, Ngaoundéré, BP 263, Cameroon
| | - Prudenciène Agboho
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
| | - Kalinga Chilongo
- Tsetse and Trypanosomosis Control Unit (TTCU), Ministry of Fisheries and Livestock, P.O Box 50197, Lusaka, 10101, Zambia
| | - Tsegaye Gebre
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), P.O Box 19917, Addis Ababa, Ethiopia
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, BP 2057, Senegal
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique, Bouaké, 01 BP 1500, Cote d'Ivoire
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, B-1050, Belgium
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, 00100, Kenya
| | | | - Aldjibert Moukhtar
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Route de Farcha, BP 433, Chad
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, 00200, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Pamela A. Olet
- Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC), Nairobi, 00800, Kenya
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso – Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose (IBD-CETT), Ministère des ressources animales et halieutiques, Bobo-Dioulasso, 01 BP 1087, Burkina Faso
| | - William Shereni
- Division of Tsetse Control Services (TCD), Ministry of Lands, Agriculture, Fisheries, Water and Rural Development, P.O Box CY52, Harare, Zimbabwe
| | - Brice Sorli
- Institut d'Electronique et des Systèmes (IES), Université de Montpellier, Montpellier, F-34090, France
| | - Moeti O. Taioe
- Onderstepoort Veterinary Research, Agricultural Research Council (ARC), Pretoria, 0110, South Africa
| | | | - Rehab Yagi
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation, Khartoum, 12217, Sudan
| | - Philippe Solano
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, 00153, Italy
| |
Collapse
|
13
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
14
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space:
cis
‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022; 61:e202206687. [PMID: 35612895 PMCID: PMC9400866 DOI: 10.1002/anie.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/08/2022]
Abstract
A new class of saturated boron‐incorporated cyclic molecules has been synthesized employing an arene‐hydrogenation methodology. cis‐Selective hydrogenation of easily accessible, and biologically important molecules comprising benzoxaborole, benzoxaborinin, and benzoxaboripin derivatives is reported. Among the various catalysts tested, rhodium cyclic(alkyl)(amino)carbene [Rh‐CAAC] (1) pre‐catalyst revealed the best hydrogenation activity confirming turnover number up to 1400 with good to high diastereoselectivity. A broad range of functional groups was tolerated including sensitive substituents such as −F, −CF3, and −silyl groups. The utility of the synthesized products was demonstrated by the recognition of diols and sugars under physiological conditions. These motifs can have a substantial importance in medicinal chemistry as they possess a three‐dimensional structure, are highly stable, soluble in water, form hydrogen bonds, and interact with diols and sugars.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster Westfälische Center for Soft Nanoscience (SoN) and Organisch-Chemisches Institut Busso-Peus-Str.10 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
15
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space: cis‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry Münster GERMANY
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
16
|
Das BC, Nandwana NK, Das S, Nandwana V, Shareef MA, Das Y, Saito M, Weiss LM, Almaguel F, Hosmane NS, Evans T. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules 2022; 27:2615. [PMID: 35565972 PMCID: PMC9104566 DOI: 10.3390/molecules27092615] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure-activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer's agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (N.K.N.); (S.D.); (V.N.); (M.A.S.)
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Louis M. Weiss
- Department of Pathology, Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA;
| |
Collapse
|
17
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
19
|
Angula KT, Legoabe LJ, Swart T, Hoppe HC, Beteck RM. Synthesis and in vitro antitrypanosomal evaluation of novel 6-heteroarylidene-substituted quinolone derivatives. Eur J Med Chem 2021; 227:113913. [PMID: 34656043 DOI: 10.1016/j.ejmech.2021.113913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Human African trypanosomiasis is a vector-borne tropical disease of African origin. Presently, due to human migration and climate change, the disease might present global health and economic burdens as current chemotherapy of trypanosomiasis remains a challenge due to limited existing drugs, which are of poor efficacy, cause severe adverse events and are very costly. Recently, Beteck and co-workers identified a small library of 1,3,6-substituted non-fluoroquinolones that showed moderate to weak trypanocidal activity without cytotoxic effects. The current study further explored SARs of the quinolone scaffold in search for more potent trypanocidal agents. Fifteen novel quinolone derivatives bearing a heteroarylidene moiety at positon-6 and varied chemical entities at positions -1 and -3 of the quinolone scaffold were synthesized and evaluated in vitro for antitrypanosomal activity. The compounds exhibit exceptionally good antitrypanosomal activity with IC50 values in the low-micromolar to sub-micromolar range (0.08-15.26 μM), with compound 6d being the most active having an IC50 value of 80 nM against T.b. brucei. Compounds in this study generally have molecular weight less than 600Da, ClogP value of 2-4 and a BBB score of 1-5, hence they could be potentially effective against both stages of trypanosomiasis.
Collapse
Affiliation(s)
- Klaudia T Angula
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, 2520, South Africa.
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, 2520, South Africa.
| | - Tarryn Swart
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa; Centre for Chemico- and Biomedical Research, Rhodes University, Makhanda, 6140, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
20
|
Pacholak P, Krajewska J, Wińska P, Dunikowska J, Gogowska U, Mierzejewska J, Durka K, Woźniak K, Laudy AE, Luliński S. Development of structurally extended benzosiloxaboroles - synthesis and in vitro biological evaluation. RSC Adv 2021; 11:25104-25121. [PMID: 35478884 PMCID: PMC9037100 DOI: 10.1039/d1ra04127d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
The synthesis of potassium 6-hydroxy-7-chloro-1,1-dimethyl-3,3-difluorobenzo-1,2,3-siloxaborolate 5b from readily available 4-bromo-2-chlorophenol was developed. This compound proved useful in various derivatizations resulting in a wide range of O-functionalized benzosiloxaboroles. Reactions of 5b with selected substituted benzoyl chlorides gave rise to a series of respective derivatives with 6-benzoate side groups attached to the benzosiloxaborole core. Furthermore, treatment of 5b with substituted benzenesufonyl chlorides afforded several benzosiloxaboroles bearing functionalized benzenesulfonate moieties at the 6 position. The synthesis of related chloropyridine-2-yloxy substituted benzosiloxaboroles was accomplished by a standard approach involving silylation/boronation of appropriate heterodiaryl ethers. Investigation of biological activity of obtained compounds revealed that some benzoate and most benzenesulfonate derivatives exhibit high activity against Gram-positive cocci such as methicillin-sensitive Staphylococcus aureus ATCC 6538P as well as methicillin-resistant S. aureus ATCC 43300 with the MIC values in the range of 0.39–3.12 mg L−1. Some benzenesulfonate derivatives showed also potent activity against Enterococcus faecalis ATCC 29212 and E. faecium ATCC 6057 with MIC = 6.25 mg L−1. Importantly, for the most promising cocci-active benzenesulfonate derivatives the obtained MIC values were far below the cytotoxicity limit determined with respect to human normal lung fibroblasts (MRC-5). For those derivatives, the obtained IC50 values were higher than 12.3 mg L−1. The results of antimicrobial activity and cytotoxicity indicate that the tested compounds can be considered as potential antibacterial agents. The synthesis of potassium 6-hydroxy-7-chloro-1,1-dimethyl-3,3-difluorobenzo-1,2,3-siloxaborolate 5b from readily available 4-bromo-2-chlorophenol was developed.![]()
Collapse
Affiliation(s)
- P Pacholak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland .,University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - J Krajewska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Oczki 3 02-007 Warsaw Poland
| | - P Wińska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - J Dunikowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - U Gogowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - J Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - K Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - K Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - A E Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Oczki 3 02-007 Warsaw Poland
| | - S Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
21
|
Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021; 26:3309. [PMID: 34072937 PMCID: PMC8199504 DOI: 10.3390/molecules26113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Paolo Saul Coghi
- School of Pharmacy Macau, University of Science and Technology, Taipa Macau 999078, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa Macau 999078, China
| | - Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Hongming Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| |
Collapse
|
22
|
Zhao J, Chen J, Xu Q, Li H. Synthesis of Benzoxaboroles by ortho-Oxalkylation of Arylboronic Acids with Aldehydes/Ketones in the Presence of Brønsted Acids. Org Lett 2021; 23:1986-1990. [PMID: 33646001 DOI: 10.1021/acs.orglett.1c00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we describe a simple and efficient synthesis of benzoxaboroles from arylboronic acids and aldehydes or ketones in the presence of a Brønsted acid. This method greatly simplifies the starting materials and reduces the number of reaction steps. The reaction can also be accomplished with acetals and ketals. The reaction has a wide substrate scope and high practicability.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Qing Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huan Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
23
|
Could chroman-4-one derivative be a better inhibitor of PTR1? - Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major. Comput Biol Chem 2020; 90:107412. [PMID: 33199197 DOI: 10.1016/j.compbiolchem.2020.107412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023]
Abstract
Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of -49.0507 Kcal/mol than -29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by "strong" electrostatic energy compared to the "weak" van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.
Collapse
|
24
|
Giordani F, Paape D, Vincent IM, Pountain AW, Fernández-Cortés F, Rico E, Zhang N, Morrison LJ, Freund Y, Witty MJ, Peter R, Edwards DY, Wilkes JM, van der Hooft JJJ, Regnault C, Read KD, Horn D, Field MC, Barrett MP. Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. PLoS Pathog 2020; 16:e1008932. [PMID: 33141865 PMCID: PMC7710103 DOI: 10.1371/journal.ppat.1008932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/02/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Livestock diseases caused by Trypanosoma congolense, T. vivax and T. brucei, collectively known as nagana, are responsible for billions of dollars in lost food production annually. There is an urgent need for novel therapeutics. Encouragingly, promising antitrypanosomal benzoxaboroles are under veterinary development. Here, we show that the most efficacious subclass of these compounds are prodrugs activated by trypanosome serine carboxypeptidases (CBPs). Drug-resistance to a development candidate, AN11736, emerged readily in T. brucei, due to partial deletion within the locus containing three tandem copies of the CBP genes. T. congolense parasites, which possess a larger array of related CBPs, also developed resistance to AN11736 through deletion within the locus. A genome-scale screen in T. brucei confirmed CBP loss-of-function as the primary mechanism of resistance and CRISPR-Cas9 editing proved that partial deletion within the locus was sufficient to confer resistance. CBP re-expression in either T. brucei or T. congolense AN11736-resistant lines restored drug-susceptibility. CBPs act by cleaving the benzoxaborole AN11736 to a carboxylic acid derivative, revealing a prodrug activation mechanism. Loss of CBP activity results in massive reduction in net uptake of AN11736, indicating that entry is facilitated by the concentration gradient created by prodrug metabolism.
Collapse
Affiliation(s)
- Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fernando Fernández-Cortés
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Eva Rico
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Rosemary Peter
- Global Alliance for Livestock and Veterinary Medicine, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Darren Y. Edwards
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jonathan M. Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Justin J. J. van der Hooft
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Current address: Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Clément Regnault
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Melnikov SV, Stevens DL, Fu X, Kwok HS, Zhang JT, Shen Y, Sabina J, Lee K, Lee H, Söll D. Exploiting evolutionary trade-offs for posttreatment management of drug-resistant populations. Proc Natl Acad Sci U S A 2020; 117:17924-17931. [PMID: 32661175 PMCID: PMC7395499 DOI: 10.1073/pnas.2003132117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance frequently evolves through fitness trade-offs in which the genetic alterations that confer resistance to a drug can also cause growth defects in resistant cells. Here, through experimental evolution in a microfluidics-based turbidostat, we demonstrate that antibiotic-resistant cells can be efficiently inhibited by amplifying the fitness costs associated with drug-resistance evolution. Using tavaborole-resistant Escherichia coli as a model, we show that genetic mutations in leucyl-tRNA synthetase (that underlie tavaborole resistance) make resistant cells intolerant to norvaline, a chemical analog of leucine that is mistakenly used by tavaborole-resistant cells for protein synthesis. We then show that tavaborole-sensitive cells quickly outcompete tavaborole-resistant cells in the presence of norvaline due to the amplified cost of the molecular defect of tavaborole resistance. This finding illustrates that understanding molecular mechanisms of drug resistance allows us to effectively amplify even small evolutionary vulnerabilities of resistant cells to potentially enhance or enable adaptive therapies by accelerating posttreatment competition between resistant and susceptible cells.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| | - David L Stevens
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Xian Fu
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Hui Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jin-Tao Zhang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Genome Read and Write, 518120 Shenzhen, China
- BGI-Shenzhen, 518083 Shenzhen, China
- China National Genebank, BGI-Shenzhen, 518120 Shenzhen, China
| | | | | | | | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
26
|
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 83:225-252. [PMID: 32249457 DOI: 10.1002/ddr.21664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Human trypanosomiasis and leishmaniasis are vector-borne neglected tropical diseases caused by infection with the protozoan parasites Trypanosoma spp. and Leishmania spp., respectively. Once restricted to endemic areas, these diseases are now distributed worldwide due to human migration, climate change, and anthropogenic disturbance, causing significant health and economic burden globally. The current chemotherapy used to treat these diseases has limited efficacy, and drug resistance is spreading. Hence, new drugs are urgently needed. Phenotypic compound screenings have prevailed as the leading method to discover new drug candidates against these diseases. However, the publication of the complete genome sequences of multiple strains, advances in the application of CRISPR/Cas9 technology, and in vivo bioluminescence-based imaging have set the stage for advancing target-based drug discovery. This review analyses the limitations of the narrow pool of available drugs presently used for treating these diseases. It describes the current drug-based clinical trials highlighting the most promising leads. Furthermore, the review presents a focused discussion on the most important biological and pharmacological challenges that target-based drug discovery programs must overcome to advance drug candidates. Finally, it examines the advantages and limitations of modern research tools designed to identify and validate essential genes as drug targets, including genomic editing applications and in vivo imaging.
Collapse
Affiliation(s)
- Fernando Altamura
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Rishi Rajesh
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | - Nilmar S Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
27
|
Hagen JP, Darner G, Anderson S, Higgins K, Leas DA, Mitra A, Mashinson V, Wol T, Vera-Esquivel C, Belter B, Cal M, Kaiser M, Wallick A, Warner RC, Davis PH. Activity of diphenyl ether benzyl amines against Human African Trypanosomiasis. Bioorg Chem 2020; 97:103590. [PMID: 32179269 DOI: 10.1016/j.bioorg.2020.103590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Insect-borne parasite Trypanosoma brucei plagues humans and other animals, eliciting the disease Human African trypanosomiasis, also known as African sleeping sickness. This disease poses the biggest threat to the people in Sub-Saharan Africa. Given the high toxicity and difficulties with administration of currently available drugs, a novel treatment is needed. Building on known Human African trypanosomiasis structure-activity relationship (SAR), we now describe a number of functionally simple diphenyl ether analogs which give low micromolar activity (IC50 = 0.16-0.96 μM) against T. b. rhodesiense. The best compound shows favorable selectivity against the L6 cell line (SI = 750) and even greater selectivity (SI = 1200) against four human cell lines. The data herein provides direction for the ongoing optimization of antitrypanosomal diphenyl ethers.
Collapse
Affiliation(s)
- James P Hagen
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States.
| | - Grant Darner
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Samuel Anderson
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Katie Higgins
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Derek A Leas
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Ananya Mitra
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Victoria Mashinson
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Tasloach Wol
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Carlos Vera-Esquivel
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Bret Belter
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, United States
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, CH-4003 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, CH-4003 Basel, Switzerland
| | - Alexander Wallick
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States
| | - Rosalie C Warner
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States
| |
Collapse
|
28
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
29
|
Ren J, Shi W, Zhao D, Wang Q, Chang X, He X, Wang X, Gao Y, Lu P, Zhang X, Xu H, Zhang Y. Design and synthesis of boron-containing diphenylpyrimidines as potent BTK and JAK3 dual inhibitors. Bioorg Med Chem 2020; 28:115236. [DOI: 10.1016/j.bmc.2019.115236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 11/26/2022]
|
30
|
Zhang P, Ma S. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MEDCHEMCOMM 2019; 10:1329-1341. [PMID: 31534653 PMCID: PMC6727470 DOI: 10.1039/c9md00139e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) widely exist in organisms and mediate protein synthesis. Inhibiting these synthetases can lead to the termination of protein synthesis and subsequently achieve antibacterial and antiparasitic purposes. Moreover, the structures of aaRSs found in eukaryotes have considerable structural differences compared to those in prokaryotes, based on which it is possible to develop highly selective inhibitors. Leucyl-tRNA synthetase (LeuRS) with unique synthesis and editing sites is one of 20 kinds of aaRSs. Many inhibitors targeting LeuRS have been designed and synthesized, some of which have entered clinical use. For example, the benzoxaborole compound AN2690 has been approved by the FDA for the treatment of onychomycosis. AN3365 is suspended in the phase II clinical trial due to the rapid development of AN3365 resistance, but it may be used in combination with other antibiotics. The aaRSs, especially LeuRS, are being considered as targets of new potential anti-infective drugs for the treatment of not only bacterial or fungal infections but also infections by trypanosomes and malaria parasites. This review mainly describes the development of LeuRS inhibitors, focusing on their mechanisms of action, structure-activity relationships (SARs), and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| |
Collapse
|
31
|
Fuscaldo RS, Vontobel PHV, Boeira EO, Moro AV, Costa JSD. Synthesis of Amino- and Hydroxymethyl Benzoxaboroles: Prominent Scaffolds for Further Functionalization. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodrigo S. Fuscaldo
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Pedro H. V. Vontobel
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Eduam O. Boeira
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Angélica V. Moro
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Jessie S. da Costa
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| |
Collapse
|
32
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
33
|
Begolo D, Vincent IM, Giordani F, Pöhner I, Witty MJ, Rowan TG, Bengaly Z, Gillingwater K, Freund Y, Wade RC, Barrett MP, Clayton C. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog 2018; 14:e1007315. [PMID: 30252911 PMCID: PMC6173450 DOI: 10.1371/journal.ppat.1007315] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/05/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Kinetoplastid parasites-trypanosomes and leishmanias-infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition.
Collapse
Affiliation(s)
- Daniela Begolo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Timothy G. Rowan
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Zakaria Bengaly
- Centre International de Recherche–Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso 01, Burkina Faso
| | - Kirsten Gillingwater
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, CA, United States of America
| | - Rebecca C. Wade
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Christine Clayton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
34
|
Berry SL, Hameed H, Thomason A, Maciej-Hulme ML, Saif Abou-Akkada S, Horrocks P, Price HP. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl Trop Dis 2018; 12:e0006639. [PMID: 30001317 PMCID: PMC6057649 DOI: 10.1371/journal.pntd.0006639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/24/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis; a spectrum of diseases of which there are an estimated 1 million new cases each year. Current treatments are toxic, expensive, difficult to administer, and resistance to them is emerging. New therapeutics are urgently needed, however, screening the infective amastigote form of the parasite is challenging. Only certain species can be differentiated into axenic amastigotes, and compound activity against these does not always correlate with efficacy against the parasite in its intracellular niche. Methods used to assess compound efficacy on intracellular amastigotes often rely on microscopy-based assays. These are laborious, require specialist equipment and can only determine parasite burden, not parasite viability. We have addressed this clear need in the anti-leishmanial drug discovery process by producing a transgenic L. mexicana cell line that expresses the luciferase NanoLuc-PEST. We tested the sensitivity and versatility of this transgenic strain, in comparison with strains expressing NanoLuc and the red-shifted firefly luciferase. We then compared the NanoLuc-PEST luciferase to the current methods in both axenic and intramacrophage amastigotes following treatment with a supralethal dose of Amphotericin B. NanoLuc-PEST was a more dynamic indicator of cell viability due to its high turnover rate and high signal:background ratio. This, coupled with its sensitivity in the intramacrophage assay, led us to validate the NanoLuc-PEST expressing cell line using the MMV Pathogen Box in a two-step process: i) identify hits against axenic amastigotes, ii) screen these hits using our bioluminescence-based intramacrophage assay. The data obtained from this highlights the potential of compounds active against M. tuberculosis to be re-purposed for use against Leishmania. Our transgenic L. mexicana cell line is therefore a highly sensitive and dynamic system suitable for Leishmania drug discovery in axenic and intramacrophage amastigote models. The protozoan parasite Leishmania causes a spectrum of diseases collectively known as leishmaniasis. The parasite is transmitted to humans by the bite of its vector, the sand fly, following which the parasite invades host white blood cells, particularly macrophages. Leishmaniasis is classified as a neglected tropical disease, and is endemic in 97 countries. Symptoms of the disease depend on the species of Leishmania. These include skin lesions, destruction of the mucosal membranes, and the visceral form which is usually fatal if untreated. Current therapeutic options for leishmaniasis have a number of associated problems that include toxicity, the development of drug resistance and poor patient compliance due to lengthy and painful treatment regimens. New therapeutics are therefore urgently needed. The ability to screen potential drug candidates requires robust screening assays. Currently, screening the intracellular parasite relies on microscopy-based techniques that require expensive equipment, are time consuming and only detect parasite burden, not viability. By using a transgenic cell line that expresses the NanoLuc-PEST luciferase, we show that we have a parasite-specific viability marker that can be used to measure the efficacy of compounds against the intracellular parasite. We validate the potential of this cell line by screening the MMV Pathogen Box.
Collapse
Affiliation(s)
- Sarah L. Berry
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamza Hameed
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Anna Thomason
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Current address: School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Marissa L. Maciej-Hulme
- Radboud University Medical Center, Department of Nephrology, Geert Grooteplein 10, GA Nijmegan, The Netherlands
| | - Somaia Saif Abou-Akkada
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Paul Horrocks
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Helen P. Price
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
|
36
|
Barraza SJ, Denmark SE. Synthesis, Reactivity, Functionalization, and ADMET Properties of Silicon-Containing Nitrogen Heterocycles. J Am Chem Soc 2018; 140:6668-6684. [PMID: 29763323 PMCID: PMC6011798 DOI: 10.1021/jacs.8b03187] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silicon-containing compounds have been largely ignored in drug design and development, despite their potential to improve not only the potency but also the physicochemical and ADMET ( absorption, distribution, metabolism, excretion, toxicity) properties of drug-like candidates because of the unique characteristics of silicon. This deficiency is in large part attributable to a lack of general methods for synthesizing diverse organosilicon structures. Accordingly, a new building block strategy has been developed that diverges from traditional approaches to incorporation of silicon into drug candidates. Flexible, multi-gram-scale syntheses of silicon-containing tetrahydroquinoline and tetrahydroisoquinoline building blocks are described, along with methods by which diversely functionalized silicon-containing nitrogen heterocycles can be rapidly built using common reactions optimized to accommodate the properties of silicon. Furthermore, to better clarify the liabilities and advantages of silicon incorporation, select compounds and their carbon analogues were challenged in ADMET-focused biological studies.
Collapse
Affiliation(s)
- Scott J. Barraza
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E. Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Giroud M, Dietzel U, Anselm L, Banner D, Kuglstatter A, Benz J, Blanc JB, Gaufreteau D, Liu H, Lin X, Stich A, Kuhn B, Schuler F, Kaiser M, Brun R, Schirmeister T, Kisker C, Diederich F, Haap W. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors. J Med Chem 2018; 61:3350-3369. [DOI: 10.1021/acs.jmedchem.7b01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uwe Dietzel
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Lilli Anselm
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - David Banner
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Baptiste Blanc
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Delphine Gaufreteau
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Haixia Liu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - Xianfeng Lin
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - August Stich
- Department of Tropical Medicine, Medical Mission Institute, Salvatorstrasse 7, 97074 Würzburg, Germany
| | - Bernd Kuhn
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Haap
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
38
|
In Vitro and In Vivo Activities of DS86760016, a Novel Leucyl-tRNA Synthetase Inhibitor for Gram-Negative Pathogens. Antimicrob Agents Chemother 2018; 62:AAC.01987-17. [PMID: 29437618 DOI: 10.1128/aac.01987-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/27/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Gram-negative bacilli is a major concern in the treatment of nosocomial infections. Antibacterial agents with novel modes of action can be useful, as these pathogens have become resistant to almost all existing standard-of-care agents. GSK2251052, a leucyl-tRNA synthetase inhibitor, has a novel mode of action against Gram-negative bacteria. However, the phase 2 studies with this drug were terminated due to microbiological failures based on the rapid emergence of drug resistance during the treatment of complicated urinary tract infections. DS86760016 is a novel leucyl-tRNA synthetase inhibitor active against MDR Gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, with an improved pharmacokinetic profile. DS86760016 showed lower plasma clearance, longer plasma half-life, and higher renal excretion than GSK2251052 did in mice, rats, monkeys and dogs. DS86760016 also showed lower mutant prevention concentrations against P. aeruginosa than did GSK2251052. No resistant bacteria were observed in murine urinary tract infection models at a dose that maintained urinary concentrations above the mutant prevention concentration. DS86760016 also showed a lower risk of resistance development than did GSK2251052 in comparative in vivo studies with murine urinary tract infection models. These results suggest that DS86760016 has potential as a new drug for the treatment of MDR Gram-negative bacterial infections, with a lower risk of drug resistance development than that of GSK2251052.
Collapse
|
39
|
Yang F, Zhu M, Zhang J, Zhou H. Synthesis of biologically active boron-containing compounds. MEDCHEMCOMM 2017; 9:201-211. [PMID: 30108914 DOI: 10.1039/c7md00552k] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023]
Abstract
Boron-containing compounds which possess unique and attractive properties have received increasing attention from the pharmaceutical industry and academia recently. They have shown interesting and useful biological activities, including antibacterial, antifungal, antiparasitic, antiviral, and anti-inflammatory activities. In this review, the synthetic strategies for various boron-containing compounds, including peptidyl boronic acids, benzoxaboroles, benzoxaborines, benzodiazaborines, amine carboxyboranes, and amine cyanoboranes are summarized. Representative structures of each structural class and recently developed biologically active boron-containing compounds are used as examples in this review.
Collapse
Affiliation(s)
- Fei Yang
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Jinyi Zhang
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| |
Collapse
|
40
|
Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother 2017; 61:AAC.00379-17. [PMID: 28674055 PMCID: PMC5571359 DOI: 10.1128/aac.00379-17] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/19/2017] [Indexed: 01/19/2023] Open
Abstract
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.
Collapse
|
41
|
Long T, Rojo-Arreola L, Shi D, El-Sakkary N, Jarnagin K, Rock F, Meewan M, Rascón AA, Lin L, Cunningham KA, Lemieux GA, Podust L, Abagyan R, Ashrafi K, McKerrow JH, Caffrey CR. Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Negl Trop Dis 2017; 11:e0005680. [PMID: 28704396 PMCID: PMC5526615 DOI: 10.1371/journal.pntd.0005680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/25/2017] [Accepted: 06/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reliance on just one drug to treat the prevalent tropical disease, schistosomiasis, spurs the search for new drugs and drug targets. Inhibitors of human cyclic nucleotide phosphodiesterases (huPDEs), including PDE4, are under development as novel drugs to treat a range of chronic indications including asthma, chronic obstructive pulmonary disease and Alzheimer's disease. One class of huPDE4 inhibitors that has yielded marketed drugs is the benzoxaboroles (Anacor Pharmaceuticals). METHODOLOGY/PRINCIPAL FINDINGS A phenotypic screen involving Schistosoma mansoni and 1,085 benzoxaboroles identified a subset of huPDE4 inhibitors that induced parasite hypermotility and degeneration. To uncover the putative schistosome PDE4 target, we characterized four PDE4 sequences (SmPDE4A-D) in the parasite's genome and transcriptome, and cloned and recombinantly expressed the catalytic domain of SmPDE4A. Among a set of benzoxaboroles and catechol inhibitors that differentially inhibit huPDE4, a relationship between the inhibition of SmPDE4A, and parasite hypermotility and degeneration, was measured. To validate SmPDE4A as the benzoxaborole molecular target, we first generated Caenorhabditis elegans lines that express a cDNA for smpde4a on a pde4(ce268) mutant (hypermotile) background: the smpde4a transgene restored mutant worm motility to that of the wild type. We then showed that benzoxaborole inhibitors of SmPDE4A that induce hypermotility in the schistosome also elicit a hypermotile response in the C. elegans lines that express the smpde4a transgene, thereby confirming SmPDE4A as the relevant target. CONCLUSIONS/SIGNIFICANCE The orthogonal chemical, biological and genetic strategies employed identify SmPDE4A's contribution to parasite motility and degeneration, and its potential as a drug target. Transgenic C. elegans is highlighted as a potential screening tool to optimize small molecule chemistries to flatworm molecular drug targets.
Collapse
Affiliation(s)
- Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Liliana Rojo-Arreola
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nelly El-Sakkary
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt Jarnagin
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Fernando Rock
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Maliwan Meewan
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Alberto A. Rascón
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine A. Cunningham
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - George A. Lemieux
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Larissa Podust
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Russell S, Rahmani R, Jones AJ, Newson HL, Neilde K, Cotillo I, Rahmani Khajouei M, Ferrins L, Qureishi S, Nguyen N, Martinez-Martinez MS, Weaver DF, Kaiser M, Riley J, Thomas J, De Rycker M, Read KD, Flematti GR, Ryan E, Tanghe S, Rodriguez A, Charman SA, Kessler A, Avery VM, Baell JB, Piggott MJ. Hit-to-Lead Optimization of a Novel Class of Potent, Broad-Spectrum Trypanosomacides. J Med Chem 2016; 59:9686-9720. [DOI: 10.1021/acs.jmedchem.6b00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stephanie Russell
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Raphaël Rahmani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Amy J. Jones
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Harriet L. Newson
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Kevin Neilde
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- GlaxoSmithKline, 28760 Tres Cantos, Spain
| | | | - Marzieh Rahmani Khajouei
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Lori Ferrins
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sana Qureishi
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Nghi Nguyen
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Donald F. Weaver
- Department
of Chemistry, Dalhousie University, Halifax Nova Scotia B3H 4R2, Canada
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse, 4051 Basel, Switzerland
- University of Basel, Petesplatz
1, 4003 Basel, Switzerland
| | - Jennifer Riley
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - John Thomas
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Manu De Rycker
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Gavin R. Flematti
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Eileen Ryan
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Scott Tanghe
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Ana Rodriguez
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Susan A. Charman
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | | | - Vicky M. Avery
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| |
Collapse
|
43
|
Alam MA, Arora K, Gurrapu S, Jonnalagadda SK, Nelson GL, Kiprof P, Jonnalagadda SC, Mereddy VR. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents. Tetrahedron 2016; 72:3795-3801. [PMID: 27642196 PMCID: PMC5021310 DOI: 10.1016/j.tet.2016.03.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several derivatives of aminobenzoboroxole have been prepared starting from 2-boronobenzaldehyde. All of these derivatives have been evaluated for their anti-mycobacterial activity on Mycobacterium smegmatis and cytotoxicity on breast cancer cell line MCF7. Based on these studies, all the tested molecules have been found to be generally non-toxic and benzoboroxoles with unsubstituted (primary) amines have been found to exhibit good anti-mycobacterial activity. Some of the key compounds have been evaluated for their anti-tubercular activity on Mycobacterium tuberculosis H37Rv using 7H9 and GAST media. 7-Bromo-6-aminobenzoboroxole 4 has been identified as the lead candidate compound for further development.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shirisha Gurrapu
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
| | | | - Grady L. Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
| | - Paul Kiprof
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Venkatram R. Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|
44
|
Jones DC, Foth BJ, Urbaniak MD, Patterson S, Ong HB, Berriman M, Fairlamb AH. Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the African Trypanosome. PLoS Negl Trop Dis 2015; 9:e0004299. [PMID: 26684831 PMCID: PMC4689576 DOI: 10.1371/journal.pntd.0004299] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
SCYX-7158, an oxaborole, is currently in Phase I clinical trials for the treatment of human African trypanosomiasis. Here we investigate possible modes of action against Trypanosoma brucei using orthogonal chemo-proteomic and genomic approaches. SILAC-based proteomic studies using an oxaborole analogue immobilised onto a resin was used either in competition with a soluble oxaborole or an immobilised inactive control to identify thirteen proteins common to both strategies. Cell-cycle analysis of cells incubated with sub-lethal concentrations of an oxaborole identified a subtle but significant accumulation of G2 and >G2 cells. Given the possibility of compromised DNA fidelity, we investigated long-term exposure of T. brucei to oxaboroles by generating resistant cell lines in vitro. Resistance proved more difficult to generate than for drugs currently used in the field, and in one of our three cell lines was unstable. Whole-genome sequencing of the resistant cell lines revealed single nucleotide polymorphisms in 66 genes and several large-scale genomic aberrations. The absence of a simple consistent mechanism among resistant cell lines and the diverse list of binding partners from the proteomic studies suggest a degree of polypharmacology that should reduce the risk of resistance to this compound class emerging in the field. The combined genetic and chemical biology approaches have provided lists of candidates to be investigated for more detailed information on the mode of action of this promising new drug class. The mode of action of a new class of boron-containing chemicals (the oxaboroles), currently under development for the treatment of human African trypanosomiasis, is unknown. Here we identify a number of potential candidate proteins that could be involved either in the mode of action of these compounds or in the mechanism of resistance. This information could prove critical in protecting the compounds against resistance emerging in the field as well as opening up new avenues for drug discovery.
Collapse
Affiliation(s)
- Deuan C. Jones
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bernardo J. Foth
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michael D. Urbaniak
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Stephen Patterson
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew Berriman
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Alan H. Fairlamb
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Zhang YK, Plattner JJ, Easom EE, Zhou Y, Akama T, Bu W, White WH, Defauw JM, Winkle JR, Balko TW, Guo S, Xue J, Cao J, Zou W. Discovery of an orally bioavailable isoxazoline benzoxaborole (AN8030) as a long acting animal ectoparasiticide. Bioorg Med Chem Lett 2015; 25:5589-93. [PMID: 26508546 DOI: 10.1016/j.bmcl.2015.10.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022]
Abstract
A novel series of isoxazoline benzoxaborole small molecules was designed and synthesized for a structure-activity relationship (SAR) investigation to assess the ectoparasiticide activity against ticks and fleas. The study identified an orally bioavailable molecule, (S)-3,3-dimethyl-5-(5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)benzo[c][1,2]oxaborol-1(3H)-ol (38, AN8030), which was long lasting in dogs (t1/2=22 days). Compound 38 demonstrated 97.6% therapeutic effectiveness within 24 h of treatment, with residual efficacy of 95.3% against American dog ticks (Dermacentor variabilis) on day 30% and 100% against cat fleas (Ctenocephalides felis) on day 32 after a single oral dose at 50 mg/kg in dogs.
Collapse
Affiliation(s)
- Yong-Kang Zhang
- Anacor Pharmaceuticals, Inc., 1020 E. Meadow Circle, Palo Alto, CA 94303, USA
| | - Jacob J Plattner
- Anacor Pharmaceuticals, Inc., 1020 E. Meadow Circle, Palo Alto, CA 94303, USA
| | - Eric E Easom
- Anacor Pharmaceuticals, Inc., 1020 E. Meadow Circle, Palo Alto, CA 94303, USA
| | - Yasheen Zhou
- Anacor Pharmaceuticals, Inc., 1020 E. Meadow Circle, Palo Alto, CA 94303, USA
| | - Tsutomu Akama
- Anacor Pharmaceuticals, Inc., 1020 E. Meadow Circle, Palo Alto, CA 94303, USA
| | - Wei Bu
- Anacor Pharmaceuticals, Inc., 1020 E. Meadow Circle, Palo Alto, CA 94303, USA
| | - W Hunter White
- Elanco Animal Health Research and Development, A Division of Eli Lilly & Company, 2500 Innovation Way, Greenfield, IN 46140, USA
| | - Jean M Defauw
- Elanco Animal Health Research and Development, A Division of Eli Lilly & Company, 2500 Innovation Way, Greenfield, IN 46140, USA
| | - Joseph R Winkle
- Elanco Animal Health Research and Development, A Division of Eli Lilly & Company, 2500 Innovation Way, Greenfield, IN 46140, USA
| | - Terry W Balko
- Elanco Animal Health Research and Development, A Division of Eli Lilly & Company, 2500 Innovation Way, Greenfield, IN 46140, USA
| | - Shenghai Guo
- Shanghai Medicilon, Inc., 585 Chuanda Road, Zhangjiang High-tech Park, Pudong New Area, Shanghai 201200, China
| | - Jian Xue
- Shanghai Medicilon, Inc., 585 Chuanda Road, Zhangjiang High-tech Park, Pudong New Area, Shanghai 201200, China
| | - Jianxin Cao
- Shanghai ChemPartner, 998 Halei Road, Zhangjiang High-tech Park, Pudong New Area, Shanghai 201203, China
| | - Wuxin Zou
- BioDuro LLC, Building E, No. 29, Life Science Park Road, Beijing 102206, China
| |
Collapse
|
46
|
McKinney DC, Zhou F, Eyermann CJ, Ferguson AD, Prince DB, Breen J, Giacobbe RA, Lahiri S, Verheijen JC. 4,5-Disubstituted 6-Aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles Are Broad-Spectrum Serine β-Lactamase Inhibitors. ACS Infect Dis 2015; 1:310-6. [PMID: 27622821 DOI: 10.1021/acsinfecdis.5b00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacterially expressed β-lactamases are rapidly eroding the clinical utility of the important β-lactam class of antibacterials, significantly impairing our ability to fight serious bacterial infections. This paper describes a study of oxaborole-derived β-lactamase inhibitors in which crystal structures and computational modeling aided in the rational design of analogues with improved spectrum of activity against class A, C, and D enzymes. Crystal structures of two of these inhibitors covalently bound to two different serine β-lactamases, class C Pseudomonas aeruginosa AmpC and class D OXA-10, are described herein. Improved physicochemical properties as well as increased activity against an array of β-lactamases resulted in substantial restoration of susceptibility to ceftazidime in Escherichia coli and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- David C. McKinney
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham Massachusetts 02451, United States
| | - Fei Zhou
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham Massachusetts 02451, United States
| | - Charles J. Eyermann
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham Massachusetts 02451, United States
| | | | | | | | - Robert A. Giacobbe
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham Massachusetts 02451, United States
| | - Sushmita Lahiri
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham Massachusetts 02451, United States
| | - Jeroen C. Verheijen
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham Massachusetts 02451, United States
| |
Collapse
|
47
|
Adamczyk-Woźniak A, Borys KM, Sporzyński A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem Rev 2015; 115:5224-47. [DOI: 10.1021/cr500642d] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Krzysztof M. Borys
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
48
|
Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Zhu J, Wei Y, Lin D, Ou C, Xie L, Zhao Y, Huang W. One-pot synthesis of benzoxaborole derivatives from the palladium-catalyzed cross-coupling reaction of alkoxydiboron with unprotected o-bromobenzylalcohols. Org Biomol Chem 2015; 13:11362-8. [DOI: 10.1039/c5ob01781e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under very mild conditions, functionalized benzoxaborole derivatives were prepared in good to excellent yields via a palladium-catalyzed Miyaura borylation reaction of readily available unprotected o-bromobenzylalcohols, and bis(pinacolato)diboron (B2pin2) without the assistance of an acid.
Collapse
Affiliation(s)
- Jianan Zhu
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Dongqing Lin
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Changjin Ou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yu Zhao
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| |
Collapse
|
50
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|