1
|
Chittum JE, Thompson A, Desai UR. Glycosaminoglycan microarrays for studying glycosaminoglycan-protein systems. Carbohydr Polym 2024; 335:122106. [PMID: 38616080 PMCID: PMC11032185 DOI: 10.1016/j.carbpol.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.
Collapse
Affiliation(s)
- John E Chittum
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Ally Thompson
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America.
| |
Collapse
|
2
|
Holmes SG, Desai UR. Assessing Genetic Algorithm-Based Docking Protocols for Prediction of Heparin Oligosaccharide Binding Geometries onto Proteins. Biomolecules 2023; 13:1633. [PMID: 38002315 PMCID: PMC10669598 DOI: 10.3390/biom13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| |
Collapse
|
3
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
4
|
Danielsson A, Kogut MM, Maszota-Zieleniak M, Chopra P, Boons GJ, Samsonov SA. Molecular Dynamics-based descriptors of 3-O-Sulfated Heparan Sulfate as Contributors of Protein Binding Specificity. Comput Biol Chem 2022; 99:107716. [DOI: 10.1016/j.compbiolchem.2022.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
5
|
In-Depth Molecular Dynamics Study of All Possible Chondroitin Sulfate Disaccharides Reveals Key Insight into Structural Heterogeneity and Dynamism. Biomolecules 2022; 12:biom12010077. [PMID: 35053225 PMCID: PMC8773825 DOI: 10.3390/biom12010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
GAGs exhibit a high level of conformational and configurational diversity, which remains untapped in terms of the recognition and modulation of proteins. Although GAGs are suggested to bind to more than 800 biologically important proteins, very few therapeutics have been designed or discovered so far. A key challenge is the inability to identify, understand and predict distinct topologies accessed by GAGs, which may help design novel protein-binding GAG sequences. Recent studies on chondroitin sulfate (CS), a key member of the GAG family, pinpointing its role in multiple biological functions led us to study the conformational dynamism of CS building blocks using molecular dynamics (MD). In the present study, we used the all-atom GLYCAM06 force field for the first time to explore the conformational space of all possible CS building blocks. Each of the 16 disaccharides was solvated in a TIP3P water box with an appropriate number of counter ions followed by equilibration and a production run. We analyzed the MD trajectories for torsional space, inter- and intra-molecular H-bonding, bridging water, conformational spread and energy landscapes. An in-house phi and psi probability density analysis showed that 1→3-linked sequences were more flexible than 1→4-linked sequences. More specifically, phi and psi regions for 1→4-linked sequences were held within a narrower range because of intra-molecular H-bonding between the GalNAc O5 atom and GlcA O3 atom, irrespective of sulfation pattern. In contrast, no such intra-molecular interaction arose for 1→3-linked sequences. Further, the stability of 1→4-linked sequences also arose from inter-molecular interactions involving bridged water molecules. The energy landscape for both classes of CS disaccharides demonstrated increased ruggedness as the level of sulfation increased. The results show that CS building blocks present distinct conformational dynamism that offers the high possibility of unique electrostatic surfaces for protein recognition. The fundamental results presented here will support the development of algorithms that help to design longer CS chains for protein recognition.
Collapse
|
6
|
Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function. Methods Mol Biol 2021; 2303:513-537. [PMID: 34626405 DOI: 10.1007/978-1-0716-1398-6_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of highly negatively charged polysaccharides that plays a major role in various biological processes through their interaction with hundreds of proteins. A major challenge in understanding the specific protein-GAG interaction is their structural diversity and complexity. Recently, computational approaches have been used extensively in addressing this challenge. In this chapter, we present a generally-applicable methodology termed Combinatorial Virtual Library Screening (CVLS) that can identify potential high-affinity, high-specificity sequence(s) binding to a suitable GAG-binding protein from large GAG combinatorial libraries of various lengths and structural patterns.
Collapse
|
7
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Sankaranarayanan NV, Nagarajan B, Desai UR. Combinatorial Virtual Library Screening Study of Transforming Growth Factor-β2-Chondroitin Sulfate System. Int J Mol Sci 2021; 22:7542. [PMID: 34299163 PMCID: PMC8305211 DOI: 10.3390/ijms22147542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor-beta (TGF-β), a member of the TGF-β cytokine superfamily, is known to bind to sulfated glycosaminoglycans (GAGs), but the nature of this interaction remains unclear. In a recent study, we found that preterm human milk TGF-β2 is sequestered by chondroitin sulfate (CS) in its proteoglycan form. To understand the molecular basis of the TGF-β2-CS interaction, we utilized the computational combinatorial virtual library screening (CVLS) approach in tandem with molecular dynamics (MD) simulations. All possible CS oligosaccharides were generated in a combinatorial manner to give 24 di- (CS02), 192 tetra- (CS04), and 1536 hexa- (CS06) saccharides. This library of 1752 CS oligosaccharides was first screened against TGF-β2 using the dual filter CVLS algorithm in which the GOLDScore and root-mean-square-difference (RMSD) between the best bound poses were used as surrogate markers for in silico affinity and in silico specificity. CVLS predicted that both the chain length and level of sulfation are critical for the high affinity and high specificity recognition of TGF-β2. Interestingly, CVLS led to identification of two distinct sites of GAG binding on TGF-β2. CVLS also deduced the preferred composition of the high specificity hexasaccharides, which were further assessed in all-atom explicit solvent MD simulations. The MD results confirmed that both sites of binding form stable GAG-protein complexes. More specifically, the highly selective CS chains were found to engage the TGF-β2 monomer with high affinity. Overall, this work present key principles of recognition with regard to the TGF-β2-CS system. In the process, it led to the generation of the in silico library of all possible CS oligosaccharides, which can be used for advanced studies on other protein-CS systems. Finally, the study led to the identification of unique CS sequences that are predicted to selectively recognize TGF-β2 and may out-compete common natural CS biopolymers.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; (N.V.S.); (B.N.)
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; (N.V.S.); (B.N.)
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; (N.V.S.); (B.N.)
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Shi D, Sheng A, Chi L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front Mol Biosci 2021; 8:639666. [PMID: 33768117 PMCID: PMC7985165 DOI: 10.3389/fmolb.2021.639666] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a family of linear and negatively charged polysaccharides that exist ubiquitously on the human cell surface as well as in the extracellular matrix. GAGs interact with a wide range of proteins, including proteases, growth factors, cytokines, chemokines and adhesion molecules, enabling them to mediate many physiological processes, such as protein function, cellular adhesion and signaling. GAG-protein interactions participate in and intervene in a variety of human diseases, including cardiovascular disease, infectious disease, neurodegenerative diseases and tumors. The breakthrough in analytical tools and approaches during the last two decades has facilitated a greater understanding of the importance of GAG-protein interactions and their roles in human diseases. This review focuses on aspects of the molecular basis and mechanisms of GAG-protein interactions involved in human disease. The most recent advances in analytical tools, especially mass spectrometry-based GAG sequencing and binding motif characterization methods, are introduced. An update of selected families of GAG binding proteins is presented. Perspectives on development of novel therapeutics targeting specific GAG-protein interactions are also covered in this review.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Magnani HN. Rationale for the Role of Heparin and Related GAG Antithrombotics in COVID-19 Infection. Clin Appl Thromb Hemost 2021; 27:1076029620977702. [PMID: 33539214 PMCID: PMC7868468 DOI: 10.1177/1076029620977702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic has focused attention on prevention, restriction and treatment methods that are acceptable worldwide. This means that they should be simple and inexpensive. This review examines the possible role of glycosaminoglycan (GAG) antithrombotics in the treatment of COVID-19. The pathophysiology of this disease reveals a complex interplay between the hemostatic and immune systems that can be readily disrupted by SARS-CoV-2. Some of the GAG antithrombotics also possess immune-modulatory actions and since they are relatively inexpensive they could play an important role in the management of COVID-19 and its complications.
Collapse
|
11
|
The conformation of the idopyranose ring revisited: How subtle O-substituent induced changes can be deduced from vicinal 1H-NMR coupling constants. Carbohydr Res 2020; 496:108052. [PMID: 32738719 DOI: 10.1016/j.carres.2020.108052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023]
Abstract
The idopyranose ring plays a pivotal role in the conformational, dynamical, and intermolecular binding aspects of glycosaminoglycans like heparin and dermatan sulfate and it was early on assigned a role in the Sugar Code governing biological recognition processes. There is consensus that next to the two canonical 1C4 and 4C1 chair conformations, the conformational space accessible to the idopyranose ring entails a 2SO skew-boat conformation, but the equilibrium between these three ring puckers has evaded satisfactory quantification. In this study a meta-analysis of X-ray solid-state data and vicinal NMR coupling constants is presented, based on the Truncated Fourier Puckering (TFP) formalism and the generalized Karplus (CAGPLUS) equation. This approach yields a model-free, granular and consistent reckoning of 159 idopyranose solution puckering equilibria studied by NMR and allows us to reproduce the involved 636 NMR vicinal couplings with an overall residual RMS(Jobs-Jcalc) of 0.184 Hz. Our analyses show that for all ring systems examined, the idopyranosyl chair conformations take up the same ring pucker irrespective of the ring substituent pattern or a vast variety in experimental conditions. Instead, it is the (skew-)boat conformation that adapts to the substitution pattern of the idopyranose ring or a specific sulfation pattern of neighboring saccharides. All idopyranose rings are involved in conformational equilibria that subsume the aforementioned conformers which turn out to differ only a few kJ/mole in conformational energy. Thus, the plasticity and flexibility of idopyranose remains intact under practically all circumstances and, as the glycosidic linkages in heparin are considered to be relatively stiff, the iduronic moiety functions as the linchpin of heparin flexibility thereby being rather a "space(r)" than a "letter" in the alleged Sugar Code alphabet.
Collapse
|
12
|
Sankaranarayanan NV, Bi Y, Kuberan B, Desai UR. Combinatorial virtual library screening analysis of antithrombin binding oligosaccharide motif generation by heparan sulfate 3- O-Sulfotransferase 1. Comput Struct Biotechnol J 2020; 18:933-941. [PMID: 32346466 PMCID: PMC7183009 DOI: 10.1016/j.csbj.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
Pharmaceutical heparin's activity arises from a key high affinity and high selectivity antithrombin binding motif, which forms the basis for its use as an anticoagulant. The current problems with the supply of pig heparin raises the emphasis of understanding heparin biosynthesis so as to control and advance recombinantly expressed agent that could bypass the need for animals. Unfortunately, much remains to be understood about the generation of the antithrombin-binding motif by the key enzyme involved in its biosynthesis, 3-O-sulfotransferase-1 (3OST-1). In this work, we present a novel computational approach to understand recognition of oligosaccharide sequences by 3OST-1. Application of combinatorial virtual library screening (CVLS) algorithm on hundreds of tetrasaccharide and hexasaccharide sequences shows that 3OST-1 belongs to the growing number of proteins that recognize glycosaminoglycans with very high selectivity. It prefers very well defined pentasaccharide sequences carrying distinct groups in each of the five residues to generate the antithrombin binding motif. CVLS also identifies key residues including His271, Arg72, Arg197 and Lys173, which interact with 6-sulfate, 5-COO¯, 2-/6-sulfates and 2-sulfate at the -2, -1, +2, and +1 positions of the precursor pentasaccharide, respectively. Additionally, uncharged residues, especially Gln163 and Asn167, were also identified as playing important roles in recognition. Overall, the success of CVLS in predicting 3OST-1 recognition characteristics that help engineer selectivity lead to the expectation that recombinant enzymes could be designed to help resolve the current problems in the supply of anticoagulant heparin.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Yiling Bi
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Balagurunathan Kuberan
- Departments of Biology, Bioengineering & Medicinal Chemistry and Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neurosciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
13
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
14
|
Uciechowska-Kaczmarzyk U, Chauvot de Beauchene I, Samsonov SA. Docking software performance in protein-glycosaminoglycan systems. J Mol Graph Model 2019; 90:42-50. [PMID: 30959268 DOI: 10.1016/j.jmgm.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023]
Abstract
We present a benchmarking study for protein-glycosaminoglycan systems with eight docking programs: Dock, rDock, ClusPro, PLANTS, HADDOCK, Hex, SwissDock and ATTRACT. We used a non-redundant representative dataset of 28 protein-glycosaminoglycan complexes with experimentally available structures, where a glycosaminoglycan ligand was longer than a trimer. Overall, the ligand binding poses could be correctly predicted in many cases by the tested docking programs, however the ranks of the docking poses are often poorly assigned. Our results suggest that Dock program performs best in terms of the pose placement, has the most suitable scoring function, and its performance did not depend on the ligand size. This suggests that the implementation of the electrostatics as well as the shape complementarity procedure in Dock are the most suitable for docking glycosaminoglycan ligands. We also analyzed how free energy patterns of the benchmarking complexes affect the performance of the evaluated docking software.
Collapse
Affiliation(s)
- Urszula Uciechowska-Kaczmarzyk
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | | | - Sergey A Samsonov
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
15
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
16
|
Sankaranarayanan NV, Nagarajan B, Desai UR. So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again! Curr Opin Struct Biol 2018; 50:91-100. [PMID: 29328962 PMCID: PMC6037615 DOI: 10.1016/j.sbi.2017.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) play key roles in virtually all biologic responses through their interaction with proteins. A major challenge in understanding these roles is their massive structural complexity. Computational approaches are extremely useful in navigating this bottleneck and, in some cases, the only avenue to gain comprehensive insight. We discuss the state-of-the-art on computational approaches and present a flowchart to help answer most basic, and some advanced, questions on GAG-protein interactions. For example, firstly, does my protein bind to GAGs?; secondly, where does the GAG bind?; thirdly, does my protein preferentially recognize a particular GAG type?; fourthly, what is the most optimal GAG chain length?; fifthly, what is the structure of the most favored GAG sequence?; and finally, is my GAG-protein system 'specific', 'non-specific', or a combination of both? Recent advances show the field is now poised to enable a non-computational researcher perform advanced experiments through the availability of various tools and online servers.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Bhushan I, Alabbas A, Kuberan B, Gupta RB, Desai UR. Immobilization alters heparin cleaving properties of heparinase I. Glycobiology 2018; 27:994-998. [PMID: 28973365 DOI: 10.1093/glycob/cwx074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
We report here a novel observation that immobilization of heparinase I on CNBr-activated Sepharose results in heparin degradation properties that are different from heparinase I in the free solution form. Studies over a range of pHs (5-8) and temperatures (5-50°C) as well as under batch and flow conditions show that immobilized heparinase 1 displays altered pH and temperature optima, and a higher propensity for generation of longer chains (hexa- and octa-) with variable sulfation as compared to that in the free form, which is known to yield disaccharides. The immobilized enzyme retained good eliminase activity over at least five cycles of reuse. In combination, results suggest that heparinase I immobilization may offer a more productive route to longer, variably sulfated sequences.
Collapse
Affiliation(s)
- Indu Bhushan
- Institute for Structural Biology, Drug Discovery and Development.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.,Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir 182320, India
| | - Alhumaidi Alabbas
- Institute for Structural Biology, Drug Discovery and Development.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Ram B Gupta
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
18
|
Modulating the degree of fucosylation of fucosylated chondroitin sulfate enhances heparin cofactor II-dependent thrombin inhibition. Eur J Med Chem 2018; 154:133-143. [PMID: 29787913 DOI: 10.1016/j.ejmech.2018.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/24/2022]
Abstract
Fucosylated chondroitin sulfate (FCS), an unusual glycosaminoglycan with fucose side chains, is a promising anticoagulant agent. To assess the effect of its structure on anticoagulant activity, its derivatives with various degrees of fucosylation (DF), molecular weights (Mw) and sulfation patterns were prepared and characterized. Biological tests showed that their APTT (activated partial thromboplastin time) prolonging activity and intrinsic factor Xase complex (factor IXa-VIIIa-Ca2+-PL complex) inhibitory activity were both reduced in FCS derivatives with lower Mw and DF. However, FCSs with DF at least 16% resulted in greater heparin cofactor II (HCII)-dependent thrombin inhibitory activity in response to decreasing DF, and these activities did not depend on Mw (Mw > 5.2 kDa). Solution competition binding assay further suggested that modulating the DF of FCS derivatives might enhance inhibition of thrombin by activating HCII. These findings imply that FCS derivatives with suitable chain length and DF value may be novel anticoagulants by activating HCII.
Collapse
|
19
|
Zheng S, Kummarapurugu AB, Afosah DK, Sankaranarayanan NV, Boothello RS, Desai UR, Kennedy T, Voynow JA. 2-O, 3-O Desulfated Heparin Blocks High Mobility Group Box 1 Release by Inhibition of p300 Acetyltransferase Activity. Am J Respir Cell Mol Biol 2017; 56:90-98. [PMID: 27585400 DOI: 10.1165/rcmb.2016-0069oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High mobility group box 1 (HMGB1) is an alarmin released from macrophages after infection or inflammation and is a biomarker of lung disease progression in patients with cystic fibrosis. We reported that 2-O, 3-O desulfated heparin (ODSH) inhibits the release of HMGB1 from murine macrophages triggered by neutrophil elastase both in vivo and in vitro. HMGB1 shuttles between the nucleus and the cytoplasm. When acetylated at lysine residues in the nuclear localization signal domains, HMGB1 is sequestered in the cytoplasm and is fated for secretion. In this study, we investigated the mechanism by which ODSH blocks HMGB1 secretion. We tested whether ODSH inhibits the activity of p300, a histone acetyltransferase that has been linked to HMGB1 acetylation and release. ODSH inhibited both neutrophil elastase and LPS-triggered HMGB1 release from the murine macrophage cell line RAW264.7 in a concentration-dependent manner. Fluorescein-labeled ODSH was taken up by RAW264.7 cells into the cytoplasm as well as the nucleus, suggesting an intracellular site of action of ODSH for blocking HMGB1 release. ODSH inhibited RAW264.7 cell nuclear extract, human macrophage nuclear extract, and recombinant p300 HAT activity in vitro, resulting in the failure to acetylate HMGB1. In silico molecular modeling predicted that of the numerous possible ODSH sequences, a small number preferentially recognizes a specific binding site on p300. Fluorescence binding studies showed that ODSH bound p300 tightly (dissociation constant ∼1 nM) in a highly cooperative manner. These results suggest that ODSH inhibited HMGB1 release, at least in part, by direct molecular inhibition of p300 HAT activity.
Collapse
Affiliation(s)
| | | | - Daniel K Afosah
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | - Nehru Viji Sankaranarayanan
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | - Rio S Boothello
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | - Umesh R Desai
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | | | | |
Collapse
|
20
|
Sarkar A, Yu W, Desai UR, MacKerell AD, Mosier PD. Estimating glycosaminoglycan-protein interaction affinity: water dominates the specific antithrombin-heparin interaction. Glycobiology 2016; 26:1041-1047. [PMID: 27496757 DOI: 10.1093/glycob/cww073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycan (GAG)-protein interactions modulate many important biological processes. Structure-function studies on GAGs may reveal probes and drugs, but their structural complexity and highly acidic nature confound such work. Productivity will increase if we are able to identify tight-binding oligosaccharides in silico. An extension of the CHARMM force field is presented to enable modeling of polysaccharides containing sulfamate functionality, and is used to develop a reliable alchemical free-energy perturbation protocol that estimates changes in affinity for the prototypical heparin-antithrombin system to within 2.3 kcal/mol using modest simulation times. Inclusion of water is crucial during simulation as solvation energy was equal in magnitude to the sum of all other thermodynamic factors. In summary, we have identified and optimized a reliable method for estimation of GAG-protein binding affinity, and shown that solvation is a crucial component in GAG-protein interactions.
Collapse
Affiliation(s)
- Aurijit Sarkar
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, NC 27268, USA .,Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, PO Box 980133, Richmond, VA 23298, USA
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, PO Box 980133, Richmond, VA 23298, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, PO Box 980133, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Sarkar A, Desai UR. A Simple Method for Discovering Druggable, Specific Glycosaminoglycan-Protein Systems. Elucidation of Key Principles from Heparin/Heparan Sulfate-Binding Proteins. PLoS One 2015; 10:e0141127. [PMID: 26488293 PMCID: PMC4619353 DOI: 10.1371/journal.pone.0141127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 01/25/2023] Open
Abstract
Glycosaminoglycans (GAGs) affect human physiology and pathology by modulating more than 500 proteins. GAG-protein interactions are generally assumed to be ionic and nonspecific, but specific interactions do exist. Here, we present a simple method to identify the GAG-binding site (GBS) on proteins that in turn helps predict high specific GAG-protein systems. Contrary to contemporary thinking, we found that the electrostatic potential at basic arginine and lysine residues neither identifies the GBS consistently, nor its specificity. GBSs are better identified by considering the potential at neutral hydrogen bond donors such as asparagine or glutamine sidechains. Our studies also reveal that an unusual constellation of ionic and non-ionic residues in the binding site leads to specificity. Nature engineers the local environment of Asn45 of antithrombin, Gln255 of 3-O-sulfotransferase 3, Gln163 and Asn167 of 3-O-sulfotransferase 1 and Asn27 of basic fibroblast growth factor in the respective GBSs to induce specificity. Such residues are distinct from other uncharged residues on the same protein structure in possessing a significantly higher electrostatic potential, resultant from the local topology. In contrast, uncharged residues on nonspecific GBSs such as thrombin and serum albumin possess a diffuse spread of electrostatic potential. Our findings also contradict the paradigm that GAG-binding sites are simply a collection of contiguous Arg/Lys residues. Our work demonstrates the basis for discovering specifically interacting and druggable GAG-protein systems based on the structure of protein alone, without requiring access to any structure-function relationship data.
Collapse
Affiliation(s)
- Aurijit Sarkar
- Institute for Structural Biology, Drug Discovery & Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery & Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
22
|
Namachivayam K, Coffing HP, Sankaranarayanan NV, Jin Y, MohanKumar K, Frost BL, Blanco CL, Patel AL, Meier PP, Garzon SA, Desai UR, Maheshwari A. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans. Am J Physiol Gastrointest Liver Physiol 2015; 309:G171-80. [PMID: 26045614 PMCID: PMC4525106 DOI: 10.1152/ajpgi.00126.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/22/2015] [Indexed: 01/31/2023]
Abstract
Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20-40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.
Collapse
Affiliation(s)
- Kopperuncholan Namachivayam
- 1Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Department of Pediatrics, Morsani College of Medicine, University of South Florida Health, Tampa, Florida;
| | - Hayley P. Coffing
- 1Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,3Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois;
| | - Nehru Viji Sankaranarayanan
- 4Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia; ,5Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia;
| | - Yingzi Jin
- 4Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia; ,5Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia;
| | - Krishnan MohanKumar
- 1Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Department of Pediatrics, Morsani College of Medicine, University of South Florida Health, Tampa, Florida;
| | - Brandy L. Frost
- 6Department of Pediatrics, NorthShore University Health System, Evanston, Illinois;
| | - Cynthia L. Blanco
- 7Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Aloka L. Patel
- 8Department of Pediatrics, Rush University Medical Center, Chicago, Illinois; and
| | - Paula P. Meier
- 8Department of Pediatrics, Rush University Medical Center, Chicago, Illinois; and ,9Department of Women Children and Family Nursing, Rush University Medical Center, Chicago, Illinois
| | - Steven A. Garzon
- 10Department of Pathology, University of Illinois at Chicago, Chicago, Illinois;
| | - Umesh R. Desai
- 4Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia; ,5Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia;
| | - Akhil Maheshwari
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; Department of Pediatrics, Morsani College of Medicine, University of South Florida Health, Tampa, Florida; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Health, Tampa, Florida;
| |
Collapse
|
23
|
Boothello RS, Sarkar A, Tran VM, Nguyen TKN, Sankaranarayanan NV, Mehta AY, Alabbas A, Brown S, Rossi A, Joice AC, Mencio CP, Quintero MV, Kuberan B, Desai UR. Chemoenzymatically prepared heparan sulfate containing rare 2-O-sulfonated glucuronic acid residues. ACS Chem Biol 2015; 10:1485-94. [PMID: 25742429 DOI: 10.1021/acschembio.5b00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural diversity of natural sulfated glycosaminoglycans (GAGs) presents major promise for discovery of chemical biology tools or therapeutic agents. Yet, few GAGs have been identified so far to exhibit this promise. We reasoned that a simple approach to identify such GAGs is to explore sequences containing rare residues, for example, 2-O-sulfonated glucuronic acid (GlcAp2S). Genetic algorithm-based computational docking and filtering suggested that GlcAp2S containing heparan sulfate (HS) may exhibit highly selective recognition of antithrombin, a key plasma clot regulator. HS containing only GlcAp2S and 2-N-sulfonated glucosamine residues, labeled as HS2S2S, was chemoenzymatically synthesized in just two steps and was found to preferentially bind antithrombin over heparin cofactor II, a closely related serpin. Likewise, HS2S2S directly inhibited thrombin but not factor Xa, a closely related protease. The results show that a HS containing rare GlcAp2S residues exhibits the unusual property of selective antithrombin activation and direct thrombin inhibition. More importantly, HS2S2S is also the first molecule to activate antithrombin nearly as well as the heparin pentasaccharide although being completely devoid of the critical 3-O-sulfonate group. Thus, this work shows that novel functions and mechanisms may be uncovered by studying rare GAG residues/sequences.
Collapse
Affiliation(s)
- Rio S. Boothello
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Aurijit Sarkar
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | | | | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Akul Y. Mehta
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - AlHumaidi Alabbas
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | | | | | | | | | | | | - Umesh R. Desai
- Institute for Structural Biology & Drug Discovery and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
24
|
Abstract
In nearly all cases of biological activity of sulfated GAGs, the sulfate group(s) are critical for interacting with target proteins. A growing paradigm is that appropriate small, sulfated, nonsaccharide GAG mimetics can be designed to either mimic or interfere with the biological functions of natural GAG sequences resulting in the discovery of either antagonist or agonist agents. A number of times these sulfated NSGMs can be computationally designed based on the parent GAG-protein interaction. The small sulfated NSGMs may possess considerable aromatic character so as to engineer hydrophobic, hydrogen-bonding, Coulombic or cation-pi forces in their interactions with target protein(s) resulting in higher specificity of action relative to parent GAGs. The sulfated NSGMs can be easily synthesized in one step from appropriate natural polyphenols through chemical sulfation under microwave-based conditions. We describe step-by-step procedures to perform microwave-based sulfation of several small polyphenol scaffolds so as to prepare homogenous NSGMs containing one to more than 10 sulfate groups per molecule in high yields.
Collapse
|
25
|
Sankaranarayanan NV, Sarkar A, Desai UR, Mosier PD. Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling. Methods Mol Biol 2015; 1229:289-314. [PMID: 25325961 DOI: 10.1007/978-1-4939-1714-3_24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prediction of high-affinity and/or high-specificity protein-glycosaminoglycan (GAG) interactions is an inherently difficult task, due to several factors including the shallow nature of the typical GAG-binding site and the inherent size, flexibility, diversity, and polydisperse nature of the GAG molecules. Here, we present a generally applicable methodology termed Combinatorial Library Virtual Screening (CVLS) that can identify potential high-affinity, high-specificity protein-GAG interactions from very large GAG combinatorial libraries and a suitable GAG-binding protein. We describe the CVLS approach along with the rationale behind it and provide validation for the method using the well-known antithrombin-thrombin-heparin system.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA, 23298, USA
| | | | | | | |
Collapse
|
26
|
Sankaranarayanan NV, Desai UR. Toward a robust computational screening strategy for identifying glycosaminoglycan sequences that display high specificity for target proteins. Glycobiology 2014; 24:1323-33. [PMID: 25049239 DOI: 10.1093/glycob/cwu077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosaminoglycans (GAGs) interact with many proteins to regulate processes such as hemostasis, cell adhesion, growth and differentiation and viral infection. Yet, majority of these interactions remain poorly understood at a molecular level. A major reason for this state is the phenomenal structural diversity of GAGs, which has precluded analysis of specificity of their interactions. We had earlier presented a computational protocol for predicting "high-specificity" GAG sequences based on combinatorial virtual library screening (CVLS) technology. In this work, we expand the robustness of this technology through rigorous studies of parameters affecting GAG recognition of proteins, especially antithrombin and thrombin. The CVLS approach involves automated construction of a virtual library of all possible oligosaccharide sequences (di- to octasaccharide) followed by a two-step selection strategy consisting of "affinity" (GOLD score) and "specificity" (consistency of binding) filters. We find that "specificity" features are optimally evaluated using 100 genetic algorithm experiments, 100,000 evolutions and variable docking radius from 10 Å (disaccharide) to 14 Å (hexasaccharide). The results highlight critical interactions in H/HS oligosaccharides that govern specificity. Application of CVLS technology to the antithrombin-heparin system indicates that the minimal "specificity" element is the GlcAp(1 → 4)GlcNp2S3S disaccharide of heparin. The CVLS technology affords a simple, intuitive framework for the design of longer GAG sequences that can exhibit high "specificity" without resorting to exhaustive screening of millions of theoretical sequences.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| |
Collapse
|
27
|
The promise of sulfated synthetic small molecules as modulators of glycosaminoglycan function. Future Med Chem 2014; 5:1363-6. [PMID: 23919545 DOI: 10.4155/fmc.13.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Kandasamy J, Schuhmacher F, Hahm HS, Klein JC, Seeberger PH. Modular automated solid phase synthesis of dermatan sulfate oligosaccharides. Chem Commun (Camb) 2014; 50:1875-7. [PMID: 24402061 DOI: 10.1039/c3cc48860h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dermatan sulfates are glycosaminoglycan polysaccharides that serve a multitude of biological roles as part of the extracellular matrix. Orthogonally protected D-galactosamine and L-iduronic acid building blocks and a photo-cleavable linker are instrumental for the automated synthesis of dermatan sulfate oligosaccharides. Conjugation-ready oligosaccharides were obtained in good yield.
Collapse
Affiliation(s)
- Jeyakumar Kandasamy
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
29
|
Molecular docking of heparin oligosaccharides with Hep-II heparin-binding domain of fibronectin reveals an interplay between the different positions of sulfate groups. Glycoconj J 2013; 31:161-9. [DOI: 10.1007/s10719-013-9512-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
|
30
|
Karuturi R, Al-Horani RA, Mehta SC, Gailani D, Desai UR. Discovery of allosteric modulators of factor XIa by targeting hydrophobic domains adjacent to its heparin-binding site. J Med Chem 2013; 56:2415-28. [PMID: 23451707 DOI: 10.1021/jm301757v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the Vmax of substrate hydrolysis without influencing the KM. Mutagenesis of residues of the heparin-binding site (HBS) of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggests the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs.
Collapse
Affiliation(s)
- Rajesh Karuturi
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
31
|
Sidhu PS, Mosier PD, Zhou Q, Desai UR. On scaffold hopping: challenges in the discovery of sulfated small molecules as mimetics of glycosaminoglycans. Bioorg Med Chem Lett 2012; 23:355-9. [PMID: 23164711 DOI: 10.1016/j.bmcl.2012.10.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 10/04/2012] [Accepted: 10/15/2012] [Indexed: 01/25/2023]
Abstract
The design of sulfated, small, nonsaccharide molecules as modulators of proteins is still in its infancy as standard drug discovery tools such as library of diverse sulfated molecules and in silico docking and scoring protocol have not been firmly established. Databases, such as ZINC, contain too few sulfate-containing nonsaccharide molecules, which severely limits the identification of new hits. Lack of a generally applicable protocol for scaffold hopping limits the development of sulfated small molecules as synthetic mimetics of the highly sulfated glycosaminoglycans. We explored a sequential ligand-based (LBVS) and structure-based virtual screening (SBVS) approach starting from our initial discovery of monosulfated benzofurans to discover alternative scaffolds as allosteric modulators of thrombin, a key coagulation enzyme. Screening the ZINC database containing nearly 1 million nonsulfated small molecules using a pharmacophore developed from the parent sulfated benzofurans followed by a genetic algorithm-based dual-filter docking and scoring screening identified a group of 10 promising hits, of which three top-scoring hits were synthesized. Each was found to selectively inhibit human alpha-thrombin suggesting the possibility of this approach for scaffold hopping. Michaelis-Menten kinetics showed allosteric inhibition mechanism for the best molecule and human plasma studies confirmed good anticoagulation potential as expected. Our simple sequential LBVS and SBVS approach is likely to be useful as a general strategy for identification of sulfated small molecules hits as modulators of glycosaminoglycan-protein interactions.
Collapse
Affiliation(s)
- Preetpal S Sidhu
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, United States
| | | | | | | |
Collapse
|
32
|
Abdel Aziz MH, Sidhu PS, Liang A, Kim JY, Mosier PD, Zhou Q, Farrell DH, Desai UR. Designing allosteric regulators of thrombin. Monosulfated benzofuran dimers selectively interact with Arg173 of exosite 2 to induce inhibition. J Med Chem 2012; 55:6888-97. [PMID: 22788964 DOI: 10.1021/jm300670q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Earlier, we reported on the design of sulfated benzofuran dimers (SBDs) as allosteric inhibitors of thrombin (Sidhu et al. J. Med. Chem.201154 5522-5531). To identify the site of binding of SBDs, we studied thrombin inhibition in the presence of exosite 1 and 2 ligands. Whereas hirudin peptide and heparin octasaccharide did not affect the IC(50) of thrombin inhibition by a high affinity SBD, the presence of full-length heparin reduced inhibition potency by 4-fold. The presence of γ' fibrinogen peptide, which recognizes Arg93, Arg97, Arg173, Arg175, and other residues, resulted in a loss of affinity that correlated with the ideal Dixon-Webb competitive profile. Replacement of several arginines and lysines of exosite 2 with alanine did not affect thrombin inhibition potency, except for Arg173, which displayed a 22-fold reduction in IC(50). Docking studies suggested a hydrophobic patch around Arg173 as a plausible site of SBD binding to thrombin. The absence of the Arg173-like residue in factor Xa supported the observed selectivity of inhibition by SBDs. Cellular toxicity studies indicated that SBDs are essentially nontoxic to cells at concentrations as high as 250 mg/kg. Overall, the work presents the localization of the SBD binding site, which could lead to allosteric modulators of thrombin that are completely different from all clinically used anticoagulants.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry and ‡Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
de Lima CR, de Arimatéa dos Santos Junior J, Nazário ACP, Michelacci YM. Changes in glycosaminoglycans and proteoglycans of normal breast and fibroadenoma during the menstrual cycle. Biochim Biophys Acta Gen Subj 2012; 1820:1009-19. [PMID: 22542782 DOI: 10.1016/j.bbagen.2012.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fibroadenoma is the most common breast tumor in young women, and its growth and metabolism may be under hormonal control. In the present paper we described the proteoglycan (PG) composition and synthesis rate of normal breast and fibroadenoma during the menstrual cycle. METHODS Samples of fibroadenoma and adjacent normal breast tissue were obtained at surgery. PGs were characterized by agarose gel electrophoresis and enzymatic degradation with glycosaminoglycan (GAG) lyases, and immunolocalized by confocal microscopy. To assess the synthesis rate, PGs were metabolic labeled by 35S-sulfate. RESULTS The concentration of PGs in normal breast was higher during the secretory phase. Fibroadenoma contained and synthesized more PGs than their paired controls, but the PG concentrations varied less with the menstrual cycle and, in contrast to normal tissue, peaked in the proliferative phase. The main mammary GAGs are heparan sulfate (HS, 71%-74%) and dermatan sulfate (DS, 26%-29%). The concentrations of both increased in fibroadenoma, but DS increased more, becoming 35%-37% of total. The DS chains contained more β-d-glucuronic acid (IdoUA/GlcUA ratios were >10 in normal breast and 2-7 in fibroadenoma). The 35S-sulfate incorporation rate revealed that the in vitro synthesis rate of DS was higher than HS. Decorin was present in both tissues, while versican was found only in fibroadenoma. CONCLUSIONS In normal breast, the PG concentration varied with the menstrual cycle. It was increased in fibroadenoma, especially DS. GENERAL SIGNIFICANCE PGs are increased in fibroadenoma, but their concentrations may be less sensitive to hormonal control.
Collapse
Affiliation(s)
- Cilene Rebouças de Lima
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
34
|
Verhamme IM. Fluorescent reporters of thrombin, heparin cofactor II, and heparin binding in a ternary complex. Anal Biochem 2011; 421:489-98. [PMID: 22206940 DOI: 10.1016/j.ab.2011.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/15/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
Thrombin inactivation by heparin cofactor II (HCII) is accelerated by ternary complex formation with heparin. The novel active-site-labeled thrombins, [4'F]FPR-T and [6F]FFR-T, and the exosite I probe, Hir-(54-65)(SO₃⁻), characterized thrombin exosite I and II interactions with HCII and heparin in the complex. HCII binding to exosite I of heparin-bound [4'F]FPR-T caused a saturable fluorescence increase, absent with antithrombin. Heparin binding to exosite II and a second weaker site caused fluorescence quenching of [6F]-FFR-T, attenuated by simultaneous Hir-(54-65)(SO₃⁻) binding. Stopped-flow analysis demonstrated ordered assembly of HCII and the [6F]FFR-T·heparin complex, in agreement with tighter heparin binding to thrombin than to HCII. Saturating HCII dependences and bell-shaped heparin dependences of the fluorescence change reported ternary complex formation, consistent with a template mechanism in which the thrombin·heparin complex binds HCII and allowing for interaction of thrombin·(heparin)₂ complexes with HCII. Hir-(54-65)(SO₃⁻) displacement in reactions with FPR-blocked and active thrombin indicated a concerted action of the active site and exosite I during ternary complex formation. These studies demonstrate that binding of HCII to the thrombin·heparin complex is dramatically enhanced compared with heparin binding alone and that exosite I is still available for ligand or HCII binding when both heparin binding sites on thrombin are saturated.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Al-Horani RA, Liang A, Desai UR. Designing nonsaccharide, allosteric activators of antithrombin for accelerated inhibition of factor Xa. J Med Chem 2011; 54:6125-38. [PMID: 21800826 PMCID: PMC3165067 DOI: 10.1021/jm2008387] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antithrombin is a key regulator of coagulation and prime target of heparins, clinically used anticoagulants. Heparins induce a two-step conformational activation of antithrombin, a process that has remained challenging to target with molecules devoid of the antithrombin-binding pentasaccharide DEFGH. Computational screening of a focused library led to the design of two tetra-sulfated N-arylacyl tetrahydroisoquinoline variants as potential nonsaccharide activators of antithrombin. A high yielding synthetic scheme based on Horner-Wadsworth-Emmons or Pictet-Spengler reactions was developed to facilitate the functionalization of the tetrahydoisoquinoline ring, which upon further amidation, deprotection, and sulfation gave the targeted nonsaccharide activators. Spectrofluorometric measurement of affinity displayed antithrombin binding affinities in the low to high micromolar range at pH 6.0, I 0.05, 25 °C. Measurement of second-order rate constants of antithrombin inhibition of factor Xa in the presence and absence of the designed activators showed antithrombin activation in the range of 8-80-fold in the pH 6.0 buffer. This work puts forward 20c, a novel tetra-sulfated N-arylacyl tetrahydroisoquinoline-based molecule, that activates AT only 3.8-fold less than that achieved with DEFGH, suggesting a strong possibility of rationally designing sulfated organic molecules as clinically relevant AT activators.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| | - Aiye Liang
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
36
|
Kozlowski EO, Lima PC, Vicente CP, Lotufo T, Bao X, Sugahara K, Pavão MSG. Dermatan sulfate in tunicate phylogeny: order-specific sulfation pattern and the effect of [→4IdoA(2-sulfate)β-1→3GalNAc(4-sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity. BMC BIOCHEMISTRY 2011; 12:29. [PMID: 21619699 PMCID: PMC3127831 DOI: 10.1186/1471-2091-12-29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/29/2011] [Indexed: 01/30/2023]
Abstract
Background Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra) and Stolidobranchia (Halocynthia pyriformis and Styela plicata). Despite the identical disaccharide backbone, consisting of [→4IdoA(2S)β-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi) and Phlebobranchia (Ciona intestinalis), aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units. Results Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfate)β-1→3GalNAcβ-1→] modulate heparin cofactor II activity of dermatan sulfate polymers. Thus, high and low heparin cofactor II stimulating activity is observed in 2,4-sulfated dermatan sulfates and 2,6-sulfated dermatan sulfates, respectively, confirming the clear correlation between the anticoagulant activities of dermatan sulfates and the presence of 2,4-sulfated units. Conclusions Our results indicate that in ascidian dermatan sulfates the position of sulfation on the GalNAc in the disaccharide [→4IdoA(2S)β-1→3GalNAcβ-1→] is directly related to the taxon and that the 6-O sulfation is a novelty apparently restricted to the Phlebobranchia. We also show that the increased content of [→4IdoA(2S)β-1→3GalNAc(4S)β-1→] disaccharide units in dermatan sulfates from Stolidobranchia accounts for the increased heparin cofactor II stimulating activity.
Collapse
Affiliation(s)
- Eliene O Kozlowski
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Serpins (serine protease inhibitors) have traditionally been grouped together based on structural homology. They share common structural features of primary sequence, but not all serpins require binding to cofactors in order to achieve maximal protease inhibition. In order to obtain physiologically relevant rates of inhibition of target proteases, some serpins utilize the unbranched sulfated polysaccharide chains known as glycosaminoglycans (GAGs) to enhance inhibition. These GAG-binding serpins include antithrombin (AT), heparin cofactor II (HCII), and protein C inhibitor (PCI). The GAGs heparin and heparan sulfate have been shown to bind AT, HCII, and PCI, while HCII is also able to utilize dermatan sulfate as a cofactor. Other serpins such as PAI-1, kallistatin, and α(1)-antitrypsin also interact with GAGs with different endpoints, some accelerating protease inhibition while others inhibit it. There are many serpins that bind or carry ligands that are unrelated to GAGs, which are described elsewhere in this work. For most GAG-binding serpins, binding of the GAG occurs in a conserved region of the serpin near or involving helix D, with the exception of PCI, which utilizes helix H. The binding of GAG to serpin can lead to a conformational change within the serpin, which can lead to increased or tighter binding to the protease, and can accelerate the rates of inhibition up to 10,000-fold compared to the unbound native serpin. In this chapter, we will discuss three major GAG-binding serpins with known physiological roles in modulating coagulation: AT (SERPINC1), HCII (SERPIND1), and PCI (SERPINA5). We will review methodologies implemented to study the structure of these serpins and those used to study their interactions with GAG's. We discuss novel techniques to examine the serpin-GAG interaction and finally we review the biological roles of these serpins by describing the mouse models used to study them.
Collapse
Affiliation(s)
- Chantelle M Rein
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|